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Dejan Vučinić1*, Terrence J. Sejnowski1,2

1 Howard Hughes Medical Institute, Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United
States of America, 2 Division of Biological Sciences, University of California at San Diego, La Jolla, California, United States America

We constructed a simple and compact imaging system designed specifically for the recording of fast neuronal activity in a 3D
volume. The system uses an Yb:KYW femtosecond laser we designed for use with acousto-optic deflection. An integrated two-
axis acousto-optic deflector, driven by digitally synthesized signals, can target locations in three dimensions. Data acquisition
and the control of scanning are performed by a LeCroy digital oscilloscope. The total cost of construction was one order of
magnitude lower than that of a typical Ti:sapphire system. The entire imaging apparatus, including the laser, fits comfortably
onto a small rig for electrophysiology. Despite the low cost and simplicity, the convergence of several new technologies
allowed us to achieve the following capabilities: i) full-frame acquisition at video rates suitable for patch clamping; ii) random
access in under ten microseconds with dwelling ability in the nominal focal plane; iii) three-dimensional random access with
the ability to perform fast volume sweeps at kilohertz rates; and iv) fluorescence lifetime imaging. We demonstrate the ability
to record action potentials with high temporal resolution using intracellularly loaded potentiometric dye di-2-ANEPEQ. Our
design proffers easy integration with electrophysiology and promises a more widespread adoption of functional two-photon
imaging as a tool for the study of neuronal activity. The software and firmware we developed is available for download at
http://neurospy.org/ under an open source license.
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INTRODUCTION
Two-photon imaging [1] is a powerful technique for recording the

activity of large populations of neurons from deep within living

tissue [2,3]. The promise of simultaneously following large

numbers of individual cells identified through transgenic labels

[4], as well as the ability to see neurons’ internal states beyond action

potential firing [5], makes this optical approach ideal for study of

network dynamics and plasticity. Moreover, the ability of multipho-

ton excitation to yield sharp images from deep within scattering

tissue enables the study of microscopic processes in situ [6–8].

Nonlinear imaging of neuronal activity also raises great

challenges. To observe changes at millisecond timescales over

durations long enough to be physiologically relevant requires

a careful selection of excitation intensities and detection techniques

so that the fluorescence photon yield, penetration depth, heating and

photodamage are all optimized. This is a fundamental limitation of

the very small, femtoliter-sized, volume where multiphoton

absorption is induced. For instance, there are only 602 molecules

of a fluorescent reporter at 1 mM in a femtoliter, so if these are

excited at photodamage-limited intensities [9,10] there are very few

photons per unit time emerging from the focal spot, making shot

noise a severe limitation on the ability to observe small, fast changes.

One particularly daunting problem has been the recording of

neuronal membrane potentials using voltage-sensitive dyes [11].

Because of the shot noise limitations, labels that undergo relatively

larger changes in response to membrane potential fluctuations,

such as second-harmonic upconversion with FM 4-64 [12], have

a significant advantage over the more widely used styril dyes [13–

17]. These techniques, however, are not useful for voltage imaging

in vivo, and still incur a rapid deterioration of tissue resulting from

very high intensities of excitation light required. New fluorescent

dyes have been developed [18] that give much larger voltage-

sensing signals [19], but their use has been hindered by the

difficulty of delivery into tissue and the very limited availability of

lasers suitable for excitation at wavelengths where their sensitivity

to transmembrane voltage is high.

In this article we describe an apparatus we constructed that can

record smaller, faster changes of fluorescence signals. We designed

the entire imaging system for this single purpose, ignoring

microscopy traditions and so eliminating a number of practical

constraints that would have prevented us from reaching the

physical limits of materials and the technologies available. The

Ytterbium laser we constructed operates in a longer-wavelength

region where many functional fluorescent reporters have high

sensitivities and where light penetrates tissue deeper. We selected

longer laser pulses for compatibility with very fast but highly

dispersive acousto-optic deflectors, and as a result ended up with

lower photodamage. We exploited the latest developments in

Direct Digital Synthesis of radio-frequency signals to achieve fast

three-dimensional scanning with no moving parts, and to reach

the physical limits of acousto-optic materials in their ability to

reposition the beam and control its intensity.

Finally, we exploited the amazing increase in the computing

power and data acquisition bandwidth of modern oscilloscopes to

eliminate the need for a dedicated microscope controller. This

resulted in several unanticipated benefits: the cost of construction

of the entire imaging system is reduced by an order of magnitude

compared with today’s prevailing designs, down to approximately
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forty thousand 2006 U.S. dollars in parts including the laser and

vibration isolation; the daily operational complexity is greatly

reduced compared with a typical imaging system integrated from

disparate components, facilitating dedicated deployment; and the

data acquisition system is fast enough for fluorescence lifetime

imaging, even outperforming many dedicated solutions at

a fraction of the cost.

RESULTS
Figure 1 shows a diagram of our imaging apparatus. Excitation

light was generated by a femtosecond laser (Figure 2) that used

Ytterbium-doped KY(WO4)2 (Yb:KYW) as the lasing medium.

