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Homeostatic plasticity is thought to be important in preventing neuronal circuits from becoming hyper- or hypoactive.
However, there is little information concerning homeostatic mechanisms following in vivo manipulations of activity levels. We
investigated synaptic scaling and intrinsic plasticity in CA1 pyramidal cells following 2 days of activity-blockade in vivo in adult
(postnatal day 30; P30) and juvenile (P15) rats. Chronic activity-blockade in vivo was achieved using the sustained release of
the sodium channel blocker tetrodotoxin (TTX) from the plastic polymer Elvax 40W implanted directly above the hippocampus,
followed by electrophysiological assessment in slices in vitro. Three sets of results were in general agreement with previous
studies on homeostatic responses to in vitro manipulations of activity. First, Schaffer collateral stimulation-evoked field
responses were enhanced after 2 days of in vivo TTX application. Second, miniature excitatory postsynaptic current (mEPSC)
amplitudes were potentiated. However, the increase in mEPSC amplitudes occurred only in juveniles, and not in adults,
indicating age-dependent effects. Third, intrinsic neuronal excitability increased. In contrast, three sets of results sharply
differed from previous reports on homeostatic responses to in vitro manipulations of activity. First, miniature inhibitory
postsynaptic current (mIPSC) amplitudes were invariably enhanced. Second, multiplicative scaling of mEPSC and mIPSC
amplitudes was absent. Third, the frequencies of adult and juvenile mEPSCs and adult mIPSCs were increased, indicating
presynaptic alterations. These results provide new insights into in vivo homeostatic plasticity mechanisms with relevance to
memory storage, activity-dependent development and neurological diseases.
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INTRODUCTION
Activity-dependent Hebbian plasticity, such as long-term poten-

tiation (LTP) and long-term depression (LTD), is thought to have

an inherently positive feed-back component that tends to

destabilize neuronal networks [1–3]. However, there is now

evidence that neuronal circuits possess various homeostatic

plasticity mechanisms that counteract the destabilizing effects of

Hebbian plasticity and ensure that neurons operate within

a physiologically appropriate dynamic range. Specifically, studies

from both invertebrates and vertebrates show that neurons are

able to regulate their synaptic strengths and intrinsic neuronal

properties in response to imposed changes in activity, in a manner

that is consistent with homeostasis [4–12]. Homeostatic changes

act to normalize overall neuronal firing after LTP or LTD

occurring at individual synapses, and homeostatic rules have been

proposed to play various functional roles, including improving

signal propagation and the generation of self-organizing cortical

maps [13–15]. Homeostatic plasticity mechanisms may also be

engaged during abnormal activity patterns in neurological

diseases, particularly in epilepsy [16–18], but the exact nature of

the beneficial or deleterious roles such homeostatic processes may

play in hyperexcitable disease states is only beginning to be

elucidated.

Experimentally, neural activity can be artificially increased or

decreased for prolonged periods of time, for example, by elevation

of extracellular K+ concentration or by blocking action potentials

with TTX [8]. It has been shown that visual cortical neurons in

culture respond to decreased levels of activity imposed by

prolonged TTX application with scaling up of miniature

excitatory postsynaptic current (mEPSC) amplitudes and scaling

down of miniature inhibitory postsynaptic currents (mIPSCs)

[8,19,20]. Conversely, increases in activity result in synaptic

changes in the opposite direction [8]. In addition to bidirectional

changes in synaptic inputs, neurons can also modify their intrinsic

neuronal properties and become hyperexcitable in response to

TTX treatment [6]. Experimentally imposed decreases in activity

in cultured hippocampal cells tend to lead to generally similar

alterations as in cultures of the visual cortex, including neuronal

hyperexcitability, increased glutamatergic transmission and de-

creased GABAergic synaptic inputs [4,7,16,19,21,22], indicating

the generality of homeostatic responses. Such activity-dependent

changes are interpreted to be homeostatic because the direction of

the alterations are such that they appear to counteract the imposed

change in activity, resulting in stabilization of firing rates within

the appropriate ranges [2].

However, the pre- or postsynaptic locus of the synaptic

alterations triggered by changes in activity levels is less clear.

