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Despite accumulated knowledge of various signalings regulating bone formation, the molecular network has not been clarified
sufficiently to lead to clinical application. Here we show that heterozygous glycogen synthase kinase-3b (GSK-3b)-deficient
mice displayed an increased bone formation due to an enhanced transcriptional activity of Runx2 by suppressing the
inhibitory phosphorylation at a specific site. The cleidocranial dysplasia in heterozygous Runx2-deficient mice was significantly
rescued by the genetic insufficiency of GSK-3b or the oral administration of lithium chloride, a selective inhibitor of GSK-3b.
These results establish GSK-3b as a key attenuator of Runx2 activity in bone formation and as a potential molecular target for
clinical treatment of bone catabolic disorders like cleidocranial dysplasia.
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INTRODUCTION
Bone formation is such a dynamic and intricate process that its

perturbation leads to a variety of bone catabolic disorders

including skeletal malformations and osteoporosis. Accumulated

molecular evidence has revealed the involvements of a number of

signalings in this process: Runx2, Wnt, insulin/phosphatidylino-

sitol 3-kinase (PI3K)/Akt, bone morphogenetic proteins/Smads,

hedgehog, Osterix, etc [1]. Among them, Runx2 is known to be

essential for osteoblastic differentiation, because its null mutation

in mice exhibited the complete lack of bone [2–4]. The

heterozygous loss leads to cleidocranial dysplasia in both humans

and mice, which is attributed to impaired bone formation [4].

Despite accumulated knowledge of these osteogenic siganling

molecules, the interactions among them to form the molecular

network of bone formation have not been clarified sufficiently to

lead to epochal therapeutics to treat bone disorders like

cleidocranial dysplasia.

Glycogen synthase kinase-3 (GSK-3) was originally identified as

a serine/threonine kinase involved in the regulation of glycogen

deposition. The enzyme which comprises two isoforms, GSK-3a
and GSK-3b, has since been implicated in many different

biological processes including developmental patterning and cell

survival as a regulatory switch that integrates numerous signaling

pathways [5]. Among them, GSK-3b is known to be a key

negative regulator of canonical Wnt/b-catenin and PI3K/Akt

signalings [6], both of which have been reported to induce bone

formation [7–13]. To investigate the in vivo role of GSK-3b, the

present study analyzed the skeletal phenotype of GSK-3b-deficient

mice, and investigated the underlying molecular mechanism.

RESULTS

Increased bone mass in heterozygous Gsk-3b-

deficient mice
To investigate the physiological role of GSK-3b in skeletal tissues,

we examined the phenotype of Gsk-3b-deficient mice [14].

Although the homozygous Gsk-3b-deficient (Gsk-3b–/–) mice died

in late embryogenesis due to severe liver dysfunction, heterozygous

Gsk-3b-deficient (Gsk-3b+/–) mice developed and grew normally

without disorders in major organs nor gross abnormality in the

skeleton (Fig. 1A). However, the radiographs of the entire femurs

and the three-dimensional computed tomography (3-D CT) of the

distal femurs revealed that Gsk-3b+/– mice showed an increased

bone mass compared to the wild-type Gsk-3b+/+ littemates (Fig. 1B,

C). Histological examination of the proximal tibiae confirmed the

increases in both trabecular and cortical bones without abnor-

mality in the growth plate, indicating that bone metabolism, not

cartilage metabolism, was affected by the GSK-3b haploinsuffi-

ciency (Fig. 1D). In the bone histomorphometric analysis, the

increased trabecular bone volume and cortical thickness in Gsk-

3b+/– mice were accompanied by significant increases in

parameters of bone formation (Fig. 1E). Bone resorption

parameters were also enhanced by the GSK-3b insufficiency,

although weaker than bone formation parameters (Fig. 1F).

Osteoclasts are known to be derived from hematopoietic cells

and require cell-cell interactions with osteoblasts or stromal cells

for differentiation. In the co-culture of calvarial primary

osteoblasts and bone marrow macrophages (BMMw), osteoclasto-

genesis was enhanced when osteoblasts, but not BMMw, were

derived from Gsk-3b+/– mice (Fig. 1G), implicating that the

enhanced bone resorption was due to the secondary effect of

osteoblast dysfunction, but not the intrinsic defects of osteoclastic

cells.
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Figure 1. Increased bone mass due to the GSK-3b insufficiency by radiological and histological comparisons of Gsk-3b+/+ and Gsk-3b+/–