The beam was deflected for scanning by an integrated two-

dimensional acousto-optic deflector (Brimrose 2DS-50-30-1.06,

www.brimrose.com), and mapped onto the back-aperture of an

objective using two concave mirrors that replace the scan lens and

the tube lens in a traditional microscope. The deflector, the

mirrors and the objective were mounted onto a small stage moved

by a Sutter MP-285 micromanipulator. There was no microscope

other than this moving stage. The laser and the moving stage were

mounted onto a 1 ft.62 ft. breadboard (Thorlabs PBH11102)

which was elevated above the working surface to allow placement

of the specimen holder and the detection equipment underneath

the objective. The working surface was suspended on a negative-

stiffness passive vibration isolation platform (MinusK Technology

250BA-1, www.minusk.com). The entire apparatus, including

vibration isolation and the laser, measured 3 ft. wide by 2.5 ft.

deep by 3 ft. high.

For thin preparation work, transmitted fluorescence was

collected by a condenser and steered using a broadband dielectric

mirror (Newport 13E20BD.1) to a photomultiplier module

(Hamamatsu 7422-40). Excitation light passed through this mirror

and a portion deflected to large angles was collected by a fast

photodiode (35 MHz with preamplifier, Hamamatsu S6468-02),

which provided enough contrast to see cells in non-fluorescent

tissue (Figure 3a). The condenser could be mounted onto the x-y

portion of the microscope manipulator, but we left it stationary for

Figure 1. The diagram of our simple imaging system. A LeCroy WaveRunner 64xi oscilloscope acts as both the scan controller and the data
acquisition system. Radio-frequency signals generated by the AD9959 Direct Digital Synthesis chip, which is controlled by the oscilloscope via USB,
are amplified and injected into a compact two-axis acousto-optic deflector. Long laser pulses have narrow spectral bandwidth and so obviate the
need for dispersion compensation. The use of mirrors M1 and M2 instead of lenses allows for a very compact microscope. Mirror M3 steers
fluorescence collected by the condenser to the photomultiplier (PMT). A fast photodiode (PD) collects transmitted excitation light that was deflected
to large angles to provide oblique contrast for observing cells in non-fluorescent tissue. A very fast photodiode (FastPD) reports laser pulse timing for
fluorescence lifetime measurements.
doi:10.1371/journal.pone.0000699.g001
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Figure 2. Design and performance of the Yb:KYW laser. a) Diagram of the laser cavity. Pump light is collimated and focused by lenses L1–4 to
a 51 mm 685 mm waist in air; pump beam is tilted relative to the lasing beam to keep reflections from reentering the pump diode and destabilizing
it. Beamsplitter (BS) has high transmissivity at 981 nm and high reflectivity at .1010 nm. Lasing medium is a d = 1.2 mm Brewster-cut 10%-at.
Yb:KYW crystal. M1,M4 = 2200 mm, M2,M3 = 2100 mm are cavity mirrors with standard l/4 dielectric coating. SF14 – uncoated isosceles prisms. OC
– output coupler. b) Low pump beam quality makes the laser prone to multimode operation, which is easily observed by a photodiode as the
circulation of pulse energy between lobes of higher-order modes on subsequent passes. c) Restricting the cavity to single-mode operation results in
even pulsing at 113 MHz with 300 mW of average power. d) Output spectrum is 3.7 nm wide and centered near 1033 nm, indicating sech2

transform-limited pulse width of 310 fs. e) Spectrum of the transmitted pump light. The narrow Yb:KYW absorption peak near 981 nm is readily
visible; the pump wavelength must be temperature-tuned to overlap it for maximum output power and stability. f) Output power variability. With the
off-axis pumping arrangement the laser is capable of very quiet operation.
doi:10.1371/journal.pone.0000699.g002
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simplicity since it allowed access to a region 2 mm wide without

having to move the specimen.

For imaging of epifluorescence in vivo or in thick preparations

a dichroic mirror could be placed at the back-aperture of the

objective to steer epifluorescence onto an appropriate detector,

such as an avalanche photodiode, mounted close to the objective

to maximize the collection efficiency. For this type of experiment

everything below the objective could be replaced by a stereotaxic

device, and the folded microscope tube after the deflector could be

tilted to permit access to tissue at an angle.

Construction of an Yb:KYW femtosecond laser
Figure 2a shows a diagram of the Yb:KYW laser. Pump power

was provided by a single InGaAs/AlGaAs laser diode (Axcel

Photonics CM-980-3500-150, www.axcelphotonics.com) with

a 100 mm wide emitter producing 3.5 W of multimode output

with a 5 nm wide spectrum temperature-tuned to 981 nm

(Figure 2e), the absorption peak of Yb:KYW. The diode was

powered by a generic lab power supply (Instek PSP-2010).