Blockade of activity in cultures has been reported to lead to
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increases in mEPSC amplitude but not in frequency [8,23–25], or

increases in frequency but not in amplitude [4], or increases in

both [7,17]. Although the exact reasons for these apparent

contradictions are not yet clear, the developmental stage of the

tissue may be important [7,26,27]. For technical reasons having to

do with the relative ease of manipulation of activity levels in vitro,

most previous studies involving externally imposed alterations of

activity were performed on developing neurons in culture systems.

Although there had been a handful of studies on the cellular and

synaptic processes set into motion by manipulations by activity

levels in vivo [16,28–30] there are no comprehensive investiga-

tions on whether and how in vivo homeostatic plasticity processes

may be engaged by experimental changes in activity in neuronal

circuits.

In order to investigate whether homeostatic plasticity occurs in

the adult rat hippocampus in vivo, we modified a TTX delivery

protocol [31] that consists of implanting wafers of the plastic

polymer Elvax 40W loaded with TTX above the hippocampal

CA1 area. This arrangement offers a local, long lasting delivery of

TTX in vivo. After 48 hours of TTX application (a time often

used in vitro studies of homeostatic plasticity; [6,8]), we performed

assessments of miniature excitatory and inhibitory synaptic

currents and intrinsic neuronal properties in acute in vitro

hippocampal slices taken from just below the implanted Elvax

wafer. Our results revealed robust effects of in vivo manipulation

of neuronal activity in the hippocampus on synaptic and intrinsic

properties. However, several of the alterations were different both

in their directions and in their loci (e.g., pre- versus postsynaptic)

from previous reports that employed in vitro activity-blockade.

The results also showed that the activity-dependent rescaling of

synapses following in vivo manipulations did not occur in

a multiplicative manner. In addition to focusing on the adult

hippocampus, parallel experiments were conducted in juvenile

hippocampi aimed at determining the importance of age-de-

pendent responses to prolonged changes in vivo activity levels.

Taken together, the current findings offer new insights into

mechanisms underlying synaptic gain control, with particular

relevance to the development of limbic epilepsy following insults

such as trauma-induced deafferenation and the appearance of

post-traumatic spontaneous seizures [18,32].

METHODS
All protocols were approved by the Institutional Animal Care and

Use Committee of the University of California, Irvine.

TTX-Elvax preparation
Previously described techniques of preparation of Elvax were used

[31]. Briefly, 2 mg TTX (Tocris, Ellisville, MO) was mixed dry

with 100 mg of washed Elvax 40W and 1 ml methylene chloride.

TTX was evenly suspended by vigorous mixing and the vial was

then quickly frozen in a dry ice/ethanol bath. Methylene chloride

solvent was allowed to slowly evaporate for 7 to 10 days at 220uC.

The resulting cylinder of Elvax was sectioned using a Vibratome

into 200 mm thick slices. Slices were stored at 220uC and washed

at room temperature for 48 hours in saline before implantation to

avoid the initial, fast phase of release that occurs before a slow,

sustained release phase lasting at least 12 days [33,34].

Implantation of Elvax
We modified a formerly described technique [31] to perform

a cortical undercut that allows for the placement of Elvax wafers

above the CA1 area of the hippocampus. Wistar rats (P30 and

P15; Charles River, Boston, MA) were anesthetized with

a ketamine/xylazine (60 mg/Kg ketamine; 10 mg/Kg xylazine)

mix and placed in a stereotaxic frame. The scalp was incised and

a rectangular hole was trephined in the left parietal bone. The

dura was then incised with fine scissors and reflected to expose the

cerebral cortex. A micromanipulator was used to guide the

position of a 25-gage needle bent 90u, 2 mm from the tip. The

needle was inserted into the cortex at coordinates from bregma

21.0, lateral 0.5. The needle was introduced 1 mm into the cortex

then the needle was advanced caudally 2 mm and retracted. After

the needle was retracted, the resulting cortical slab was lifted and

a 1mm by 1mm wafer of TTX-loaded Elvax (TTX Elvax), or

control Elvax with no TTX (Control Elvax), was placed at

coordinates from bregma 22.0, lateral 22.0. The wound was then

closed and sutured. The animals were placed on a heating pad for

recovery and returned to their cage upon awakening. Implantation

was performed 48 hours before recordings. No obvious behavioral

effects were observed after recovery from the implantation surgery.

