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Background. Copy number alterations (CNAs) in genomic DNA have been associated with complex human diseases, including
cancer. One of the most common techniques to detect CNAs is array-based comparative genomic hybridization (aCGH). The
availability of aCGH platforms and the need for identification of CNAs has resulted in a wealth of methodological studies.
Methodology/Principal Findings. ADaCGH is an R package and a web-based application for the analysis of aCGH data. It
implements eight methods for detection of CNAs, gains and losses of genomic DNA, including all of the best performing ones
from two recent reviews (CBS, GLAD, CGHseg, HMM). For improved speed, we use parallel computing (via MPI). Additional
information (GO terms, PubMed citations, KEGG and Reactome pathways) is available for individual genes, and for sets of
genes with altered copy numbers. Conclusions/Significance. ADaCGH represents a qualitative increase in the standards of
these types of applications: a) all of the best performing algorithms are included, not just one or two; b) we do not limit
ourselves to providing a thin layer of CGI on top of existing BioConductor packages, but instead carefully use parallelization,
examining different schemes, and are able to achieve significant decreases in user waiting time (factors up to 456); c) we have
added functionality not currently available in some methods, to adapt to recent recommendations (e.g., merging of
segmentation results in wavelet-based and CGHseg algorithms); d) we incorporate redundancy, fault-tolerance and
checkpointing, which are unique among web-based, parallelized applications; e) all of the code is available under open
source licenses, allowing to build upon, copy, and adapt our code for other software projects.
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INTRODUCTION
Copy number alterations (CNAs) in genomic DNA have been

associated with complex human diseases, including cancer [1–7].

For instance, amplification of oncogenes is one possible mecha-

nism for tumor activation [8,9]. Patient survival and metastasis

development have been shown to be associated with certain CNAs

[1–7] and, by relating patterns of CNAs with survival, gene

expression, and disease status, studies about copy number changes

have been instrumental for identifying relevant genes for cancer

development and patient classification [1,2,10]. One of the most

common techniques to detect CNAs is array-based comparative

genomic hybridization (aCGH), a term that includes platforms

such as ROMA, oaCGH (including Agilent, NimbleGen, and

many non-commercial, in-house oligonucleotide arrays), BAC,

and cDNA arrays [1,11] (see section ‘‘Program overview’’ for

comments on Affymetrix SNP arrays). The availability of aCGH

platforms and the need for identification of CNAs has resulted in

a wealth of methodological studies (see reviews in [12,13]).

Associated with this statistical work, several tools have been

developed for the analysis of aCGH data, but these tools fail

minimal requirements for both end-users and bioinformaticians/

biostatisticians. Thus, we have developed ADaCGH.

An ideal tool for the analysis of aCGH data should allow the

user to choose among several of the best performing algorithms

(e.g., see comparative reviews of [12,13]). For end-users, the

suitability of web-based applications for aCGH data analysis has

been emphasized before (e.g., [14,15]), and web-based tools do not

require software installation by the user, nor concerns about

hardware [16]. Moreover, web-based applications ease the linking

of the results from aCGH analysis to external databases (e.g., Gene

Ontology, PubMed) and, thus, ultimately, ease the biological

interpretation of the results. Moreover, web-based applications can

use parallel computing, leading to impressive decreases in users’

waiting time. Finally, the source code of such a tool should be

freely available under an open source license: it allows other

researchers to extend the methods, provide improvements and bug

fixes, and verify claims made by method developers, and ensures

that the international research community remains the owner of

the tools it needs to carry out its work [17,18].