littermates at 12 weeks of age. (A) Plain X-ray of the whole body. (B) Plain X-ray of the entire femur. (C) 3D-CT image of the distal femur. (D) von
Kossa staining of the proximal tibia (bar, 200 mm) and toluidine blue staining of the growth plate indicated by the inset box above (bar, 20 mm). (E)
Histomorphometric analyses of bone volume and bone formation parameters in the proximal tibia. BV/TV, trabecular bone volume per tissue volume;
C.Th, cortical thickness; Ob.S/BS, osteoblast surface per trabecular bone surface; Ob.S/B.Pm, osteoblast surface per trabecular bone perimeter; MAR,
mineral apposition rate; BFR/BS, bone formation rate per trabescular bone surface. Lower right panel shows fluorescent micrographs of calcein-
labeled mineralization fronts of the trabecular bones (bar, 10 mm). (F) Histomorphometric analyses of bone resorption parameters in the proximal
tibia. N.Oc/B.Pm, number of osteoclasts per 100 mm of bone perimeter; Oc.S/BS, osteoclast surface per bone surface; ES/BS, eroded surface per bone
surface. For (E) and (F), data are mean (bars)6SEM (error bars) of 10 mice per genotype. *P,0.05, **P,0.01 vs. Gsk-3b+/+. (G) Formation of TRAP-
positive multinucleated osteoclasts by the co-culture of calvarial primary osteoblasts (POB) and bone marrow macrophages (BMMw) derived from
either Gsk-3b+/+ or Gsk-3b+/– mice. Representative pictures (left; bar, 200 mm) and the number of osteoclasts expressed as mean (bars)6SEM (error
bars) of 8 wells per group. *P,0.05 vs. Gsk-3b+/+ X Gsk-3b+/+.
doi:10.1371/journal.pone.0000837.g001

GSK-3b Regulates Osteogenesis

PLoS ONE | www.plosone.org 2 September 2007 | Issue 9 | e837



Suppression of bone formation by GSK-3b in

cultured osteoblasts
To investigate the mechanism underlying the increased bone

formation in Gsk-3b+/– mice, we compared ex vivo cultures of

calvarial osteoblasts derived from Gsk-3b+/– mice with those from

the Gsk-3b+/+ littermates. The GSK-3b protein level in the

Gsk-3b+/– osteoblasts was confirmed to be lower than that in the

Gsk-3b+/+, while the GSK-3a level was comparable (Fig. 2A).

Although cell proliferation was similar between the two genotypes

(Fig. 2B), osteoblast differentiation and function determined by

alkaline phosphatase (ALP), Alizarin red, and von Kossa stainings

were enhanced in the Gsk-3b+/– culture (Fig. 2C). Real-time RT-

PCR analyses revealed that expressions of osteoblastic differenti-

ation markers type I collagen (Col I), osteopontin, ALP, and

osteocalcin were up-regulated by the GSK-3b insufficiency,

whereas the differentiation markers of mesenchymal progenitors

Twist-1 and Twist-2 were not affected [15] (Fig. 2D). Over-

expression of the wild-type GSK-3b and constitutively active form

of GSK-3b (CA-GSK-3b) via the adenoviral introduction

significantly suppressed bone formation determined by the von

Kossa staining and the osteocalcin mRNA level to similar levels in

Figure 2. Suppression of bone formation by GSK-3b in cultured osteoblasts. (A) Expressions of GSK-3b and GSK-3a in calvarial osteoblasts of Gsk-
3b+/+ and Gsk-3b+/– littermates determined by immunoblot analysis with b-actin as a loading control. (B) Cell proliferation determined by the XTT
assay in osteoblasts during 8 days of culture. Data are the mean (symbols)6SEM (error bars) of 6 dishes/genotype. (C) ALP (top), Alizarin red (middle),
and von Kossa (bottom) stainings in osteoblasts cultured for 2 weeks. (D) mRNA levels of type I collagen (Col I), osteopontin, ALP, osteocalcin, Twist-1
and Twist-2, determined by real-time RT-PCR analysis in osteoblasts cultured for 2 weeks. Data are mean (bars)6SEM (error bars) of the relative
amount compared to that of the Gsk-3b+/+ culture 6 wells per genotype. *P,0.01 vs. Gsk-3b+/+. (E) von Kossa staining (top) and osteocalcin mRNA
level determined by real-time RT-PCR analysis (bottom) of osteoblasts transfected with the adenovirus expressing GFP, wild-type GSK-3b,
constitutively active GSK-3b (CA-GSK-3b), or kinase-inactive GSK-3b (KI-GSK-3b), and cultured for 2 weeks. (F) von Kossa staining (top) and osteocalcin
mRNA level (bottom) of osteoblasts cultured with and without lithium chloride (LiCl, 16 mM) or SB216763 (10 mM) for 2 weeks. For (E) and (F), the
mRNA levels are mean (bars)6SEM (error bars) of the relative amount of mRNA compared to that of the control Gsk-3b+/+ culture of 6 wells per group.
*P,0.01, significant stimulation by the genetic GSK-3b insufficiency. #P,0.01, significant effects by the adenoviral overexpression or the GSK-3b
inhibitors.
doi:10.1371/journal.pone.0000837.g002
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the two genotypes; however, overexpression of the kinase-inactive

form of GSK-3b (KI-GSK-3b) did not affect it, indicating that

kinase activity of GSK-3b is essential for its inhibitory action on

bone formation (Fig. 2E). Contrarily, addition of lithium chloride

or SB216763, selective inhibitors of GSK-3b, promoted bone

formation in the Gsk-3b+/+ culture to the level similar to the

Gsk-3b+/– culture (Fig. 2F).