Slice preparation
Forty eight hours after Elvax implantation, coronal brain slices

(450 mm for blind recordings, 350 mm for visualized recordings)

were prepared as previously described [35,36]. The animals were

anesthetized with halothane, decapitated and their brains were

removed. Slices were obtained from the area below the Elvax

placement. The slices were incubated at 32uC in oxygenated (95%

O2/5% CO2) artificial cerebrospinal fluid (ACSF; in mm 126

NaCl, 2.5 KCl, 26 NaHCO3, 2 CaCl2, 1.25 NaH2PO4, and 10

glucose) in a holding chamber for at least 2 hours prior to

recording in order to allow complete washout of TTX.

Electrophysiology
For extracellular recordings, individual slices were transferred to

an interface-type chamber perfused with oxygenated ACSF at

36uC. Recording pipettes were filled with ACSF and placed in the

CA1 pyramidal cell layer. To evoke field responses, constant-

current stimuli (1–8 mA, 50–200 ms) were applied at 0.1 Hz using

a 90 mm bipolar tungsten electrode positioned in the CA1 stratum

radiatum. The placement and distance of the recording and

stimulating electrodes were kept constant as described previously

[37].

Blind whole-cell recordings were used for recordings of

miniature excitatory postsynaptic currents (mEPSCs) and minia-

ture inhibitory postsynaptic currents (mIPSCs). For the blind patch

recordings, individual slices were transferred to an interface-type

chamber perfused with oxygenated ACSF at 36uC. The ACSF,

depending on the experiment, contained the following drugs: for

mEPSCs, 10 mM bicuculine methchloride and 1 mM TTX; for

mIPSCs, 10 mM D-2-amino-5phosphovaleric acid (APV), 10 mM

1,2,3,4-Tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sul-

fonamide (NBQX), 1 mM TTX. Whole cell recordings were

obtained from CA1 pyramidal cells with patch pipettes (4–7 MV)

filled with internal solutions consisting of (in mM): for mEPSCs,

140 K-gluconate, 10 HEPES, 2 MgCl2, pH 7.20 (265–275

mOsm); for mIPSCs, 140 CsCl, 10 HEPES, 2 MgCl2, pH 7.10

(265–270 mOsm). Recordings were obtained with an Axopatch

200A (Axon Instruments, Foster City, CA) and digitized at

10 kHz. Visualized whole-cell recordings were used to measure

alterations in intrinsic properties. For visualized whole-cell

recordings, slices were transferred to a submerged-type recording

chamber perfused with oxygenated ACSF at 33uC. Slices were

visualized with an upright microscope (BX-50; Olympus, Tokyo,

Japan) with infrared differential interference contrast optics.

Whole-cell recording were obtained from visually identified (based
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on size and shape of cell body and primary dendrites) CA1

pyramidal cells with patch pipettes (3–5 MV) filled with internal

solution containing (in mM): 126 K-gluconate, 4 KCl, 10 HEPES,

4 ATP-Mg, 0.3 GTP-Na and 10 phosphocreatine, pH7.2 (270–

290 mOsm). Recordings were made using a MultiClamp 700A

amplifier (Molecular Devices, Union City, CA). From a holding

potential 260 mV, a series of depolarizing current pulses were

applied at 20 pA steps and the number of action potentials was

recorded. Input resistance was determined by 220 pA steps from

a holding potential of 260 mV and calculated offline.

Data Analysis
Recordings were digitized at 10 kHz with a Digidata 1322A

analog-digital interface (Molecular Devices, Union City, CA).

Statistical analyses were performed using Sigmaplot or SPSS,

using a non-paired t-test or the non-parametric Kolmogorov-

Smirnov test with a significance level of p,0.05. Results are

described as mean6SEM.

For the cumulative probability plots, equal number of events

were used from each cell (n = 20 for mEPSCs ; n = 100 for

mIPSCs). For analysis concerning the presence or absence of

multiplicative scaling [8], the control event amplitudes were

ranked and then plotted against the ranked event amplitudes after

TTX treatment, and the slope of the best linear fit was

determined. The post-TTX event amplitudes were then divided

by the scaling factor (i.e., the slope), and the Kolmogorov-Smirnov

test was used to determine if the scaled-back post-TTX event

amplitudes were significantly different from the control ampli-

tudes. If they were significantly different, the increase in event

amplitude could not be considered multiplicative.