Diverging pump light was collimated by an aspheric pick-up lens

(Geltech 350350, f = 4.5 mm, 0.41 NA, www.thorlabs.com) and

the slow axis magnified by two cylindrical lenses (Thorlabs

LJ1805L1-B and LJ1934L1-B) to achieve tighter focus. The pump

beam was focused onto the lasing medium with an f = 60 mm

spherical singlet lens (Thorlabs LA1134-B) through a beamsplitter

with a coating designed for high transmissivity at 981 nm and high

reflectivity at .1010 nm (EKSPLA, Vilnius, Lithuania, www.

ekspla.com). The pump beam waist measured 51 mm (fast axis 1/

Figure 3. Imaging performance and resolution. a) Transmitted light image of a neuron in acute rat brain slice. Video-rate acquisition permits patch-
clamping without the use of a separate camera. b) Fluorescence image of a cortical L2/3 pyramidal cell filled with the fluorescent dye FM 4–64. Inset:
zoom onto the 10610 mm area outlined in the image showing dendritic spines. c,d) x–y and z–y projections of a 100 mm deep stack of one quadrant
of the basal dendritic tree of a cortical L2/3 pyramidal cell filled with the voltage-sensitive dye di-2-ANEPEQ. Thin processes at 100 mm depth can be
observed easily. The axial resolution is worse than the objective’s limit because we deliberately underilluminate the back aperture. All images were
acquired with a 6060.9NA water-immersion objective and have 1006100 mm field of view.
doi:10.1371/journal.pone.0000699.g003
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e2 Gaussian) by 85 mm (slow axis FWHM flat-top) wide in air.

Careful shaping of the pump beam was essential for achieving the

low lasing threshold and high output power.

The lasing medium was a Brewster-cut Yb:KYW crystal

(464 mm, d = 1.2 mm, 10%-at., Altechna, Vilnius, Lithuania,

www.altechna.lt). Laser cavity mirrors had standard l/4 dielectric

coatings centered near 1064 nm (CASIX, Inc., Fuzhou, China,

www.casix.com); the output coupler (EKSPLA) had 5% trans-

missivity at 1030 nm. For modelocking we used a SESAM27,28

with 0.4% modulation depth at 1040 nm, 120 mJ/cm2 saturation

fluence and 1 GW/cm2 damage threshold (SAM-1040-0.7-25.4g,

BATOP GmbH, Weimar, Germany, www.batop.de). For the

correction of group velocity dispersion we used isosceles SF14

prisms (CASIX, Inc.); tip-to-tip prism separation was 43 cm.

The maximal continuous-wave multimode output power we

measured with this pumping arrangement was 1025 mW near

1037 nm, achieved by using a 6% output coupler, no SESAM or

prisms in the cavity, on-axis pumping, running the diode at higher

than nominal power (3.8 W), and by cooling the crystal below

room temperature. In the final modelocked configuration used for

imaging the pump beam was tilted off-axis to keep reflected pump

light from reentering the diode, which would destabilize it; off-axis

pumping allowed very quiet operation (Figure 2f) at the expense of

some extraction efficiency. More power was lost through

reflections at prism surfaces and at the SESAM which, in addition

to the 0.4% modulation depth, had 0.3% non-saturable losses.

Two passes on the SESAM and a 5% output coupler yielded

300 mW of quiet single-mode femtosecond output at 113 MHz

repetition rate (Figure 2c). The spectrum was centered near

1033 nm and 3.7 nm wide (Figure 2d), indicating transform-

limited sech2 pulse width of 310 fs. Such long pulses obviated the

need for compensation of spatial and temporal dispersion when

using an acousto-optic deflector for scanning.

Detailed instructions for the construction of our laser are

available from the braintool wiki at http://braintool.org/optical/

spy1/.

Acousto-optic scanning with Direct Digital Synthesis
We used a standard two-axis acousto-optic deflector (AOD) made

by Brimrose Corporation (2DS-50-30-1.06, www.brimrose.com).

This deflector uses two TeO2 crystals in slow-shear mode (620 m/

s speed of sound), has a nominal aperture of 767 mm, and comes

in a single housing conveniently pre-aligned for collinear input

beam and first-order diffracted output beam, which greatly

simplified the design and alignment of the microscope. The

displacement in space (,30 mm) of the crystals for x and y

deflection implies a small (,10%) beam runoff at the second

crystal at deflection limits, but we under-illuminated the aperture

with a ,4 mm wide beam resulting in effectively no power loss

from run-off.

Radio-frequency signals required to drive the AOD were

produced by a Direct Digital Synthesis (DDS) chip (AD9959,

Analog Devices, www.analog.com). This device provided four

output channels that could independently generate frequencies

between 0 and 250 MHz with 32-bit resolution, with 10-bit

amplitude and 14-bit phase resolution. Two of the output channels

were used to drive the AOD, one to trigger data acquisition, and

the remaining channel was used to debug scanning protocols. The

deflecting signals were amplified by RF amplifiers (Mini-Circuits

ZHL-1-2W-S, www.mini-circuits.com) which produced 1 W of

output power, resulting in the total diffraction efficiency of

approximately 21%, one half of the nominal 42%.

Frequency, amplitude or phase of the generated output waves

could be changed programmatically in less than one microsecond

(Figure 4a). Most importantly, frequency could be swept smoothly

between two presets (Figure 4b), thus allowing the injection of

a modulated diffraction pattern into the AOD. This feature

enabled two important scanning modes: first, a slower frequency

sweep that allowed fast line-based scanning [20] of full frames at

video rates; second, a faster frequency sweep was used to inject

a highly modulated diffraction pattern that deflects to different

angles at different parts of the AOD aperture, effectively lensing

the output beam [20] and allowing departure from the nominal

focal plane, i.e. 3D scanning (Figure 4c, d).