Inactivation through phosphorylation of Runx2 by

GSK-3b
We next examined the molecular mechanism underlying the

GSK-3b inhibition of bone formation. In the two major osteogenic

signalings in which GSK-3b is known to be involved, i.e., the

canonical Wnt/b-catenin and the PI3K/Akt signalings [5]. A

recent in vivo study showed that b-catenin hardly affected

osteoblasts through a cell-autonomous mechanism [16]. Consid-

ering that the other signaling PI3K/Akt is related to Runx2

transactivation in its osteogenic action [17], we examined the

involvement of Runx2 in the GSK-3b regulation of bone

formation. We initially confirmed both GSK-3b and Runx2

expressions in the calvaria, tibia, and cultured osteoblasts (Fig. 3A).

Bone formation determined by von Kossa staining and the

osteocalcin mRNA level was enhanced by the Runx2 over-

expression in both Gsk-3b+/+ and Gsk-3b+/– calvarial osteoblast

cultures (Fig. 3B). To examine the regulation of transcriptional

activity of Runx2 by GSK-3b, a luciferase reporter gene construct

containing a 1,050 bp osteocalcin gene fragment (1,050 OC-Luc)

including the Runx2 binding sites was transfected into human

hepatoma HuH-7 cells. The luciferase reporter analysis revealed

that the Runx2-dependent transcription was suppressed by the

co-expression of wild-type GSK-3b and CA-GSK-3b, but not by

that of KI-GSK-3b (Fig. 3C), whereas it was enhanced by lithium

chloride and SB216763 (Fig. 3D). Collectively, these data

demonstrate that the kinase activity of GSK-3b suppresses the

Runx2 transcriptional activity.

To further investigate how GSK-3b is involved in the Runx2

activity, we examined the effects of CA-GSK-3b overexpression,

lithium chloride treatment, and the genetic GSK-3b insufficiency

on the expression and subcellular localization of Runx2, and found

that none altered either of them (Fig. 4A). We then transfected

Gsk-3b+/+ and Gsk-3b+/– osteoblasts with Runx2, and compared

the binding of the nuclear extracts with the oligonucleotide probe

of the Runx2 binding sequence, osteoblast-specific cis-acting

element 2 (OSE2) of the mouse osteocalcin gene promoter [18],

by electrophoretic mobility shift assay (EMSA). We found

a complex that was confirmed to represent the Runx2-OSE2

binding, since it diappeared by the addition of 50-fold excess of

unlabeled wild-type OSE2 probe, but not by the mutated probe

lacking the Runx2 binding sequence, and was undetectable when

the nuclear extract from cells without Runx2 transfection was used

(Fig. 4B). The specific complex was augmented by the Gsk-3b+/–

nuclear extracts as compared to that by the Gsk-3b+/+ extracts,

indicating that GSK-3b attenuates the DNA binding activity of

Runx2. We then investigated biochemical interactions between

Runx2 and GSK-3b by co-immunoprecipitation assay, which

Figure 3. Suppression of Runx2 transcriptional activity by GSK-3b. (A) Expressions of GSK-3b and Runx2 determined by immunoblot analysis in
mouse calvaria, tibia, and cultured calvarial primary osteoblasts (POB). (B) von Kossa staining (left) and osteocalcin mRNA level determined by real-
time RT-PCR analysis (right) of Gsk-3b+/+ and Gsk-3b+/– osteoblasts transfected with the adenovirus expressing GFP or Runx2, and cultured for
2 weeks. The mRNA levels are mean (bars)6SEM (error bars) of the relative amount of mRNA compared to that of the Gsk-3b+/+ with GFP culture of 6
wells per group. *P,0.01, significant stimulation by the Runx2 overexpression. (C) Luciferase reporter analysis of the effects of GSK-3b overexpression
on the Runx2 transcriptional activity. HuH-7 cells were transfected with 1,050 OC-Luc alone or in combination with the plasmid expressing Runx2, and
co-transfected with 0.1 or 0.2 mg plasmid expressing wild-type GSK-3b, CA-GSK-3b, or KI-GSK-3b, and cultured for 2 weeks. (D) Luciferase reporter
analysis of the effects of GSK-3b inhibitors on the Runx2 transcriptional activity. HuH-7 cells were transfected with 1,050 OC-Luc alone or with the
plasmid expressing Runx2, and cultured in the presence or absence of two doses of lithium chloride (LiCl) or SB21673 for 2 days. For (C) and (D), data
are mean (bars)6SEM (error bars) of the relative activity compared to control culture of 6 wells per group. *P,0.01 vs. Runx2 alone.
doi:10.1371/journal.pone.0000837.g003
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Figure 4. Inactivation through phosphorylation of Runx2 by GSK-3b. (A) Subcellular nuclear (N) and cytoplasmic (C) localizations of Runx2 by
immunoblot analysis (top) and Runx2 mRNA level determined by real-time RT-PCR (bottom) in Gsk-3b+/+ and Gsk-3b+/– calvarial osteoblasts
overexpressing CA-GSK-3b or treated with LiCl, and cultured for 3 days. The mRNA levels are mean (bars)6SEM (error bars) of the relative amount
compared to the control culture of 6 wells per group. (B) EMSA for specific binding (arrowheads) of a labeled OSE2 oligonucleotide probe with the
nuclear extracts (N.E.) from Gsk-3b+/+ or Gsk-3b+/– osteoblasts overexpressing Runx2. Cold competition (Comp.) was performed with 50-fold excess of
unlabeled wild-type OSE2 probe (wt) and the mutated probe lacking the Runx2 binding sequence (mut). For controls, incubations without the probe
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showed the possible direct interaction between these two molecules