RESULTS

Program overview
ADaCGH is available both as a web-based application and as an

R package. The statistical and graphical functionality is provided

by the R package, which implements parallelized versions of all

algorithms. Thus, both the R application and the web-based

application can take advantage of multicore processors and

clusters of workstations. ADaCGH uses eight algorithms for

CNA detection, including the best performing ones from recent

reviews [12,13]. The web-based application is available at http://

adacgh2.bioinfo.cnio.es. The source code for both the web-based

application and the R package are available from both Launchpad
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(http://launchpad.net/adacgh) and Bioinformatics.org (http://

bioinformatics.org/asterias/bzr/adacgh). The R package is also

available from CRAN (http://cran.r-project.org/src/contrib/

Descriptions/ADaCGH.html). Documentation and examples for

the web-based application are available from http://adacgh2.

bioinfo.cnio.es/help/adacgh-help.html. Documentation for the R

functions are available as in any standard R package.

Input for the web-based application are text files with aCGH

data and location information. The aCGH data are often log

ratios from array-based CGH platforms (the base of the logarithm

is not of great importance, but base 2 logs are often of simpler

interpretation). Affymetrix SNP data can also be analyzed, but

external preliminary steps are required, as is common with

Affymetrix SNP data, that allow to go from the MM and PM data

(and, possibly, information on GC content and fragment length) to

numerical values that play a role similar to the log ratios of aCGH

arrays (for examples see [19–24]). Further details are provided in

the help page for the web-based application http://adacgh2.

bioinfo.cnio.es/help/adacgh-help.html#input.

The output (oth the web-based and R-package versions) are text

files with the segmentation results and figures. The figures allow

for genome-wide views and chromosome-wide views, array-by-

array views and collapsed views over arrays. Figures include

clickable links to our application IDClight (http://idclight.bioinfo.

cnio.es) [25] which provides additional information, including

mapping between gene and protein identifiers, PubMed refer-

ences, Gene Ontology terms, Kegg and Reactome pathways for

genes. In addition, the web-based application allows for sending

the sets of genes showing gain, loss, and CNA (gain or loss) to our

tool PaLS (http://idclight.bioinfo.cnio.es) to examine PubMed

references, Gene Ontology terms, KEGG pathways or Reactome

pathways that are common to a user-selected percentage of genes.

When the arrays correspond to human samples, we provide links

to the Toronto Database of Genomic Variants (http://projects.

tcag.ca/variation/) in the chromosome-wide plots.

Benchmarks
Speedups achieved by parallelizing the R code are shown in

Figure 1 for four popular methods. The speedups range from 406
to 456 (GLAD, HMM), to 306 (BioHMM) and 156 (CBS).

Figure 2 shows user wall time of the web-based application as

a function of the number of simultaneous users using the

application in that very moment. ADaCGH can handle a large

number of simultaneous users as a result of both parallelization of

the computations and load balancing of the non-parallelized code.

Increasing the number of users from 1 to 5 has a minor effect in

the mean user wall time. Increasing the number of users above 5,

however, has a linear effect in the mean user wall time. This is the

result of the limits we have set to prevent any one node from

swapping to disk (swapping would occur if we run too many

simultaneous process with a large memory consumption). Situa-

tions with 5 or more simultaneous users are unrealistic, since the

average number of daily users of ADaCGH is less than 6. The

above benchmarks, nevertheless, show that ADaCGH can handle

even those high numbers of users, which makes it suitable for

classroom and demonstration use.

DISCUSSION
Our main foci when developing ADaCGH have been:

N Implementing all of the best currently available algorithms/

methods. Applications targeted to biomedical researchers

should include several of the best methods to assure the user

availability of choices and the possibility of using more than one

method on the same data set.

We have implemented all of the best performing methods for

the analysis of aCGH data, based on [12,13], plus several

others that can be of interest. Moreover, we have extended

some methods (e.g., using merging of segmentation results in

both the wavelet-based smoothing and CGHseg) to accommo-

date the latest recommendations [12] and needs in the field

(e.g., mapping to gain/loss/no-change to allow interpretation

based on type of alteration).

N Taking user waiting time seriously. For web-based applications

it is not enough to simply provide a thin wrapper of CGI code

that can never be faster than the original BioConductor

package.