The AD9959 DDS chip we used was on an evaluation board

(AD9959/PCB, www.analog.com) with USB connectivity and

a microcontroller. While the control of scanning could be entirely

off-loaded to the microcontroller, we found this mode to be

relatively slow. We wrote custom firmware to take advantage of

a much faster data-transfer mode, which allowed us to modify the

waveform generated by the DDS chip in less than a microsecond

(Figure 4a). The firmware and the requisite device drivers are

available for download from http://neurospy.org/.

Scan control and data acquisition with an

oscilloscope
The LeCroy WaveRunner 64xi oscilloscope, running Microsoft

Windows XP, was the only computer in the imaging system. It

comes integrated into a single compact box with the data

acquisition subsystem, knob control panel and a touch-screen

display, with a variety of standard connectors (mouse, keyboard,

Ethernet, USB) provided on the side. A second monitor could be

connected to the oscilloscope to extend the total screen estate from

the 8006600 pixels provided on the built-in display. The

acquisition subsystem had a 600 MHz analog bandwidth and

the maximal sampling rate of 10 GS/s (billion samples per second)

on two channels or 5 GS/s on all four channels simultaneously. A

total of 25 MS (million samples) could be acquired in a single

sweep on two channels, or 12.5 MS on all four.

Most detectors commonly used in microscopy could be

connected directly to this oscilloscope, without additional

amplification. Notably, any input could be set to 50 V impedance,

allowing direct connection from the output of the Hamamatsu

7422-40 photomultiplier module we used for fluorescence de-

tection. At the highest sensitivity setting (2 mV/div) the oscillo-

scope could readily count individual photons, which produce

pulses of electrons a few nanoseconds long. For instance, the

25 MS of sample memory could be filled at 250 MS/s to count

photons with 80% efficiency for 100 ms at a time (Figure 5a). Data

could be acquired piecemeal in up to 10000 segments that could

be triggered at arbitrary intervals, offering great flexibility in

designing scanning protocols and simplifying the demultiplexing of

random-access scans. Photon counting significantly improved the

signal-to-noise ratio of dim fluorophores over DC current

measurement, while the DC mode could be used with bright

samples without any modifications to the hardware by software-

switching the oscilloscope input to 1 MV impedance. For

example, if the connecting cable was terminated with a 10 kV
resistor the decay constant of the DC signal from the photo-

multiplier was on the order of a microsecond, so episodes

25 seconds long could be acquired at 1 MS/s. Such cable

termination could be left in place permanently, as it did not cause

a significant impedance mismatch at 50 V.

We wrote an application framework, neurospy, which can be

run on the oscilloscope to control the scanning and data

acquisition. neurospy is available for download from the project

web site at http://neurospy.org/.

Fast Functional 3D 2P Imaging

PLoS ONE | www.plosone.org 5 August 2007 | Issue 8 | e699



Low-noise recording of fast voltage transients
The combination of point-dwelling ability, photon counting and

a low-noise source of excitation light enabled two-photon

recording of fast voltage transients using several styril dyes which

report changes in transmembrane voltage through the change in

absorption cross-section at the red spectral edge. In Figure 5b we

show an example of a signal we recorded from the apical dendrite

of a rat cortical pyramidal neuron in acute brain slice, filled

intracellularly with the voltage-sensitive dye di-2-ANEPEQ [14] as

described in ref. [16]. The neuron was patch-clamped onto the

soma and held in current clamp. Single action potentials were

induced by current injection synchronized with episodic optical

recording. Laser scan was held at a single location on the apical

dendrite throughout the recording. The shown 10 kHz optical

trace is a sum of four such recordings; the raw data can be

downloaded from the project web site. Photon shot noise was the

dominant source of noise in the optical trace: the cumulative

photon count at resting voltage was only 4500 photons per 100 ms

sample. Accurate measurement of the rate of dye bleaching was

precluded by systematic effects such as tissue movement, dye

diffusion and slow laser noise; we conservatively estimate it to be

less than 30% after one hour of continuous full-frame scanning at

the maximum excitation power available to us. Such a low rate of

photobleaching suggests that a significant improvement in

fluorescence yield could be achieved with a more powerful laser.

This method of measuring transmembrane voltage therefore holds

the promise of reaching signal-to-noise ratios comparable to those

achieved with quiet cameras and widefield illumination [15,16]

while benefiting from all the advantages of two-photon excitation:

the ability to see much deeper into tissue than with widefield

single-photon excitation (Figure 3d), as well as relative insensitivity

to tissue autofluorescence and out-of-focus labeling resulting from

the optical sectioning inherent in non-linear absorption. The

current practical limit on the noise levels with this mode of

Figure 4. Fast digital control of acousto-optic deflection enables three-dimensional scanning with no moving parts. Direct Digital Synthesis
permits a) precise control of radio-frequency signals at microsecond timescales, as well as b) accurate and exactly repeatable sweeping between
preset frequencies. The nominal aperture of the deflector we use is approximately the size of the entire trace in a,b). c) A frequency sweep makes an
acousto-optic deflector act as a lens, so the output beam can be made to converge or diverge depending on the direction of the sweep. d) The
lensing induced in this manner translates into axial displacement of the focus from the nominal focal plane of the objective. e) Large volumes can be
scanned rapidly through the use of bidirectional line sweeps. By underilluminating the back-aperture of an objective the axial point-spread function
(PSF) can be extended to match the excursion from the nominal focal plane caused by the frequency sweep, so a sweep in one direction can be made
to excite a large number of sparsely labeled neurons in a thick slab of tissue to either side of the nominal focal plane. The images show two focal
planes, displaced by 40 mm in z, of EYFP-labeled neurons in mouse olfactory bulb taken simultaneously without moving the objective.
doi:10.1371/journal.pone.0000699.g004
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recording was the maximal light intensity photomultipliers can

sustain without damage—approximately 107 photons per second.

Fluorescence lifetime imaging
The minimal sampling interval of the oscilloscope we used, 100

picoseconds, is short enough to permit accurate recording of the

timing of laser pulses, which we monitored using a fast photodiode

(Thorlabs D400FC). By measuring the delay between the onset of

a photomultiplier pulse and the preceding laser pulse, as illustrated

in Figure 6a, we were able to construct histograms of fluorescence

decay latencies (Figure 6b) while scanning a given location and so

to measure the fluorescence lifetime of the fluorophores present

within the excited volume. By repeating this measurement at each

pixel we could construct a fluorescence lifetime image, such as that

shown in Figure 6d. Fluorescence lifetime imaging could be

performed during 3D scanning. While the acquisition of one

fluorescence lifetime image takes several minutes, video-rate

imaging of fluorescence intensity could be used for guided

patching of neurons identified by their fluorescence lifetime.

Three-dimensional scanning
Fast DDS control of the radio-frequency patterns injected into the

AOD enabled three-dimensional scanning without moving the

objective. The amount of excursion from the nominal focal plane

depended on the objective used. The effective focal length of the

deflector during a frequency sweep is to first approximation given by:

F :L:~
v2

l df
dt

where v is the speed of sound in the acousto-optic material, l is the

wavelength of light used, and df / dt is the rate of frequency sweep. A

full-bandwidth sweep over the nominal aperture size of our deflector

resulted in the effective focal length limits of |F.L.|.140 mm.

We implemented a practically useful three-dimensional volume

scan pattern, depicted in Figure 4e. By sweeping between the

extremes of deflector bandwidth at a given rate df / dt different

focal planes could be scanned rapidly. A frequency sweep in

opposite directions results in displacement of the focal plane in

opposite directions. By appropriately underilluminating the back

aperture of an objective the point-spread function could be

stretched in the z direction to match the excursion from the

nominal focal plane caused by the frequency sweep. In this way

a thick slab of tissue could be scanned rapidly. For instance, with

a 40x objective a Df = 30 MHz sweep of 25 ms duration displaces

the focal plane by nearly 630 mm, so a field of view FOV =

180 mm by D = 120 mm deep could be swept at over 100 volumes

per second at the resolution limit. Similarly, smaller volumes could

be swept at kilohertz rates. Again, the practical limitation of this

scanning method was the amount of fluorescence that could be

produced and detected during the very rapid scan, which puts

severe constraints on the size of signals that can be observed and

presently limits its usefulness to the recording of relatively large

signals from well established [Ca2+] indicator dyes.

DISCUSSION
Seventeen years after its introduction [1] two-photon imaging [21]

is still too costly for most laboratories. This stems partly from the

high cost of femtosecond lasers suitable for daily use, and partly

from the rooting of the technique in traditional ‘‘eyepiece’’

microscopy—multiphoton excitation is still commonly viewed as

an add-on to a confocal microscope, making integration with

electrophysiological equipment difficult and severely limiting

possible stimulation and recording protocols to the ones that fit

within the traditional image-centric paradigm.

In this article we described a different approach, where the

entire imaging system was designed synergistically from pump to

photomultiplier, driven by the need to direct the probing beam to

precisely defined locations in space at arbitrary times. This allowed

the scarcest resource in functional imaging—the time available for

photon collection—to be maximized. Benefiting from the

convergence of several technologies, our design achieved a breadth

of capabilities essential to an electrophysiologist at a fraction of the

cost of less capable commercially packaged systems. Most

importantly, its small size and operational simplicity make the

Figure 5. Point-dwelling ability and photon counting permit optical recording of fast events with good signal-to-noise ratio. a) The measured
probability of detecting a photomultiplier pulse as a function of the oscilloscope sampling rate for a Hamamatsu 7422-40 module biased to 1000V at
2.5mV discrimination threshold. With 25 MS of sample memory and 250 MS/s sampling rate (arrow), photons can be counted for 100 ms per episode
with 80% detection probability. b) Electrical and unfiltered optical (10 kHz) traces of an action potential in a rat cortical pyramidal neuron loaded with
the potentiometric dye di-2-ANEPEQ. The traces are averages of four recordings.
doi:10.1371/journal.pone.0000699.g005
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Figure 6. Fluorescence lifetime imaging. a) The high temporal resolution of oscilloscope data acquisition enables the measurement of temporal
delay between an exciting laser pulse and a fluorescence photon. A histogram b) of relative arrival times measured in this manner can be fit to
measure the fluorescence lifetime of fluorophores at the scanned location. By performing this measurement at every pixel (or voxel) a fluorescence
lifetime image is constructed. c) Mouse hippocampal tissue loaded extracellularly with the dye FM 4–64. d) Fluorescence lifetime image clearly reveals
Thy1.2-EYFP neurons (orange) within the background staining (green). Video-rate imaging of transmitted light or of fluorescence intensity can be
used for guided patching of neurons that are first identified by their fluorescence lifetime.
doi:10.1371/journal.pone.0000699.g006
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system suitable for single-user mode of operation, which is better