(Fig. 4C, D). To learn the contribution of the phosphorylation of

Runx2 by GSK-3b to the attenuation of Runx2 transcriptional

activity, we generated phosphorylation-deficient mutants of Runx2

by creating three to four amino acid replacements at the five

consensus sites for the phosphorylation by GSK-3b [5]: S92A-

S96A-S100A, S369A-S373A-S377A, S389A-T393A-S397A,

T394A-S398A-T402A, and T476A-T480A-S484A-S488A. The

luciferase reporter analysis using the 1,050 OC-Luc-transfected

HuH-7 cells revealed that the phosphorylation-deficient mutant at

S369-S373-S377 enhanced the transcriptional activity, while

mutations at the other four phosphorylation sites showed

comparable activity to the wild-type Runx2, indicating that the

specific phosphorylation at S369-S373-S377 suppresses the Runx2

activity (Fig. 4E). In vitro kinase assay confirmed that the Runx2

phosphorylation by GSK-3b was reduced by the S369-S373-S377

mutation (Fig. 4F). When we compared the DNA binding of

nuclear extracts from HeLa cells transfected with wild-type and

the S369-S373-S377 mutant Runx2 by EMSA, the mutation

enhanced the specific Runx2-DNA binding (Fig. 4G). Finally, the

luciferase reporter analysis disclosed that the regulations of Runx2-

dependent transcription by gain- and loss-of-functions of GSK-3b,

i.e., suppression by CA-GSK-3b overexpression and enhancement

by lithium chloride, were cancelled by the S369-S373-S377

mutation (Fig. 4H). These lines of results demonstrate that the

phosphorylation of Runx2 at S369-S373-S377 by GSK-3b
attenuates the transcriptional activity of Runx2, leading to the

suppression of bone formation.

Rescue of cleidocranial dysplasia by suppressing

GSK-3b
To investigate whether our in vitro finding on the molecular

interaction between GSK-3b and Runx2 is reproducible in vivo, we

crossed Gsk-3b+/2 and Runx2+/2 mice to generate the compound

heterozygous deficient mice (Gsk-3b+/2; Runx2+/2), and analyzed

the skeletal phenotypes of neonates. Runx2+/2 mice, a model for

human cleidocranial dysplasia, showed delayed closure of the

fontanelle and hypoplasia of the clavicle due to impaired bone

formation [3,4], whereas Gsk-3b+/2 mice had no such abnormal-

ities. Gsk-3b+/2; Runx2+/2 mice exhibited significant rescue of the

both fontanelle and clavicle abnormalities of Runx2+/2 mice

(Fig. 5A, B).

Since this finding indicates the physiological interaction of

GSK-3b with Runx2 function, we next examined a possible

pharmacological intervention by lithium chloride that is reported

to inhibit GSK-3b activity both in vitro and in vivo [19-21]. Because

Runx2 is initially detected during embryogenesis at E9.5 in the

notochord and at E10.5 in the mesoderm that is destined to

develop to the shoulder bones [4], we administered lithium

chloride to the embryos through pregnant and lactating dams

from E7.5 to 3 weeks of age before weaning. We confirmed that

the serum lithium concentrations of the mice treated with this

regimen ranged from 0.66 to 0.70 mM, which falls on the lower

side of the therapeutic range in humans (0.5–1.5 mM). Here

again, the lithium chloride administration succeeded in restoring

both fontanelle and clavicle abnormalities in the Runx2+/2 mice,

similarly to the genetic rescue in the Gsk-3b+/2; Runx2+/2 mice

(Fig. 5C, D), raising the possibility that pharmacological in-

tervention such as lithium chloride administration may clinically

be useful for preventing cleidocranial dysplasia.

DISCUSSION

GSK-3b as a negative regulator of osteogenesis
The present in vivo and in vitro studies demonstrated that the

suppression of GSK-3b in osteoblasts enhanced bone formation

through a cell-autonomous mechanism. GSK-3b is a well-known

negative regulator of the canonical Wnt/b-catenin signaling in

that it induces proteasome degradation of b-catenin in the absence

of the Wnt ligands. Binding of the Wnt ligands to the membrane

frizzled receptor and low-density lipoprotein receptor-related

protein 5 and 6 (LRP5/6) co-receptors inhibits GSK-3b, causing

the stabilization of b-catenin which then translocates into the

nucleus to activate the target genes like T cell factor (TCF) [22].

The Wnt signaling is known to be critical for maintaining bone

mass, since gain- and loss- of functions of Lrp5 or Wnt10b

positively correlated with bone mass in mice and humans [7–9,23].

