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The relationship between neuronal acuity and behavioral performance was assessed in the barn owl (Tyto alba), a nocturnal
raptor renowned for its ability to localize sounds and for the topographic representation of auditory space found in the
midbrain. We measured discrimination of sound-source separation using a newly developed procedure involving the
habituation and recovery of the pupillary dilation response. The smallest discriminable change of source location was found to
be about two times finer in azimuth than in elevation. Recordings from neurons in its midbrain space map revealed that their
spatial tuning, like the spatial discrimination behavior, was also better in azimuth than in elevation by a factor of about two.
Because the PDR behavioral assay is mediated by the same circuitry whether discrimination is assessed in azimuth or in
elevation, this difference in vertical and horizontal acuity is likely to reflect a true difference in sensory resolution, without
additional confounding effects of differences in motor performance in the two dimensions. Our results, therefore, are
consistent with the hypothesis that the acuity of the midbrain space map determines auditory spatial discrimination.
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INTRODUCTION
The ability to discriminate between stimuli is hypothesized to

depend on the reliability of the change in activity of individual

sensory neurons (e.g., [1–5]. Better discrimination is afforded by

neurons whose firing rates change dramatically relative to the

variability in the firing evoked by repetition of identical stimuli. For

instance, a study of visual motion showed that individual monkeys

with, on average, more sensitive and consistent neurons in the

midtemporal cortical area (MT) were better able to discriminate

changes in the direction of motion [6], strengthening the case for the

involvement of area MT in motion discrimination.

An opportunity to further test the hypothesis is found in the

auditory system of the barn owl (Tyto alba), a nocturnal bird-of-prey,

renowned for its ability to localize sounds. The original survey of

neurons of the auditory space-map in the external nucleus of the

inferior colliculus (ICx; [7,8]) demonstrated that the spatial receptive

fields (SRFs) tended to be elongated vertically. The hypothesis-that

better neuronal discrimination determines better behavioral perfor-

mance-would predict that behavioral discrimination would be worse

vertically than horizontally. Furthermore, if the space map was

directly involved in auditory spatial discrimination, the difference in

azimuth vs. elevation behavioral performance would be proportional

to the difference in neuronal acuity of the space map neurons.

To test this hypothesis, we measured the minimum audible angle

(MAA), which quantifies the abilities of owls to detect changes of

sound source location in azimuth and elevation. The method of

estimating the MAA is based on the pupillary dilation response

(PDR). In the owl, the pupil dilates upon presentation of a sound and

habituates with repetition of the same sound from the same location.

The PDR recovers, however, if the sound source’s location is

perceptibly changed. The magnitude of the recovered PDR is

proportional to the angular displacement of the source, making the

PDR similar to a psychophysical rating task. Since pupillary dilation

is mediated by the same motor circuits regardless of whether the

source is displaced vertically or horizontally, differences in

behavioral performance should only reflect differences in sensory

resolution. Motor performance would be of concern, by contrast, in

a gaze-directing task [9], where the motor circuitry and musculature

would differ for vertical and horizontal movements.

Previously [1], we had found that the latency of the PDR was of

the order of 19 ms, suggesting that the dilation response was too fast

to be mediated by the forebrain, where response latencies of auditory

neurons approximate 21 ms [10]. This fast response is probably

mediated by the midbrain, where auditory neurons we sampled had

a mean response time of 12.3 ms [11]. Thus, a promising location to

examine the relationship between behavior and neuronal acuity is

the ICx, where the space map is first constructed [12–15].

Below, we demonstrate that the vertical and horizontal MAAs

differ by a ratio of about 2. We then show that azimuthal

discrimination of ICx neurons is finer than elevation discrimina-

tion by a ratio of about 2, and that comparisons of the spatial

resolution abilities of ICx neurons–assessed by incorporating

magnitude as well as variance of firing rate changes in azimuth

and elevation–yield a similar ratio. Just as studies based on lesions

and microstimulation have implicated the ICx and its efferent

target, the optic tectum, in acoustically-guided orienting behavior

[16], the present study suggests its role in spatial discrimination.