suited to electrophysiological inquiry than the currently prevailing

‘‘imaging facility’’ mode.

Yb:KYW laser
Two recent advances that enabled the shrinking of our system

were the development of lasers based on Ytterbium-doped double

tungstates such as KY(WO4)2 (Yb:KYW) [22–26] and the

invention of SEmiconductor Saturable Absorbing Mirrors (SE-

SAM) [27,28] for passive modelocking of laser cavities.

The high cross-section for stimulated emission of Yb:KYW

makes it straightforward to construct a wide range of cavity

configurations without Q-switching instabilities. Unlike Titanium,

Ytterbium can be pumped by very quiet, efficient, reliable and

inexpensive InGaAs/AlGaAs laser diodes used widely in tele-

communications. The high thermal conductivity of the material

and its low rate of heating per unit of output power allow the

extraction of relatively high average powers without active cooling

of the medium. In our system we used a single 3.5 W pump diode

to get over 300 mW of very quiet single-mode femtosecond

output—using only 8 W of electrical power! Diodes of much

higher brightness are now commercially available, promising even

higher output powers. Since the theoretical limits on extraction

efficiency from Ytterbium-based materials can be over 90%, it is

possible in principle to get over 10 W of average power from

a laser as simple as ours [29]. With a reduced pulse repetition rate

such a laser could reach imaging depths comparable to those

achieved with a regenerative amplifier [30], perhaps even optical

histology [31].

SESAM [27,28] is a thin sliver of semiconductor, measuring

a few millimeters on a side, glued onto a heatsink. When used in

place of one of the mirrors inside a laser cavity it makes the cavity

favor the propagation of femtosecond pulses over continuous light

by absorbing photons less when their intensity is high. This

standalone mirror does not connect to any external electronics and

is therefore far simpler to deploy than the acousto-optic

modulators still widely used in many broadly-tunable Ti:sapphire

lasers; the pulsing can be self-starting and more stable than in

other Ti:sapphire lasers modelocked through Kerr-lensing effects.

Even more important for our design goals, the wide range of

available SESAM parameters allowed us to choose from an

equally wide range of pulse widths and repetition rates to fit within

the limitations of the rest of the imaging system, which is difficult

or impossible with standard Ti:sapphire lasers. We used a total of

0.8% of modulation depth, which resulted in .310 fs pulses.

Much shorter pulses are achievable with greater modulation depth

[22] with the theoretical limit of Ytterbium well under 20 fs and

the practical record currently at 47 fs [32]. We were not able to

achieve stable modelocking with a still lower modulation depth,

indicating that it may be difficult to produce slightly longer pulses

using this method. Much longer pulses could be produced by

removing the prisms and operating the laser in picosecond mode.

Our laser resonator was similar to the ones commonly used in

the construction of diode-pumped Ytterbium-based femtosecond

lasers [22–26,29] with one important difference: the modelocking

device was placed in the same arm as the prisms that correct group

velocity dispersion. This had several practical advantages for our

application. It permitted the use of a longer-focus mirror M1 on

the output side of the cavity (Figure 2a), and therefore a wider

output beam, which eliminated the need for an external beam

expander. At the same time the beam width and the divergence

through the prisms could be kept low, allowing lower losses and

a shorter inter-prism separation, therefore a shorter cavity with

higher maximal pulse repetition rate. The mismatch between the

focal lengths of mirrors M1 and M2 made the size and the location

of the beam waist relatively insensitive to the length of the output

arm, allowing us to change the pulse repetition rate over a wide

range by simply moving the output coupler. Furthermore, two

passes over the SESAM effectively doubled the modulation depth

to a level sufficient for stable modelocking while the damage

threshold stayed the same, which allowed the use of a SESAM

with the highest damage threshold commercially available.

Moreover, displacing the SESAM from the focus of the focusing

cavity segment M3-M4 enables continuous adjustment of the

incident power density, which makes it possible to increase pump

power in the future without requiring a redesign of the rest of the

cavity to avoid damage.