Furthermore, a recent study showing that lithium chloride

increased bone formation even in Lrp5-deficient mice indicates

that GSK-3b acts downstream of Lrp5 in the osteogenic action of

the Wnt signaling [24]. Regarding the possibility of b-catenin

being the target molecule of the GSK-3b action, recent reports on

loss- and gain-of-functions of b-catenin have provided compelling

evidence that b-catenin represents a differentiation switch of

mesenchymal progenitors for inducing osteoblastic differentiation

and suppressing chondrocytic differentiation at an early stage of

skeletal development during embryogenesis [25–27]. In osteoblas-

tic cells, however, b-catenin together with its target TCF proteins

hardly affected their osteogenic function through a cell-autono-

mous mechanism, but regulated osteoblast expression of osteo-

protegerin, a major inhibitor of osteoclast differentiation [16],

r

(the 1st lane) and using nuclear extracts from osteoblasts without Runx2 transfection (the last lane) were performed. (C, D) Co-immunoprecipitation
(co-IP) analysis of GSK-3b and Runx2. (C) Whole cell lysate (CL) and co-IP precipitant by anti-FLAG antibody-immobilized beads were immunoblotted
with either anti-HA tag or anti FLAG tag antibodies. Filled arrowhead indicates non-specific band, and blank arrowhead indicates specific band. (D)
Whole cell lysate (CL) and co-IP precipitant by anti-HA tag antibody or IgG (as a negative control) were immunoblotted with either anti-FLAG tag or
anti-HA tag antibodies. (E) Luciferase reporter analysis of the effects of Runx2 mutations at the five consensus sites for the phosphorylation by GSK-3b
on the Runx2 transcriptional activity. Mutations were created by three to four amino acid replacements as follows; S92A-S96A-S100A [M(96)3], S369A-
S373A-S377A [M(373)3], S389A-T393A-S397A [M(393)3], T394A-S398A-T402A [M(398)3], and T476A-T480A-S484A-S488A [M(480)4]. HuH-7 cells were
transfected with 1,050 OC-Luc alone or in combination with the plasmids expressing wild-type Runx2 (WT) or the mutants above, then cultured for
2 days. Data are mean (bars)6SEM (error bars) of the relative activity compared to control of 6 wells per group. *P,0.01 vs. WT-Runx2. (F) In vitro
kinase assay. WT-Runx2 and M(373)3-Runx2 proteins were extracted by immunoprecipitation of the overexpresssing HeLa cells, and were incubated
with recombinant GSK-3b. Reaction products were analyzed by immunoblotting using an antibody to phosphoserine. (G) EMSA for specific binding
(arrowheads) of a labeled OSE2 probe with the nuclear extracts (N.E.) from HeLa cells transfected with wild-type Runx2 (WT) and M(373)3 Runx2 (M).
Cold competition (Comp.) was performed as above. (H) Luciferase reporter analysis of the effects of GSK-3b signaling on the Runx2 transcriptional activity
induced by WT-Runx2 and M(373)3-Runx2. HuH-7 cells were transfected with 1,050 OC-Luc alone or in combination with the plasmid expressing WT-
Runx2 or M(373)3-Runx2 in the presence or absence of CA-GSK-3b overexpression or LiCl, then cultured for 2 days. Data are mean (bars)6SEM (error bars)
of the relative activity compared to control of 6 wells per group. *P,0.01, significant effect of CA-GSK-3b overexpression or LiCl.
doi:10.1371/journal.pone.0000837.g004
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Figure 5. Genetic and pharmacological rescue of cleidocranial dysplasia by suppressing GSK-3b. (A) Calvarias and clavicles of Gsk-3b+/+, Gsk-3b+/–,
Runx2+/–, and Gsk-3b+/–; Runx2+/– neonates (0-day) stained with Alizarin red and Alcian blue (bars, 3 mm for calvaria and 0.5 mm for clavicle). (B)
Quantitative analyses using the NIH image of the anterior fontanelle area and the clavicle length of the four genotypes. (C) Plain radiographs at
3 weeks of age of the skulls and clavicles of Gsk-3b+/+ with and without LiCl administration from E7.5 to 3 weeks after birth, Runx2+/– with and
without the LiCl administration, and Gsk-3b+/–; Runx2+/– mice. (D) Quantitative analyses using the NIH image of the five groups. For (B) and (D), data
are mean (bars)6SEM (error bars) of the relative amount compared to Runx2+/– of 6 mice per group. *P,0.01, significant rescue by genetic GSK-3b
insufficiency or LiCl.
doi:10.1371/journal.pone.0000837.g005
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indicating that osteoanabolic action of b-catenin is due to the

decrease in osteoclastic bone resorption, but not due to the

increase in bone formation. Hence, we hereby propose that the

enhancement of bone formation by the GSK-3b suppression is

mainly dependent on Runx2 rather than b-catenin. In addition,

because the histomorphometric analyses of the Gsk-3b+/– mice and

the lithium chloride-treated mice [24] showed an increase in bone

formation parameters, but not a decrease in bone resorption

parameters, we assume that the bone anabolic action of the GSK-

3b suppression is mediated by the Runx2 signaling for bone

formation rather than the b-catenin signaling for bone resorption.