We have parallelized all of the algorithms, some of them in

several different ways (e.g., at the arrays or at the arrays by

chromosomes level). The major opportunities for significant

performance gains and ability to handle large datasets lie in the

increasing availability of multicore processors and clusters built

with off-the-shelf components [26–29], as the rate of increase in

processor speed has slowed down significantly in the last five

years. In our application, parallelization’s benefits are: a)

significant decreases in user wall time; b) examples for

parallelization of further algorithms; c) speed increases that

will allow researchers to conduct comprehensive comparative

studies among methods in reasonable time.

N Making the complete code (including algorithms and the web-

based application) available as open source.

Our complete repositories are available. Licenses used are

GNU GPL for the R package (required for compatibility with

the R and BioConductor packages used) and the Affero Public

license for the rest of the code. The later ensures that the

research community remains the owner of the web-based and

fault-tolerant logic, and that any modifications for usage in

other web-based applications will also be owned by the research

community. Moreover, we have tried to incorporate standard

best practices in software development (see review and

references in [30]) and the usual open source development

mode [31] to allow for the building of a community of

contributors. Finally, of the existing aCGH applications we are

the only ones to provide extensive functional and regression

testing.

N Providing an example that be used as a model for related

projects, significantly decreasing development time of other

applications.

We have avoided the usage of Python-specific web frameworks,

so that the logic of the application can be translated to any

other language. We have also avoided R-specific extensions as

a server or web-based application, so the model can be imitated

with other computational engines (e.g., code written in C).

Several tools are available for the analysis of aCGH data. The

majority of the available ones are summarized in the recent paper

by [15]. Since then, a few others have appeared: arrayCGHbase

[32], CGHScan [33], CAPweb [14], and ISACGH [34]. Of those

29 applications, only seven (or eight) implement one of the

methods with good performance in [12,13]. The other 22 (or 21)

provide no formal segmentation method, or implement ap-

proaches that are either ad-hoc (e.g., most of the simple

thresholding methods) or have not been carefully compared with

Software for aCGH Analysis

PLoS ONE | www.plosone.org 2 August 2007 | Issue 8 | e737



Figure 1. Effects of parallelization of the R code on the user wall time for several methods. Values shown are the mean of four replicates, obtained
in an otherwise idle cluster with 30 nodes, each with two dual-core AMD Opteron 2.2 GHz CPUs and 6 GB RAM, running Debian GNU/Linux and
a stock 2.6.8 kernel, with version 7.1.2 of LAM/MPI and version 2.1.4 (patched) of R. Numbers next to the lines (60, 30, 10) indicate the total number of
Rslaves in the cluster (2 slaves per node, and a maximum of 30 nodes used).
doi:10.1371/journal.pone.0000737.g001
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other methods. Thus, only a handful of the implemented methods

are really of direct, immediate interest for end users. Of the

remaining applications, three are BioConductor R packages

(aCGH, DNAcopy, GLAD) that implement only a single method

and are, of course, not web-based applications. These packages are

extremely important for biostaticians and bioinformaticians (e.g.,

these three packages are used by ADaCGH) but are not particularly

user-friendly. Of the remaining five, CNAG [35] fits only one type

of model (HMM) and only to oligo-based arrays. dCHIP [36]

implements a type of HMM that requires reference samples and,

again, is only one specific type of model. CGHExplorer [37]

implements only the ACE approach. CGHPRO [38] includes both

the HMM of Fridlyand [39] and CBS [40], by using the

BioConductor packages aCGH and DNAcopy. Their program is

tied to specific software (e.g., the user needs to install mysql) and

databases (build from April 2003 of the UCSC Genome Browser).