RESULTS

Hyperexcitable field responses in the CA1 region

two days after implantation of TTX Elvax
First, we examined the effects of in vivo TTX treatment on the

general excitability of the CA1 region in adult rats. Two days after

Elvax implantation, extracellular field potentials were recorded

from the CA1 pyramidal layer in acute slices, in response to

electrical stimulation of the stratum radiatum at various

stimulation intensities, and the population spike amplitude of the

field excitatory post-synaptic potential (fEPSP) was measured,

representing the synchronized firing of cells. As shown in Fig. 1,

the population spike amplitude was significantly larger in slices

from TTX Elvax implanted rats compared to control Elvax

implanted rats at most stimulation intensities (fEPSPs were

recorded in control ACSF; control: n = 8 slices, 4 animals; TTX:

n = 9 slices, 4 animals).

Therefore, as expected from homeostatic plasticity responses,

and generally in line with previous observations following 48 hours

of TTX treatment in vitro [6], the CA1 region of the hippocampus

became hyperexcitable following activity suppression in vivo. We

hypothesized that this increase in hyperexcitability may be due to

changes in synaptic strength and/or to alterations in the intrinsic

properties of neurons. Therefore, in the subsequent experiments,

we aimed to determine if synaptic and intrinsic parameters were

altered after in vivo TTX treatment.

In vivo activity-deprivation enhances excitatory

inputs primarily through presynaptic mechanisms
In order to investigate changes in synaptic strength, we first

studied mEPSCs in CA1 pyramidal cells from adult rats. Contrary

to what was expected based on previous studies in cultures [8],

there was no TTX-induced change in the mEPSC amplitude

(Control: 16.160.44 pA; TTX: 16.360.41 pA; Fig 2A; control:

n = 10 cells, 5 animals; TTX: n = 10 cells, 5 animals) or kinetics

(Table 1). However, a significant increase in the frequency of

mEPSCs was observed (inter-event intervals: Control:

3.160.23 sec, TTX: 1.760.11 sec; Fig 2B; control: n = 17 cells,

5 animals; TTX: n = 17 cells, 5 animals).

As there was no increase in the amplitude of mEPSCs in adult

animals after in vivo TTX treatment, in subsequent experiments

we investigated mEPSCs in juvenile animals (P1562 days),

because the latter age correlates more closely with the age of the

neuronal cultures used in previous studies of homeostatic plasticity

that reported significant alterations in mEPSC amplitudes

following activity-blockade [4,5,7,8,28]. Indeed, in cells from

slices from juvenile rats treated with TTX Elvax, there was

a significant increase in the mEPSC amplitude (Control:

21.060.9 pA, TTX: 24.261.2 pA; Fig 3A; control: n = 10 cells,

6 animals; TTX: n = 10 cells, 5 animals), with no change in the

kinetics (in Table 1). As in the adults, the mEPSC frequency was

also increased in the juvenile rats after TTX treatment (inter-event

intervals: Control: 4.1160.41 sec, TTX: 1.960.22 sec; Fig 3B;

control: n = 10 cells, 6 animals; TTX: n = 10 cells, 5 animals).

Taken together, these results suggested that activity deprivation,

as expected from synaptic homeostasis, tended to increase

excitatory inputs. However, the primary mechanism appeared to

be an increase in frequency of events (representing presynaptic

plasticity processes), and the expected enhancement in mEPSC

amplitude was only found at a younger developmental stage, but

not in the adult animal.

In vivo TTX application increases mIPSC amplitude

in both adults and juvenile rats
In addition to the increased excitatory inputs, a reduction in

inhibitory currents may also contribute to the increase in

population spikes in the CA1 area after in vivo TTX treatment

(Fig. 1). In agreement with this possibility, mIPSCs have been

reported to show a reduction in amplitude after TTX application

in cultures [20,38]. In order to determine how GABAA receptor

mediated synaptic inputs changed following in vivo TTX

Figure 1. Hyperexcitability in the CA1 region of the hippocampus
after in vivo activity-blockade. Forty-eight hours after implantation of
the control or TTX-containing Elvax polymer, extracellular field
potentials were recorded from the CA1 region in acute hippocampal
slices in response to low-frequency electrical stimulation of the stratum
radiatum. The figure shows summary data of the population spike
amplitudes from TTX-treated and control rats (for number of slices and
animals, see text), with example traces in the inserts.
doi:10.1371/journal.pone.0000700.g001
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treatment, we recorded mIPSCs 2 days after TTX Elvax

implantation in adult rats. Surprisingly, the mIPSCs recorded

from adult rats after TTX treatment showed a significant increase

in amplitude (Control: 28.960.72 pA, TTX: 43.4361.05 pA;