The contribution and relationship between Runx2 and b-catenin

as downstream signalings for the osteoanabolic action of the Wnt/

Lrp5 should be further studied to elucidate the cellular and

molecular network underlying the regulation of bone metabolism

by the entire Wnt pathway.

Attenuation of Runx2 by GSK-3b
A variety of hormones, cytokines and signaling molecules such as

1a,25(OH)2D3, tumor necrosis factor-a, fibroblast growth factor

(FGF)-2, glucocorticoids, growth hormone, Akt, Stat1 & 3, Twist,

Src/Yes, Dlx3, Msx2, PPARc, and histone acetylases 3 & 4 have

been reported to regulate Runx2 in its expression, subcellular

localization, DNA binding, and transcriptional activity, although

the mechanisms remain largely unknown [28]. The present study

showed that GSK-3b inhibited the DNA binding and transcrip-

tional activity through the S369-S373-S377 phosphorylation of the

Runx protein. Regulation of Runx2 activity through its phos-

phorylation has been reported by phosphorylation-deficient

mutagenesis at two conserved serines, S104 and S451 of the

human RUNX2 gene in distinct functional aspects [29]. The S104

phosphorylation is involved in the heterodimerization with the

partner subunit PEBP2b, which enhances the transcriptional

activity of RUNX2. On the other hand, the phosphorylation of

S451 that resides within the C-terminal transcription inhibition

domain of RUNX2 attenuates its transactivity. The consensus site

T341 for the phosphorylation by PKA in the transactivation

domain of mouse Runx2 is shown to be responsible for the

induction of Runx2 transcriptional activity by parathyroid

hormone (PTH) [30]. In addition, FGF-2 induces the Runx2

activity through phosphorylation of distinct consensus sites of

ERK and PKC pathways [31–33]. Meanwhile, the present S369-

S373-S377 is located in the negative regulatory region of DNA

binding that masks the Runt domain and prevents it from binding

to DNA [34]. Hence, the suppression of GSK-3b may relieve the

GSK-3b-dependent phosphorylation of the negative regulatory

region of Runx2, resulting in enhancement of DNA binding ability

and transcriptional activity.

Insulin and insulin-like growth factor-I function as potent

osteoanabolic agents [35,36] via the activation of their common

signaling molecules insulin receptor substrate (IRS)-1, IRS-2, and

the subsequent PI3K/Akt. In fact, we and others previously

reported that the loss-of-function mutation of Irs-1, Irs-2, or both

Akt1 and Akt2 causes impairment of bone formation in mice

[11,12,37]. As the target of this pathway, a recent study has shown

that Akt enhanced transcriptional activity of Runx2 [17].

However, despite the fact that Akt is a serine-threonine kinase,

the study failed to show the direct phosphorylation of Runx2 by

Akt, and there was no consensus site for the phosphorylation by

Akt in the Runx2 sequence. On the other hand, Akt is known to

phosphorylate GSK-3b at Ser9, causing the inactivation [38]. We

therefore speculate that the osteoanabolic action of the insulin/

IRS/Akt pathway might also be mediated by the Runx2

phosphorylation by GSK-3b.

GSK-3b as a potent therapeutic target for CCD and

osteoporosis
The cleidocranial dysplasia phenotype by the Runx2 insufficiency

was significantly rescued not only by the genetic suppression of

GSK-3b, but also by the oral administration of lithium chloride. In

addition, the GSK-3b insufficiency caused an increased bone mass

in adult mice without other abnormalities. A previous study has

revealed that the lithium chloride administration increased bone

mass in normal C57BL/6 mice and osteoporosis model SAMP6

mice [24]. A recent report also showed that oral administration of

LY603281-31-8, a small molecule inhibitor of GSK-3b and GSK-

3a, increased bone formation, density and strength in an

ovariectomized rat model [13] to the levels comparable to

teriparatide (human PTH1-34), the only osteoanabolic drug that

has recently been introduced into clinical practice for osteoporosis

patients [39]. Taken together, these observations strongly suggest

that the GSK-3b suppression may yield novel therapeutics to treat

bone catabolic disorders like cleidocranial dysplasia and osteopo-

rosis. Although characterization of small molecule inhibitors of

GSK-3b is still underway, safety issues have not been reported at

least for lithium chloride which is widely used by patients to treat

bipolar disorder [40]. Hopefully prospective clinical trials on these

drugs will be successful and generate epochal therapeutics for

skeletal disorders.

MATERIALS AND METHODS

Animals
Mice were maintained in a C57BL/6 background. In each

experiment, male mice that were littermates generated from the

intercross between Gsk-3b+/+ and Gsk-3b+/– mice were compared.

All experiments were performed according to the protocol

approved by the Animal Care and Use Committee of the

University of Tokyo.