Moreover CGHPRO is bound in speed by the speed of the

DNAcopy and aCGH BioConductor packages and incorporates

none of the computational advantages of ADaCGH, and it is not

web based. ISACGH [34] is a web-based application that includes

GLAD and CBS but, as before, its speed is bound by the speed of

the DNAcopy and GLAD BioConductor packages and incorporates

none of the computational advantages of ADaCGH; moreover, the

source code is not available. Finally, CAPweb [14] is tied to just one

specific method (GLAD), again making it difficult to compare the

outcome from several different well-performing algorithms, and

does not provide complete source code.

In summary, ADaCGH is a unique application from the end

user’s standpoint: all of the best performing algorithms are

accessible and, as it uses parallelization, it provides much faster

execution than the original R packages. ADaCGH is also a unique

application for methodological reasons. It provides the complete

source code of the only application that combines parallel

computing with a web-based front end, including fault tolerance

and checkpointing, and extensive functional and numerical testing.

In conclusion, ADaCGH sets a much higher standard than any of

the previous applications for the analysis of aCGH.

METHODS

Algorithms: implementation and additions
Most of the segmentation algorithms included in ADaCGH are

available, in sequential versions, from R or BioConductor

packages. For Circular BinarySegmentation [40] we use the

BioConductor package ‘‘DNAcopy’’; for the (homogeneous)

Hidden Markov Models [39], aCGH; for the non–homogeneous

Hidden Markov Models in [41] we use BioHMM; PSW

(SWARRAY in the original paper [42]) uses the cgh package;

kernel non-parametric smoothing in GLAD [43] uses the GLAD

package. For wavelet-based smoothing [44] we have used R code

kindly provided by their authors, L. Hsu and D. Grove. The

Gaussian process model in CGHseg [45] uses functions imple-

mented in the package tilingArray; we have, however, implemen-

ted the original author’s adaptive penalization approach (the

tilingArray and snapCGH BioConductor packages use as possible

penalization BIC or AIC, but not the adaptive one recommended

by Picard et al. [45]). For Analysis of Copy Errors [37] we use C

code written by us based on the original Java code, and called

from R.

For merging segmentation results, to map the segmented output

to ‘‘gain/loss/no-change’’ states, we use either the original

procedure of the authors, as in GLAD, or the procedures

examined in [12] for CBS and HMM, implemented in the

mergeLevels function of the aCGH package.

For the wavelet-based approach [44] we have adapted the

mergeLevels approach. The original paper [44] does not map the

segmentation results to a set of ’’gain/loss/no-change’’ levels. We

have followed the same approach as in CBS, and use here the

mergeLevels procedure. It must be emphasized that this is an

experimental procedure, not described in the original paper.

Moreover, the wavelet-smoothing procedure returns smoothed

values that rarely fall into a set of categories, so applying

mergeLevels here often leads to non-sense results. Thus, we apply

mergeLevels after running the original clustering procedure of this

method with a very small threshold for merging (currently set to

0.05, or five times smaller than the default of 0.25); some

preliminary trials show that the final outcome from mergeLevels is

not sensitive to small variations around this threshold.

The original paper on CGHseg [45] includes no details on

mapping the segmentation results to the ’’gain/loss/no-change’’

levels. We thus use mergeLevels on the output. With this

approach, CGHseg is one of the best overall performers (on par

with Circular Binary Segmentation) in our comparison of several

methods for aCGH analysis (see Supplementary Material to [46])

using the complete simulated data set in [12]. An alternative, naive

mapping approach (setting the most abundant class to the ‘‘no-

change’’ level, and all others to gain or loss depending on their

mean), leads to much worse performance (see Supplementary

Material of [46] for details).

For finding minimal common regions of gains and losses we use

the procedure in [5] as implemented in the cghMCR BioCon-

ductor package.

Where appropriate, we have re-written some of the above code

for parallelization (see below). Parallelization uses the Rmpi

(http://www.stats.uwo.ca/faculty/yu/Rmpi) and papply (http://

ace.acadiau.ca/math/ACMMaC/software/papply/) R packages

by H. Yu and D. Currie, respectively.