Lasers based on materials other than Ti:sapphire have been

applied to two-photon imaging before: for example Cr:LiSAF at

860nm and Nd:YVO4 at 1064 nm [33,34]. For various reasons

these types of lasers failed to gain wider acceptance in biological

imaging. In the case of Cr:LiSAF this was largely due to the

material’s limited maximal output power, and to competition with

the already established Ti:sapphire product lines that covered the

same spectral range. Neodymium-based lasers, on the other hand,

lase at wavelengths too long to excite GFP, and their tuning range

is narrow. In contrast, Yb:KYW permits the extraction of

relatively high powers from simple cavities, and its gain bandwidth

ranges from 920nm to almost 1100nm, a region where many

fluorophores of interest to functional imagers become usable but

where Ti:sapphire starts to require very powerful, inefficient and

expensive pumping. Moreover, highly efficient [35] and in-

expensive continuous-wave Ytterbium lasers can be used to pump

Cr4+:forsterite and Cr4+:YAG, thus enabling access to the largely

unexplored 120021500 nm wavelength range. Ytterbium there-

fore seems poised to end Titanium’s decades-long dominance over

biological multiphoton imaging.

Acousto-optic scanning with Direct Digital Synthesis
Acousto-optic deflection (AOD) has many uses in optoelectronics

and telecommunications, so compact and reliable deflectors are

now commercially available in many configurations. The main

impediment to their use in biological imaging with nonlinear

excitation has been the spatial and temporal spread of femtosec-

ond pulses upon passage through these highly dispersive media.

This was exacerbated by the competition between laser manu-

facturers for shorter pulse durations, which led to the broad

spectra of commonly used lasers, as dictated by the Heisenberg

uncertainty principle. Various solutions to these problems have

been found, notably the correction schemes for spatial dispersion

using prisms [36,37] and acousto-optic modulators [38,39], and

the precompensation of temporal spread with pre-chirping devices

[36,37,39,40]. One group [41] eschewed most corrections by

restricting the available spectral bandwidth in a manually tunable

Ti:sapphire laser. We minimized these problems by moving to

longer wavelengths, where the temporal dispersion in TeO2 is

nearly three times smaller than at 800 nm, and by designing the

laser to produce pulses long enough to keep the resolution limit

from spatial dispersion comparable to the time-bandwidth product

of the deflector.

Another significant technological advance used in the design of

our apparatus was the development of a highly versatile Direct

Digital Synthesis (DDS) device. Unlike voltage-controlled oscilla-

tors traditionally used to drive AODs, the frequency accuracy of

a DDS device is exceptional, as good as that of its clock source. In

practice this translates into perfect repositioning accuracy of

random access. The ability to perform digitally controlled

frequency sweeps translates into fast full-frame scanning, as well
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as 3D random access capability. Further, DDS output can be

digitally modulated in a variety of ways, or changed entirely

through computer control in less than a microsecond. This may

enable further improvement of deconvolution-based super-resolu-

tion techniques [42,43] by allowing modulation of the point-

spread function during imaging.

The transit time of the deflecting acoustic waves through the

TeO2 crystals is on the order of ten microseconds, dictated by the

size of the objective’s back-aperture. This latency is the limiting

factor on how fast the illumination could be switched on and off, as

the DDS chip operates at timescales an order of magnitude faster.

No light reaches the sample unless acoustic energy is being

generated, so photodamage does not occur except during

acquisition. Unlike mechanical scanners, this method can

eliminate the need for shutters, ‘‘fly-back blanking’’ or similar

methods for keeping high-power excitation light from reaching the

tissue. Moreover, the diffraction efficiency of acousto-optic

deflectors depends monotonically on the RF power injected, so

DDS control allows a precise control the amount of power

delivered to every scanned pixel.

Three-dimensional scanning
Frequency-modulation of the acoustic waves injected into the

deflectors results in cylindrical lensing, which translates into axial

displacement of the focal spot, as well as a smooth lateral

displacement of the focus over time. These two phenomena cannot

be separated. The latter effect has been used for scanning lines

much faster than possible with a sequential pixel-by-pixel scan

[20]; we used it to achieve fast line-based full-frame scanning. The

lensing effect has recently been used to implement a three-

dimensional scanning system using four acousto-optic deflectors

[44]. Our method is much simpler to implement in comparison,

and requires a laser ten to fifty times less powerful to achieve the

same fluorescence intensity with two-photon excitation.

It is important to note several idiosyncrasies of three-di-

mensional scanning when using our method, since these limit

the possible scanning patterns. First, unlike random access in the

nominal focal plane, where a constant-frequency wave is injected

into the deflector [41], a frequency-modulated pattern is not static

but rather moves at the speed of sound v, resulting in constant

motion of the focal spot in the x-y plane. Therefore, if single-voxel

3D random access is desired, the scan must be cycled by

repeatedly injecting the same frequency-modulated pattern at

the interval equal to the objective back aperture size divided by the

speed of sound v. Second, as the amount of excursion from the

nominal focal plane is increased the lateral field of view shrinks,

down to a point [44] at the extremes where the frequency is swept

across the entire bandwidth of the deflector in the time it takes to

fill the back aperture of the objective. Third, the converging or

diverging beams suffer a small additional spherical aberration

upon passage through infinity-corrected objectives.

Scan control and data acquisition with an

oscilloscope
Modern oscilloscopes have enough computing power to eliminate

the need for a dedicated microscope controller and data

acquisition system. Since they are aimed at a large market, they

are a far less expensive and more versatile solution to novel

imaging strategies than the design of a dedicated microscope

controller.