Fig 4A; control: n = 11, 4 animals; TTX: n = 8, 4 animals). In

addition, the frequency of mIPSCs from adult rats was increased

(Inter-event interval: Control: 52.3961.67 ms, TTX:

32.8660.32 ms; Fig 4B; control: n = 11, 4 animals; TTX: n = 8,

4 animals). The kinetics of the events also changed, as both the rise

time and the decay time of the mIPSCs became faster (Table 1).

The net change, resulting from a combination of the increased

amplitude and frequency of faster individual events, was a general

augmentation of GABAA inputs to CA1 pyramidal cells, as

represented by the significantly enhanced mIPSC charge transfer

(control: 15.060.6 pA*ms; TTX: 20.560.8 pA*ms).

Next, we tested whether the observed activity-blockade-induced

scaling up of the mIPSCs was due to the age of the animals. Similar

to the adult mIPSC data, the amplitude of the mIPSCs recorded

from juvenile animals 48 hours after implantation with TTX Elvax

was also significantly increased (Control: 36.8660.30 pA, TTX:

42.2060.41 pA; Fig 5A; control: n = 11 cells, 5 animals; TTX:

n = 11cells, 6 animals). In contrast to the adults, however, there was

no change in mIPSC frequency (inter-event intervals: Control:

Figure 2. Unchanged amplitude, but increased frequency of mEPSCs
in CA1 pyramidal cells from adult animals after in vivo TTX-
application. (A) Summary data (from all cells) of the mEPSC amplitudes
in TTX-treated and control adult rats are shown in the form of
cumulative probability plots (for numbers of events and animals, see
main text); the bar graph shows the same data in the form of
averages6SEM, and the insert displays representative averages of
mEPSCs from single cells. (B) Summary data of the inter-event intervals
of mEPSCs, with example traces.
doi:10.1371/journal.pone.0000700.g002

Table 1. Kinetics of mEPSCs and mIPSCs recorded from adult
and juvenile CA1 pyramidal cells 48 hours after implantation
with control Elvax or TTX Elvax (asterisks indicate significant
difference (p#0.05)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mEPSCs mIPSCs

ADULT JUVENILE ADULT JUVENILE

Rise time 10–
90% (ms)

Control 1.3960.14 1.4360.10 0.5660.04 0.6960.87

TTX 1.5760.90 1.4160.10 0.4360.03* 0.7260.04

Decay time
constant (ms)

Control 7.6260.56 5.3360.28 6.3660.43 8.4660.32

TTX 6.8760.36 5.6360.26 4.6660.27* 8.1660.35

doi:10.1371/journal.pone.0000700.t001..
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Figure 3. Increased amplitude and frequency of mEPSCs in juvenile
CA1 cells after in vivo TTX-application. (A) Summary data of the
mEPSC amplitudes; insert: representative averages from single cells. (B)
Summary data of the inter-event interval of mEPSCs, with representa-
tive traces as inserts.
doi:10.1371/journal.pone.0000700.g003
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172.6964.24 ms, TTX: 161.9165.39 ms; Fig 5B; control: n = 11

cells, 5 animals; TTX: n = 11cells, 6 animals), or kinetics (Table 1).

Taken together, these data indicated that in vivo activity-blockade

increased the amplitude of mIPSCs in both juvenile and adult

hippocampi. However, as indicated by the differential responses to

TTX treatment in mIPSC frequency between the juveniles and

adults, activity-blockade also had age-dependent effects on GA-

BAergic currents.