Clickable figures are generated from the R code with some

additional calls to Python code. In the web-based application,

Python is used for CGI, initial data validation, and to ensure

proper seting-up and closing of the parallel infrastructure (booting

and halting the LAM/MPI universes).

Algorithms: Parallelization
Parallelization of algorithms has been carried out to maximize

speed gains from the distribution of the computation (see [47,48]

for general guidelines), while making further extensions and

applications to other methods as easy as possible, requiring only

writing some wrapper code to existing segmentation code. For the

aCGH algorithms considered, there are embarrassingly paralleliz-

able computations at the chromosome by array level. Alternative-

ly, we might parallelize at the array level, looping (sequentially)

over chromosomes, or parallelize at the chromosome level, looping

(sequentially) over arrays, with the later option only being

reasonable for the ACE algorithm. In contrast to parallelizing at

the array level, parallelizing at the array by chromosome level can

use all available CPUs when there are few arrays. However,

parallelizing at the array by chromosome level might not always be

appropriate: the tasks are of very uneven duration (e.g.,

segmenting chromosome 1 vs. segmenting chromosome 21), much

more communication is needed between the master and the slaves

and, when there is merging (as in CBS, HMM, BioHMM, and our

implementations of CGHseg and wavelet smoothing) synchroni-

zation barriers are needed before merging can be performed

(where the merging algorithm would be parallelized at the only

possible level, which is array).

To choose the best parallelization scheme, we have examined

the alternatives where this flexibility was easily available, taking

Software for aCGH Analysis
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Figure 2. User wall time of the web-based application as a function of simultaneous users. To increase the realism of simultaneous accesses, there
is delay of 5 seconds between simultaneous accesses, as might be expected, for example, from a classroom demonstration (i.e., when simulating 20
simultaneous users, the cluster is actually receiving new connections over a 20 * 5 second period, with one new connection every 5 seconds). Values
shown are the mean of several runs: 5 for 1 user, 5 for 5 users, 10 for 10 users, and 20 for 20 users. Hardware and software the same as in Figure 1.
doi:10.1371/journal.pone.0000737.g002
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into account different numbers of genes per array, different

numbers of slaves per node, and different numbers of arrays. For

HMM, BioHMM, and CBS we have compared parallelization at

the array by chromosome vs. at the array level, and for ACE we

have compared parallelization at the array by chromosome vs. at

the chromosome level. Results are shown in Figure 3. In most

cases, parallelization at the array level is better (it results in smaller

users’ wall time). Only for small number of arrays (i.e., when many

of the CPUs are idle if parallelization is at the array level) can

parallelization at the array by chromosome level perform better, as

we would expect from the trade-offs involved (see above). We have

used the results from this figure to automatically choose the

parallelization level used in any given run. Of course, the optimal

parallelization is strongly dependent on the underlying hardware,

mainly CPU number and speed, number of cores, caches’ sizes,

and network speed.

For the current code, the execution of HMM, BioHMM, CBS,

and ACE is parallelized at the array (chromosome if ACE) or array

by chromosome level depending on the number of arrays.

Following the main results with HMM and CBS, wavelet-based

smoothing and CGHseg are parallelized at the array level. GLAD

and PSW are parallelized at the array level as the code of the basic

algorithms themselves would not allow for easily maintainable

finer grained parallelization.

An additional concern with multicore CPUs is, for each node,

whether to use as many Rmpi slaves as cores (4 in our case) or as

sockets (2 in our case), as the different cores share resources that

different processors do not [28]. The results of Figure 3 show that

using 4 slaves per node rarely leads to performance increases but,

because of increased memory usage, can prevent some processes

from completing (e.g., BioHMM with 42325 genes and either 100

or 150 arrays).

Figure creation in the web-based application is parallelized at

the array level, by writing to a shared directory (accessed via NFS),

except for the figures where all arrays are superimposed, where

parallel execution is impossible.