RESULTS

Behavioral acuity
Spatial discrimination in azimuth and elevation was measured

using habituation and recovery of the PDR in 3 owls. The
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magnitude of pupillary dilation evoked by a noise burst from the

habituating location (Fig. 1) was compared to that of responses

elicited by the same noise burst presented from a different location,

and converted into the discrimination metric standard separation (D),

per Equation 1. The computed D was plotted against the distance

between test and habituating loci (Dx) to generate psychometric

functions (Fig. 2). The psychometric functions for elevation for

individual subjects are well to the right of the functions for

azimuth, indicating that vertical displacements are harder to

discriminate than horizontal ones. Using an arbitrary discrimina-

tion threshold of D = 0.8, we observed that the azimuthal MAA

was 3u in azimuth and 7.5u (2 birds) to 9u (1 bird) in elevation.

Thus the ratio between discrimination in elevation and in

azimuth is about 2.5 (7.5/3), when the respective MAAs are

compared. In addition, by interpolating between measured

separations (Fig. 2; dashed red and blue lines), we could determine

the angular separation at which a given value of D is attained in

azimuth and in elevation. At all points along the interpolated

Figure 1. Measurement of spatial discrimination using the PDR. (A) A pupillometer, consisting of an IR detector and emitter (marked), is placed
close to the cornea of the owl. The detector is placed about 6 mm from the eye, while the emitter is about 20 mm away. The owl is held immobile in
a stereotaxic apparatus, allowing us to position the owl, repeatedly, in the same orientation vis-à-vis the pupillometer as well as the external sound
sources. (B) Sound sources are placed on an array of two aluminum arms at right angles to each other, curved such that the center of curvature is
a spot between the two ears of the owl. Speakers separated along the horizon of the owl were used to assess discrimination in azimuth (red), and
speakers separated along the midline of the owl were used to assess discrimination in elevation (blue). The array is positioned such that the
intersection of the arms is directly in front of the bird (azimuth 0u; elevation 0u). Each degree of angular displacement is marked on the arms of the
array, and speakers can be moved to change angular separation. The subject is monitored using the IR camera, indicated here, during the
experimental run. As far as possible, wiring is located so that it is behind the speaker array.
doi:10.1371/journal.pone.0000675.g001
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Figure 2. Behavioral discrimination, as measured by the PDR. Symbols and dotted lines represent discrimination values for each subject. By noting
the points of intersection of each of the dashed lines with the discrimination functions, we can extract a ratio of elevation to azimuthal discrimination
for a given value of D.
doi:10.1371/journal.pone.0000675.g002
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discrimination curves, we observe discrimination ratios (elevation/

azimuth) of 1.9 to 2.2.

Neuronal space tuning
We recorded from isolated space-specific neurons to determine

whether the height/width ratios of neuronal tuning functions can

explain the ratios of behavioral MAAs. Our conclusions are based

on recordings from 62 neurons whose SRFs were characterized

completely in virtual auditory space. Examples of recorded SRFs

are shown in Fig. 3. The SRFs of most sampled units (54/62) were

relatively elongated in elevation, in agreement with previous

findings [7,8]. A few neurons (3/62) with a flattened SRF were

also observed, which were tuned to elevations more than 20u
below eye level (e.g., Fig. 3d). In addition, several neurons were

equally well tuned in azimuth and elevation (not shown).

After charting the entire SRF in 5u increments, we examined

the responses in 1u increments along vertical and horizontal

transects through the neuron’s best area (blue, red lines Fig. 4a).

Sounds were presented 20 times from each location along the

transect in order to calculate the mean and variance of the firing

rate. Such data were plotted against angular separation to yield

one-dimensional response profiles, which are shown in Fig. 4b.

Note that the azimuthal response profile (red line and error bars) is

much narrower than that in elevation (blue line and error bars).

We used these neurophysiological data to assess neuronal acuity in

several ways that allow us to compare neuronal and behavioral

acuity directly.

Neuronal spatial acuity
A common way to estimate the spatial tuning of a neuron is to

measure the width of its SRF at half maximal firing rate [7]. The

average half-widths for tuning in azimuth and elevation for our

sample of neurons were 19.965.7u in azimuth and 40.8618.8u in

elevation. Figure 5 shows the half-height breadth in elevation plotted

against that in azimuth. The regression line shows that the height/

width ratio is about 2.05, in good agreement with behavior.