Radiological and histological analyses
Plain radiographs were taken using a soft X-ray apparatus. Micro

CT scanning was performed using a composite X-ray analyzer

(NS-ELEX Inc.), and cross-sectional tomograms of 10 mm

thickness were reconstructed at 12612 pixels into a 3-D feature

by the volume-rending method. For von Kossa and toluidine blue

stainings, samples were fixed with 70% ethanol, embedded in

glycol methacrylate without decalcification, and sectioned in 3 mm

slices. Histomorphometric analyses were performed in the

secondary spongiosa (1.0 mm in length from 0.3 mm below the

growth plate) of the proximal tibias using an image analyzer. For

double labeling to analyze the dynamic bone remodeling, mice

were injected subcutaneously with 8 mg/kgBW of calcein at 10 d

and 3 d before sacrifice. Tartrate resistant acid phosphatase

(TRAP)-positive osteoclasts were stained at pH 5.0 in the presence

of L(+)-tartaric acid using naphthol AS-MX phosphate in N,N-

dimethyl formamide as the substrate. Histomorphometric mea-

surements were performed in eight optical fields, according to the

ASBMR nomenclature report [41], and the averages were

calculated per mouse. Alizarin red and alcian blue stainings of

the whole mount skeleton of neonates were performed after they

were fixed in 100% ethanol and transferred to acetone, as

described previously [3]. The specimens were kept in 20%

glycerol-1% KOH until the skeletons became clearly visible.

Osteoclast formation assay
Osteoblasts were isolated from calvariae of neonatal mice, and

bone marrow cells were collected from long bones of 8-week-old
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mice, as previously described [11,12]. TRAP-positive multinucle-

ated osteoclasts were generated by co-culturing osteoblasts (16104

cells/well) and bone marrow cells (56105 cells/well) derived from

either Gsk-3b+/+ or Gsk-3b+/– littermates in aMEM containing

10% FBS with 1a,25(OH)2D3 (10 nM) and prostaglandin E2

(100 nM) for 6 days. Cells positively stained for TRAP and

containing more than three nuclei were counted as osteoclasts.

Osteoblast cultures
Isolated calvaria osteoblasts were inoculated at a density of 26105

cells/well onto 24-well plates in aMEM containing 50 mg/ml

ascorbic acid, 10 mM b-glycerophosphate, and ITS+1 liquid

media supplement (Sigma-Aldrich) (osteogenic medium). For cell

proliferation assay, cells were inoculated at 103 cells per well in

a 96-well plate and cultured for 8 days in the osteogenic medium

with cell sampling every day. The proliferation of cells was

quantified using an XTT {sodium 3,3-[(phenylamino) carbonyl]-

3,4-tetrazolium-bis (4-methoxy-6-nitro) benzenesulfonic acid hy-

drate} Assay Kit (Roche). The absorbance of the product was

quantified using a MTP-300 microplate reader (Corona Electric)

read at 450 nm with reference wavelength 630 nm. The

adenovirus vector carrying GFP, GSK-3b, CA- GSK-3b, KI-

GSK-3b, or Runx2 gene was constructed using the Adeno-X

Expression System (BD Biosciences), and was infected at 50

multiplicity of infection (MOI). The total MOI in each well was

adjusted to be equal with the adenovirus encoding GFP. Two

weeks after confluency, the total RNA was extracted, and the ALP,

Alizarin red and von Kossa stainings were performed. For the ALP

staining, cells were fixed in 70% ethanol and stained for 10 min

with a solution containing 0.01% naphtol AS-MX phosphate

disodium salt, 1% N, N-dimethyl-formamide, and 0.06% fast blue

BB. For the Alizarin red staining, cells were fixed in 10%

formalin/PBS and stained with 2% Alizarin red S (pH 4.0)

solution. For the von Kossa staining, cells were fixed with 100%

ethanol, stained with 5% silver nitrate solution under ultraviolet

light, and incubated with 5% sodium thiosulfate solution (Wako).

Real-time RT-PCR
The total RNA was extracted using an ISOGEN Kit (Wako) and

an RNeasy Mini Kit (QIAGEN), and treated with DNaseI

(QIAGEN), according to the manufacturers’ instructions. One mg

of RNA was reverse-transcribed with a Takara RNA PCR Kit

(AMV) ver.2.1 (Takara) to generate single-stranded cDNA. PCR

was performed with an ABI Prism 7000 Sequence Detection

System (Applied Biosystems). Each PCR reaction consisted of 1 X

QuantiTect SYBR Green PCR Master Mix (QIAGEN), 0.3 mM

specific primers and 500 ng of cDNA. The mRNA copy number

of a specific gene in total RNA was calculated using a standard

curve generated by serially diluted plasmids containing PCR

amplicon sequences, and normalized to the human or rodent total

RNA (Applied Biosystems) with the mouse actin as an internal

control. The standard plasmids were synthesized using a TOPO

TA Cloning Kit (Invitrogen), according to manufacturer’s

instructions. All reactions were run in triplicate. Primer sequences

are available upon request.