Lack of multiplicative scaling of synaptic currents

after activity-blockade in vivo
In some of the previous studies on homeostatic plasticity

mechanisms in cultures, TTX treatment has been reported to

result in a scaling up of mEPSC amplitudes by the same factor,

revealing the presence of multiplicative scaling [8]. Multiplicative

scaling implies that the cell regulates all of its inputs in

a coordinated manner; for example, by increasing postsynaptic

receptor efficacy or number at all active synapses by a certain

percentage, regardless of initial amplitude. Therefore, we carried

out additional analysis of the event amplitudes to determine the

presence or absence of multiplicative scaling (see Methods). As

described above, there were TTX-induced increases in miniature

events in three of the four cases examined (juvenile mEPSCs, and

juvenile and adult mIPSCs). As shown in Fig. 6, none of the

enhanced synaptic inputs were multiplicatively, or proportionally,

scaled following TTX treatment in vivo (note that the lack of

multiplicative scaling is represented by the fact that, as illustrated

in Fig. 6, the scaled-back post-TTX event amplitudes remained

significantly different from the control amplitudes).

A previous report indicated the preferential involvement of very

large synapses in excitatory event potentiation following activity-

blockade with NBQX in cultured hippocampal neurons [7].

Therefore, we also tested whether the reason for the lack of

multiplicative scaling was the presence of a few very large events

that were scaled differently than the rest of the event population.

However, there was no multiplicative scaling even after the

exclusion of the largest 2% of the events (data not shown).

Increased intrinsic excitability after in vivo TTX

treatment in both adult and juvenile animals
The hyperexcitability observed in our field recordings in the CA1

region after TTX treatment may also be due to changes in the

Figure 4. Increased amplitude and frequency of mIPSCs in adult CA1
cells after in vivo TTX-application. (A) Summary data of the mIPSC
amplitudes (for numbers of cells and animals, see main text); insert:
representative averages from single cells. (B) Summary data of the inter-
event interval of mIPSCs, with representative traces.
doi:10.1371/journal.pone.0000700.g004

Figure 5. Increased amplitude, but no change in frequency, of
mIPSCs in juvenile CA1 cells after in vivo TTX-application. (A)
Summary data of the mIPSC amplitudes; insert: representative averages
from single cells. (B) Summary data of the inter-event interval of mIPSCs,
with representative traces.
doi:10.1371/journal.pone.0000700.g005
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intrinsic properties of the pyramidal neurons [6]. Therefore, in the

final set of experiments we measured several intrinsic parameters

of excitability, including the input resistance, the number of action

potentials evoked by depolarizing current injections (firing-input

current or I-F curves), and resting membrane potential (Vm) in

CA1 pyramidal cell neurons from animals implanted with TTX

Elvax or control Elvax. Forty-eight hours after TTX Elvax

implantation, the input resistance of CA1 pyramidal cells was

significantly increased in both adult and juvenile animals (Adult:

Control: 114.462.5 MV, TTX: 133.664.3 MV; Control: n = 34, 5

animals; TTX: n = 35, 5 animals; Juvenile: Control: 136.16

4.3 MV, TTX: 174.165.7 MV; Control: n = 34, 5 animals; TTX:

n = 33, 5 animals), without changes in resting membrane potential

(Adult: Control: 264.960.5 mV; TTX: 266.360.6 mV; Juvenile:

Control: 261.760.4; TTX: 262.260.4 mV). Importantly, both

adult and juvenile neurons fired significantly more action potentials

after TTX treatment in response to depolarizing current injections

(Fig 7A&B; Control: n = 34 cells, TTX: n = 35 cells). These data

showed that adult and juvenile CA1 neurons became more excitable

as a result of alterations in their intrinsic properties following in vivo

TTX treatment.

DISCUSSION

Synaptic plasticity in the CA1 region in vivo
A main finding of this paper is that activity-deprivation in vivo

results in alterations in synaptic properties that are often distinct

from those observed following TTX application in culture systems.