In contrast to the requirements of digitizing electrophysiological

measurements, where slower sampling at resolutions of more than

eight bits is desirable, the physics of imaging fast processes typically

constrains the amount of information in any given sample to far

fewer than the eight bits available. Greater bit depths for sensitive

measurements are easily achieved through shrewd use of the very

high temporal resolution and the long sample memories now

available. For example, by counting photons using photomultiplier

tubes or avalanche photodiodes the ultimate bit-depth of optical

measurements is limited only by the amount of time available for

signal integration. With scanned illumination, therefore, the rate-

limiting step is the shot noise or the photodamage, not the

resolution of the data acquisition system. Fluorescence lifetime

imaging provides a good example of how the superior temporal

resolution of an oscilloscope can be used to render sample

resolution irrelevant: the lifetime measurement takes only a single

bit from each sample to infer photon arrival times and form the

fluorescence decay histogram.

Fluorescence lifetime imaging is a powerful emerging technique

that eliminates many systematic uncertainties inherent in intensity

or color measurement (light source noise, bleaching, blinking,

vibration, wavelength-dependent tissue absorption, etc.), and is

particularly useful in resolving fluorophores with overlapping

spectra, for instance in FRET measurements [5]. The method we

use for fluorescence lifetime imaging is similar to Time-Correlated

Single-Photon Counting (TPSPC) [45] but it is performed without

any additional hardware. The advantages of our scheme over

a dedicated TPSPC card are much lower cost, no need for system

integration, and no dead time for photon detection. Moreover,

since the time correlation measurement is done in software our

technique can in principle be used with any photomultiplier no

matter what its response function, as long as some information

about photon arrival times can be extracted from the response.

Future improvements
The design of our imaging apparatus can be adapted in many

ways to the diverse needs of particular experimental circum-

stances. Laser power can be increased [29] to speed up access

deeper into scattering tissue. Wavelength, repetition rate and pulse

width can be adapted to a wider variety of functionally active

fluorophores, as well as to a different type of deflector. The beam

can be made wider to improve axial resolution with objectives of

high numerical aperture, at the expense of increased shot noise of

fast functional measurements resulting from the smaller excited

volume.

A larger AOD can be used to get more resolvable points, and

therefore a larger diffraction-limited field of view, minding the

increased repositioning time. An acousto-optic modulator [38] or,

simpler, a custom-cut prism [36] can be inserted diagonally across

the input of the AOD to correct for all or most of the spatial

dispersion, thus permitting the use of shorter pulses with higher

peak power for a given average laser power, minding the relatively

higher photodamage [9,10].

To further improve the signal-to-noise ratio when recording fast

voltage transients it is essential to develop detectors that can

sustain higher light intensities with low readout noise. Photo-

multipliers at high gains used for photon counting are approaching

the physical limits of materials. Several ways around this limitation

exist: dividing light among several detectors, signal amplification

from lower gains with low-noise high-bandwidth solid-state

amplifiers, or the use of fast CCD cameras as non-imaging photon

counters. Of course, a far greater improvement could come from

the invention of practical dyes or fluorescent proteins that give

larger signals [18,19,46].

The bandwidth and the sampling rate of the oscilloscope we

used are already well beyond the needs of biological imaging, so an

increase in either would be unlikely to open access to more
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neuroscientific questions. Most physiological observation involves

episodic recording, however, so longer sample memories would

provide greater flexibility in designing stimulation protocols. When

selecting an oscilloscope it is therefore prudent to select one with

a lower analog bandwidth and the maximal available length of

sample memory.

Finally, the active components of the acousto-optic scanning

subsystem could in principle be radically miniaturized. Combined

with novel objective designs [47,48,49] and the ability to

mechanically decouple the scanner from the laser with a hollow-

core optical fiber [50], this could pave the way for a head-mounted

scanner enabling microsecond three-dimensional random access in

awake, behaving subjects.

METHODS AND MATERIALS
All procedures were carried out in accordance with animal

protocols approved by the Salk Institute. Brain slices were

prepared from Long-Evans rats and Thy1.2-EYFP mice following

standard procedures. Animals were anesthetized with isoflurane

and decapitated. Brain was swiftly extracted and cut into 300–

350 mm thick section in ice-cold sucrose-based solution (in mM:

sucrose 204, KCl 2.5, NaH2PO4 1.25, NaHCO3 28, CaCl2 0.5,

MgCl2 7, dextrose 7). Slices were transferred to standard ACSF (in

mM: NaCl 130, KCl 2.5, NaH2PO4 1.25, NaHCO3 25, dextrose

10) and kept at 34uC until use.

Neurons were patch-clamped using an Axon 700B amplifier

and pClamp software. Electrodes of 2–4 MV resistance were filled

with a K-methylsulfate-based intracellular solution (in mM:

KMeSO4 133, NaCl 4, KHCO3, ATP-Mg 4, GTP-Na 0.38).

Water-soluble voltage-sensitive dye di-2-ANEPEQ [14] (Molecu-

lar Probes) was added to the intracellular solution in concentra-

tions ranging from 5–100 mM. The tip of the pipette was filled

with dye-free solution to minimize extracellular staining during

approach [16].

The optical signal in Figure 5 was recorded through a 580 nm

long-pass filter. No filters were used in Figure 6.
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