Immunoblot and immunoprecipitation assays
Proteins were extracted with an M-PER or NE-PER Kit (Pierce

Chemical), according to the manufacturer’s instructions. Protein

concentrations of cell lysates were measured using a Protein Assay

Kit II (BIO-RAD). For immunoblot analysis, lysates were

fractionated by SDS-PAGE with 4-20% Tris-Glycin gradient gel

or 18% Tris-Glycin gel (Invitrogen) and transferred onto

nitrocellulose membranes (BIO-RAD). After being blocked with

6% milk/TBS-T, membranes were incubated with an antibody to

GSK-3a (Cell Signaling), to GSK-3b (Cell Signaling), to Runx2

(MBL), to HA tag (Upstate), to FLAG tag (Sigma-Aldrich), or to b-

actin (Sigma-Aldrich). As secondary antibodies, HRP-conjugated

antibodies to mouse IgG (Promega) and to rabbit IgG (Promega)

were used. Immunoreactive bands were visualized with ECL Plus

(Amersham), according to the manufacturer’s instructions. Immu-

noprecipitation was performed using antibodies either noncova-

lently bound or conjugated to protein G-Sepharose (GIBCO).

Equivalent amounts (20 mg) of cell lysate were immunoprecipi-

tated with an antibodyb to Runx2 for 4 hours at 4uC. For co-

immunoprecipitation (co-IP), cDNA encoding RUNX2 and GSK-

3b genes were sub-cloned into p3XFLAG-CMVTM (Sigma-

Aldrich) vector (3X FLAG-RUNX2) and pCMV-HA (Clontech)

vector (HA-GSK-3b), respectively. Supernatant of centrifuged cell

lysate, collected using RIPA lysis buffer (150 mM NaCl, 1.0% NP-

40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate,

50 mM Tris, pH 8.0) from 293T cells transfected with 3X FLAG-

RUNX2 and/or HA-GSK-3b, was subjected to subsequent

analysis. The co-IP complexes were recovered using EZviewTM

Red ANTI-FLAGH M2 Affinity Gel (Sigma-Aldrich) or Pro-

FoundTM HA Tag IP/Co-IP Kit (Pierce) according to the

manufacturer’s instruction.

Luciferase reporter analysis and EMSA
Huh-7 cells were plated onto 24-well plates, and were transfected

with 0.1 mg of the reporter constructs (1,050 OC-Luc) and 0.1 or

0.2 mg of the plasmids encoding wild-type or five kinds of

phosphorylation-deficient mutants of Runx2, GSK-3b, CA-

GSK-3b, or KI-GSK-3b using FuGENE6 (Roche Diagnostics),

and cultured for 2 days. The amount of total DNA in each well

was adjusted to be equal with the pEGFP vector. The luciferase

assay was performed using a PicaGene Dual SeaPansy Lumines-

cence Kit (Toyo Ink) and Lumat LB 9507 (Berthold Technolo-

gies). The level of luciferase activity was normalized to the level of

Renilla luciferase activity. EMSA was performed using a DIG Gel

Shift Kit (Roche), according to the manufacturer’s instructions. In

brief, nuclear extracts from Gsk-3b+/+ or Gsk-3b+/– osteoblasts

transfected with plasmid expressing wild-type Runx2, or HeLa

cells transfected with wild-type or M(373)3 Runx2 were incubated

with digoxigenin-labeled double-stranded oligo-dNT probes

encoding the OSE2 sequence [18] and separated using non-

denaturing PAGE, and the immunoreactivity for digoxigenin was

visualized by chemiluminescence. For the competition experiment,

50-fold excess of unlabelled wild-type or the mutated OSE2 probe

was added to the solution.

In vitro kinase assay
Flag-wild-type Runx2 or Flag-M(373)3 Runx2 was prepared from

the respective Runx2 overexpresssing HeLa cells by immunopre-

cipitation with an antibody to Flag. The immunoprecipitated

protein and recombinant human GSK-3b (Upstate) were mixed in

a reaction buffer (20 mM HEPES, 10 mM MgCl2, 10 mM

MnCl2, 1 mM dithiothreitol, and 0.2 mM EDTA) with 1.6 mM

ATP, and incubated at 30uC for 30 min. Reaction products were

analyzed by immunoblotting using an antibody to phosphoserine

(CHEMICON).

Rescue of cleidocranial dysplasia by suppressing

GSK-3b
Runx2+/2 mice were kindly provided by T. Komori (Nagasaki

University). For the genetic rescue, we crossed Gsk-3b+/2 and
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Runx2+/2 mice to generate the compound heterozygous deficient

mice (Gsk-3b+/2; Runx2+/2), and compared the skeletal pheno-

types of neonates with Runx2+/2. For the pharmacological rescue,

we administered lithium chloride from E7.5 to 3 weeks of age

before weaning through the pregnant and lactating dams by

feeding with pelleted chow containing 4 mg/kg lithium chloride

along with 1.5% NaCl water as previously described [20,21]. The

mice were euthanized for radiological analyses at 3 weeks. The

quantitative analysis of the area of the anterior fontanelles and the

length of the clavicles on the histology and X-ray were performed

using an NIH Image. The serum lithium concentration of the

treated mice was measured by an atomic absorption spectropho-

tometer (Hitachi).

Statistical analysis
All data are means6SEMs. Means of groups were compared by

ANOVA and significance of differences was determined by post-hoc

testing using Bonferroni’s method.
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