While the overall direction of the alterations in CA1 excitability,

represented by the enhanced field responses, was in general

agreement with what could be expected from homeostatic

Figure 6. Lack of multiplicative scaling after in vivo TTX-treatment.
(A–C) Plots of miniature events, ranked by amplitude, from TTX-treated
versus control cells are shown; inserts: cumulative distribution plots of
control amplitudes and scaled TTX events (for scaling details see text;
scaling factors: juvenile mEPSCs = 1.27; adult mIPSCs = 1.22; juvenile
mIPSCs = 1.33). (A) mEPSCs from juveniles (linear fit equation;
TTX = 1.27(Cont)22.14; R2 = 0.99). (B) mIPSCs from adults (linear fit
equation; TTX = 1.22(Cont)+2.65; R2 = 0.95). (C) mIPSCs from juveniles
(linear fit equation; TTX = 1.33(Cont)26.77; R2 = 0.97). The scaled-back
post-TTX event amplitudes (for details, see main text) remained
significantly different from the control amplitudes, indicating lack of
multiplicative scaling.
doi:10.1371/journal.pone.0000700.g006

Figure 7. Increased intrinsic excitability in CA1 cells from adult and
juvenile rats after in vivo TTX-application. (A,B) Summary plots of
action potential numbers as a function of current injection (from
260 mV; duration: 500ms; for number of cells and animals, see main
text) from adult (A) and juvenile (B) rats, with representative traces from
single cells. Asterisks indicate significant (p,0.05) difference between
the control and TTX groups.
doi:10.1371/journal.pone.0000700.g007
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plasticity, the specific alterations in synaptic properties presented

a considerably more complex picture. Nevertheless, certain

general rules can be observed. First, the amplitudes of the

mEPSCs and mIPSCs either increased or did not change in

response to TTX treatment, but there were no instances where

activity-blockade resulted in decreases in miniature event ampli-

tudes. Second, the frequency of the mE/IPSCs showed a similar

pattern, i.e., the mE/IPSC frequency either significantly increased

or remained unchanged, but never decreased. Third, in every one

of the four cases examined (mEPSCs and mIPSCs in adults and

juveniles), there was some significant alteration elicited by the in

vivo TTX treatment (namely, either increased event amplitude, or

increased frequency, or both), indicating that both glutamatergic

and GABAergic synapses respond to activity-blockade in the

developing and adult hippocampi.

Therefore, activity-deprivation in vivo appeared to cause

a general enhancement of synaptic inputs from both glutamatergic

and GABAergic terminals. However, we saw no overarching,

general rules concerning the pre- versus postsynaptic locus of the

observed synaptic alterations. Previous reports on the effects of

activity-blockade in cultures often showed increases in mEPSC

amplitudes without concurrent changes in frequency [8,23,24].

However, there have been several studies that showed alterations

in mEPSC frequency either with or without concurrent changes in

amplitudes [4,7,22]. Structural studies also pointed to complex

pre- and/or postsynaptic alterations [39–42]. A recent study

suggested that the locus of plasticity concerning glutamatergic

synapses may depend on the time in vitro, not on the actual age of

the tissue[43]. Our data, showing increases in both amplitude and

frequency in juvenile mEPSCs but only frequency-enhancements

in adult mEPSCs, seem to suggest that the age of the animal may

also play a role in the locus of the plasticity at hippocampal

excitatory synapses in response to activity-deprivation.

An additional finding that was consistent across our data sets

was the lack of multiplicative scaling for the enhanced synaptic

inputs, even after the removal of the largest events [7]. The

presence of multiplicative (or proportional) synaptic scaling,

observed after manipulations of activity in cultures, suggested that

homeostatic synaptic plasticity scales neuronal output without

modifying the relative strength of individual synapses [2,44]. It is

not clear why this was not observed in our experiments with in

vivo TTX treatment. However, our data are in general agreement

with recent in vitro data indicating non-global adaptive mech-

anisms, where only a portion of the presynaptic axon terminals is

affected by chronic manipulations in firing activity [42]. Potential

explanations for the lack of multiplicative scaling may also include

the larger number and more diverse synaptic inputs in the in vivo

situation, which are at least partially preserved in acute slices. It is

possible, and perhaps even likely, that inputs from different sources

and cell types react differently to in vivo activity-deprivation.

The possibility that distinct cell types respond differently to

changes in activity levels is an especially valid consideration for

hippocampal GABAergic cells expressing characteristically high

levels of heterogeneity, both in terms of the existence of separate

interneuronal cell types (diversity) and in the form of cell to cell

variability within an individual interneuronal class [45,46].