Web-based application: Program logic
The main application components, their relationship, and some

key hardware components are shown in Figures 4 and 5. Our

installation of the web-based application runs on a cluster of 30

workstations with two dual-core AMD Opteron CPUs. The

HTTP request from a user arrives at one of the two master nodes;

currently, we are using Linux Virtual Server (http://www.

linuxvirtualserver.org/) to provide load balancing of the web

serving and redundancy (see below), but we have also used Pound

(http://www.apsis.ch/pound/) and alternative mechanisms could

be used. This request is sent to one of the server nodes. In there,

this request returns a static HTML page, for simpler and faster

execution, with the appropriate fields for file upload.

Upon hitting the ‘‘submit’’ button on the HTML page,

a (Python) CGI is executed in the given server node. This CGI

carries out basic data management and verification. Briefly,

a temporary directory in a shared (via NFS) file system is created,

the data files verified for basic correctness, and then stored in this

temporary directory. This temporary directory has a name formed

by 13 random digits plus the process ID plus the time of creation;

this makes it virtually impossible that two runs of the application

will write data to the same temporary directory. This CGI returns

a (temporary) results HTML file to the user which is an

autorefreshing HTML page (to prevent time-outs in the client-

server connection) with the URL address. At the termination of

the run, this temporary HTML file will be substituted by the final

results file. The last job of this CGI is to spawn a Python program

(identified as ‘‘runAndCheck.py’’ in the figures) that does the bulk

of managing the MPI environment, launching R, and providing

fault tolerance.

This runAndCheck.py program carries out several major tasks.

First, based upon the size of the uploaded files, it determines the

parameters to use for the LAM/MPI universe (the number of

Rslaves that will be spawned in each node, and the maximum

number of ADaCGH processes that are allowed to run

simultaneously at any time). Next, it determines if a new process

can be run (by counting the number of lam daemons in the node);

if it cannot run yet, it waits and checks again after a specified

interval. Otherwise, a new LAM/MPI universe is booted, and an

R process started. runAndCheck.py is also in charge of fault

tolerance and crash recovery (see below). Eventually, upon either

successful or unsuccessful termination, a results HTML file is

constructed, and returned to the user; this file replaces the above

temporary results file.

A combination of R, Python, and Javascript code is involved in

generating lists of genes for PaLS (e.g., the list of all genes that

show gains in copy number) and providing figures with clickable

links to our IDClight application [25].

In addition to the above major programs (the CGI and

runAndCheck.py), there is a cron job that executes periodically to

verify which nodes (servers) are responding and can be used by

LAM/MPI. If needed, the default LAM/MPI configuration files

are modified adding or deleting entries for the corresponding

nodes.

Fault tolerance and crash recovery
Partial failure is unavoidable in distributed applications [49–51].

We use several layers to provide fault tolerance and crash

recovery. Linux Virtual Server with heartbeat and mon (http://

www.linuxvirtualserver.org/docs/ha/heartbeat_mon.html) using

two master nodes provides redundancy in case one of the master

nodes fails, and monitors the server nodes so that no HTTP

requests are sent to non-responding nodes. Results and temporary

computations are stored in a shared storage space that uses RAID

50; this allows both access from nodes different from the one

where computations started, and permits the cluster to continue

working in case of failure of some of the disks.

The above mechanisms, however, do not offer a way to

continue an ongoing calculation in case of failure. Common

sources of partial failure are a crash in one of the nodes that are

running a slave MPI job, MPI (or Rmpi) errors, and network

problems. These problems are particularly common (and difficult

to correct via a specific, immediate, human intervention) in web-

based applications that have to run unattended with, ideally, 100%

availability. Moreover, any of these are recoverable errors and,

thus, stopping the complete calculation and returning an error

message to the user (forcing the user to relaunch the process) or,

worse, halting indefinitely, are suboptimal ways of responding to

the above errors.