Although the close agreement between the height/width ratios

of behavioral acuity and neuronal acuity suggests a relationship

between neuronal and behavioral sensitivity, it could be argued

that such agreement is coincidental, since tuning curve half-width

is an arbitrary measure, and its value depends on the chosen

response rate criterion. Furthermore, analysis based on half-widths

does not allow a direct comparison with the psychometric

function. We therefore applied signal detection theory, which

considers not only the average response rates of the neurons, but

also their variance [2,4,17,18].

A change of stimulus position can occur anywhere in space. A

given neuron’s contribution to the detection of that change across

any arbitrary region can be estimated by computing the average of

standard separations (Dneuron) values across its SRF. The Dneuron,

calculated from neuronal responses to pairs of locations separated

by 5u, is plotted against the center point of separation of each pair

of locations in Fig. 4c (heavy lines w/symbols). Red circles

represent the discrimination values for azimuthal separation, while

blue triangles represent those for elevation. The azimuthal and
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Figure 3. SRFs of four space-specific neurons. Black represents the spontaneous firing rate. Colors represent the firing rate, increasing from blue
through to red. Note that for three of the neurons, the SRF is elongated in elevation. The neuron in (d) is atypical, in that the receptive field is more
elongated in azimuth than it is in elevation. Such neurons were always tuned to low elevations.
doi:10.1371/journal.pone.0000675.g003
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elevation tuning functions are shown in light color for reference.

Not surprisingly, discrimination was maximal where the change of

firing rate is maximal, i.e., where the slopes of the response

function were steepest. Note also that discrimination was higher

towards the left of the peak in azimuth, where the slope of the

tuning function was steeper for this neuron (Fig. 4b). Closer to the

peak of the tuning function and to the base on either side, firing

rates changed much more slowly, and the discrimination values

were correspondingly lower.

It is also clear in Fig. 4c that discrimination performance in

elevation was worse than that in azimuth. Here too, discrimination

values were higher where the change in firing rate was maximal.

However, at either foot, there was one location where discriminability

was high, because variance at one location was very low. Such

outlying spikes in discriminability were, however, not a consistent

pattern. Inclusion or exclusion of these data produced no statistically

significant change in the results, and were included in all our analyses.

In Fig. 6a, all of the Dneuron values are plotted against the

separations (Dx) for which Dneuron values were computed for the

neuron shown in Fig. 4 (unit 719HL). Thus, each symbol in Fig. 4c

is represented by a symbol in Fig. 6a at 5u along the abscissa (red

pluses: azimuth; blue dots: elevation). As angular separation

increases, discrimination increases, because of a greater change in

firing rate. However, for each separation, there will be many

source pairs where discrimination will continue to be low, such as

those that symmetrically straddle the peak. As source separation

increases to more than half the width of the tuning function,

discrimination values begin to fall, at angular separations far larger

than the MAA. This fall in neuronal discrimination is expected,
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Figure 4. Azimuthal and elevation tuning and discrimination
functions for a single space-specific neuron. (a) The SRF of the cell
is shown; lighter shades correspond to higher response rates. The red
and blue lines represent the locations used to estimate the azimuthal
and elevational response functions, respectively. (b) Response profiles
in azimuth (red) and elevation (blue) show that tuning in azimuth is
finer than tuning in elevation. (c) Discrimination functions for a 5u
separation were computed using data shown in (b), as per Eqn. 1.
Response profiles for both azimuth and elevation are shown for
reference. Note that maximal discrimination, especially as seen for
azimuth, was achieved where rate of change of firing rate was maximal.
doi:10.1371/journal.pone.0000675.g004
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Figure 5. Azimuthal and elevation tuning in space specific neurons.
The width at half the maximal firing response for each neuron in
azimuth is plotted against its tuning in elevation. Neurons better tuned
in elevation also tend to be better tuned in azimuth. The slope of the
best fit line (dotted line) is 2.08, confirming that the width of elevation
tuning is about twice that in azimuth.
doi:10.1371/journal.pone.0000675.g005
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because locations at the foot of the tuning function on one side will

now be compared to locations beyond the peak and the slope on

the other side, and the available differences in firing rates will

continue to decline. At smaller angular separations, where all

available spatial separations are confined to one half of the

receptive field, azimuthal discrimination exceeds that in elevation.