However, homeostatic responses exhibited by GABAergic systems

are not well understood. In vitro studies from cortical and

hippocampal cells reported that activity-deprivation invariably

resulted in decreases in mIPSC amplitude, either without [19,20]

or with [17,38] concurrent decreases in event frequency. In

contrast, our data showed increases in mIPSC amplitudes in

response to in vivo TTX treatment in both adult and juvenile

hippocampi. While we cannot resolve the reasons for the

difference, it is interesting to note that cortical inhibition has

been shown to undergo potent enhancement following visual

deprivation in vivo, with a threefold increase in IPSCs between

fast spiking cells (most likely basket cells) and pyramidal cells [30].

The observed speeding up of the mIPSC kinetics in the adult

hippocampi observed in our experiments may be related to

modifications in subunit expression, but it may also be due to

differential effects of in vivo TTX-application on distinct in-

terneuronal classes resulting in alterations in the cellular origin of

the mIPSCs. Future studies will be needed to examine how

different interneuronal types respond to various in vivo manipula-

tions of activity.

Altered intrinsic membrane properties in response

to activity-deprivation
Although much attention has been focused on how chronic

manipulations in activity levels affect synaptic scaling, it is now

clear that another potential substrate for plasticity is the various

intrinsic conductances expressed by neurons. Research on in-

vertebrate neurons demonstrated that activity can regulate the

expression of voltage-gated conductances [12,31,47–49]. Work on

vertebrate neurons in cultures generally confirmed these observa-

tions [6,21,50]. In neocortical pyramidal cells, for example,

prolonged blockade of activity has been shown to lead to

a lowering of spike threshold, resulting in a higher firing frequency

to current injections [6], primarily associated with increases in Na+

current and decreases in persistent K+ currents. There is also

evidence that TTX treatment in hippocampal cultures enhances

intrinsic bursting, resulting from upregulation of Ca2+ channels

[25]. Our data from in vivo activity-blockade in the hippocampus,

demonstrating enhanced input resistance and increased firing to

depolarizing current inputs, generally agreed with these prior

observations. In addition, our results showed similar alterations in

both adult and juvenile hippocampi, in line with recent data

indicating that plasticity of intrinsic excitability may be less

sensitive to developmental stage [50]. Activity-dependent altera-

tions in intrinsic currents may play a variety of functional roles,

including the regulation of synaptic plasticity, gating of back-

propagating action potentials, and modulation of the output

properties of cells to match the properties of their inputs [51–54].

While plasticity of intrinsic excitability may not be invariably

homeostatic [55], the direction of the changes in intrinsic

excitability observed in this paper following in vivo blockade of

activity in the hippocampus appeared to generally follow the

homeostatic principle.

Towards understanding the role of homeostatic

plasticity in limbic epilepsy
In addition to contributing to various normal neuronal operations,

homeostatic plasticity mechanisms may also play key roles in the

emergence of epilepsy after insults [16–19,25,32]. A recent paper

demonstrated that traumatic head injury in vivo resulted in long-

lasting, robust changes in Na+, K+ and h-currents in mossy cells in

the dentate gyrus [18]. Curiously, in spite of the presence of

significant alterations, the current-voltage and current firing

frequency curves remained unchanged in these cells, indicating

the finely coordinated, apparently homeostatic nature of these

alterations in intrinsic conductances after the insult. Although it is

not yet clear how single cell homeostasis may function in

a persistently hyperexcitable network (for a discussion, see [18]),

it seems that homeostatic plasticity of both intrinsic excitability and

synaptic inputs is a potentially key factor in the emergence and

maintenance of spontaneous seizures following insults [32]. Our
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data in this paper demonstrate that synaptic and intrinsic

properties undergo significant alterations in CA1 pyramidal cells

after in vivo blockade of activity in the hippocampus. While the

overall direction of the change in network excitability, as reflected

by the enhanced field responses to stimulation of afferent

pathways, was in general agreement with homeostasis, future

research will be needed to establish how specific alterations in

glutamatergic and GABAergic inputs and intrinsic conductances

contribute to the hyperexcitability induced by the chronic activity-

blockade. Finally, comparisons of results from future experiments

with prolonged in vivo manipulations of activity in control and

post-traumatic hippocampi are likely to contribute to our

understanding of how homeostatic plasticity mechanisms may be

engaged by insults to promote or counteract the emergence of

post-traumatic epilepsy.
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