As illustrated in Figure 5, the web-based application incorpo-

rates a mechanism that, periodically, examines MPI and R logs

and existing LAM/MPI daemons to determine if any of the above

problems have occurred. If they have, a new LAM/MPI universe

is booted (after determining which nodes are currently alive and

can run MPI processes), and a new R process launched. To

prevent carrying out again computationally costly calculations, the

R code includes checkpoints so that calculations are not started

from the beginning but only continued from the point they were

stopped.

The above mechanism of fault recovery is independent of

another mechanism that checks for completion. Completion can
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Figure 3. Comparing parallelization schemes. User wall time of the R code using parallelization over arrays by chromosomes or over array (all
methods shown, except ACE) or chromosome (ACE). ‘‘Slaves: 2’’ or ‘‘Slaves: 4’’ indicates the number of slaves per node. The two timings shown were
obtained from an otherwise idle cluster, with hardware and software as in previous figures.
doi:10.1371/journal.pone.0000737.g003
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either be successful or unsuccessful. The later can be caused by

errors in our R code and, in such a case, we want to abort the

calculation immediately, return a message to the user, and log the

problem to allow us its prompt fixing. These errors are detected

via monitorization of R logs and currently running R processes. In

a similar way are handled fatal errors in libraries we depend upon,

such as failures in optimization that are occasionally encountered

with BioHMM.

User
Head node (LVS):

Send request to
one of the servers.

Autorefreshing HTML
until final results

Initial HTML page
CGI: data checking,

file upload

Execution: Python program

   runAndCheck.py
 - Setting up LAM/MPI

- Starting R
- Fault tolerance

- Checking termination of R
- Checking run errors
- Formatting output

R program

Sequential code Parallelized code

Figure 4. Overview of the flow of information between the main components of the web-based application.
doi:10.1371/journal.pone.0000737.g004

runAndCheck.py
Calculate LAM
def parameters
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(Count other lam

daemons)
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Sleep
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Boot (new)
LAM/MPI
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Sleep

Run out
of time?

Are we done?
R crashed

(coding errors)?

MPI universe
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temporary storage

NFS shared
storage

Verify servers
(modify LAM defs)

Server 1 Server 2 Server 3 Server n

Rmpi crashed?
LAM/MPI crashed?

(includes node crashes)

No

Halt MPI universe 
 Produce and return results pages

Yes

Yes

No

(slave) (Master) (slave) (slave)

Figure 5. Flow of information between application components: main mechanisms for crash recovery and fault tolerance. Black: execution flow.
Gray: read (r) or write (R) to/from files/nodes/hardware elements.
doi:10.1371/journal.pone.0000737.g005
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Testing and bug tracking
ADaCGH includes a comprehensive test suite that uses FunkLoad

(http://funkload.nuxeo.org). These functional tests cover the user

interface and the numerical output, including verification that our

parallel implementations return the same values as the original

sequential ones. All the tests can be run on demand, and whenever

new changes are introduced in the software, thus ensuring

appropriate quality control and regression testing. The tests are

available under the ‘‘ADaCGH2’’ directory from the repositories

(http://bioinformatics.org/asterias/bzr/Testing or http://launch-

pad.net/functional-testing). In addition to the uses from its release

date (November 2005) and the FunkLoad test suite, the code has

undergone extensive usage from the benchmark results shown below.

Bug-tracking is available from http://bioinformatics.org/asterias.
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41. Marioni JC, Thorne NP, Tavaré S (2006) Biohmm: a heterogeneous hidden

markov model for segmenting array cgh data. Bioinformatics 22: 1144–1146.

42. Price TS, Regan R, Mott R, Hedman A, Honey B, et al. (2005) Sw-array:

a dynamic programming solution for the identification of copy-number changes
in genomic dna using array comparative genome hybridization data. Nucleic

Acids Res 33: 3455–3464.
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