However, when separations become very large, elevation discrim-

ination continues to increase due to the larger distance between

the foot and peak of the tuning function, while azimuthal

discrimination has already fallen back to low values.

If we average the individual neurons’ average Dneuron values, we

can estimate the spatial discrimination afforded by our entire

sample of neurons. Figure 6b plots these averaged Dneuron values

against Dx. Each dot represents an individual neuron’s average

Dneuron, for each spatial separation, and the lines represent means of

the entire population of D values (The dots for azimuth and

elevation are slightly offset horizontally for visibility). Note that

azimuthal discrimination, represented by red dots, is significantly

higher at all spatial separations than elevation discrimination

(black dots). The two populations are significantly different at

spatial separations of up to 20u (t-test, p,0.005).

Figure 6b, which depicts neurometric functions, shows the reliability

with which our sample of neurons can signal changes in source

position. Unlike the plots of tuning curve widths, the neurometric is

directly comparable to the psychometric function shown earlier

(Fig. 2). The psychometric functions from Fig. 2 are superimposed on

the neurometric functions in Fig. 6c, and it is clear that the match is

close for both azimuth and elevation. Not surprisingly, the ratio

between vertical and horizontal discrimination is about 2 for both

neurons and behavior at each of the Dx values tested, supporting the

hypothesis that behavioral discrimination performance is dependent

on neuronal reliability in the space map.

Performance of a habituation-based model
To mechanistically link the neuronal responses to our behavioral

paradigm, we had earlier developed a habituation-based model

that replicated the observed behavioral and neuronal discrimina-

tion performances in azimuth [18]. Here, we evaluate the

performance of this model in predicting spatial discrimination in

azimuth and elevation.

In this model, neurons of the space map, which do not

habituate, were assumed to project topographically to a layer of

habituating neurons, the summed activity of which was assumed to

control the state of dilation of the pupil (Fig. 7; a–c). The first

presentation of a stimulus evokes a focus of activity on the

habituating layer activating pupillary dilation (Fig. 7a; upper layer

in Fig. 7b). However, if the stimulus is repeated, habituation occurs

[19], and this habituation is restricted to each neuron ([20];

Fig. 7c). We assumed that the decrease in firing rate was

dependent on the initial firing rate of the SSN, as well as the
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such as those represented by symbols in (a). Note that azimuthal
discrimination is roughly double that for elevation. (c) Comparison
between behavioral data from individual birds (black) and neuronal
discrimination. Data for azimuthal neuronal discrimination for separa-
tions ,5u are drawn from a previous study [18]. Neuronal data shown
by dots in (b) is shown as fine lines, in red for azimuth and in blue for
elevation. Heavy line is the mean discrimination across all neurons.
(Data for azimuthal neuronal discrimination for separations ,5u are
drawn from a previous study [18].) Note that neuronal discrimination
falls somewhere close to the average neuronal discrimination. Neuronal
data are pooled from our entire neuronal population.
doi:10.1371/journal.pone.0000675.g006

Behavioral and Neuronal Acuity

PLoS ONE | www.plosone.org 5 August 2007 | Issue 8 | e675



variance of this input [21]. Thus, neurons that receive higher

initial firing rates from the SSN layer are habituated to a greater

extent. Also, habituating-layer neurons that receive inputs from

space-map neurons with the lowest variance show greatest

habituation. Conversely, neurons whose input neurons vary greatly

in their responses from trial to trial, cannot effectively habituate

because each change in firing rate acts as a ‘dishabituating’ stimulus

[22]. Practically, this can be achieved by including a computational

step where the output from the space map is attenuated by a divisive

process, and the magnitude of attenuation is proportional to the

variance. Given this architecture, if the position of the source is

changed, the neurons in the habituating layer receive a firing rate

different from the rate to which they had habituated, re-activating

their ability to respond (Fig. 7c).

When the sampled neuronal responses are used as inputs, the

model yields discrimination results that closely approximate

behavior (Fig. 8), as well as the azimuth to elevation ratio that

matches that seen in behavior. At behaviorally relevant angular

separations–less than 15u–the elevation/azimuth discrimination

ratio seen using this computational method is 2.

DISCUSSION
We demonstrated above that in the barn owl, spatial discrimina-

tion in azimuth exceeds that in elevation by a factor of about two.

Because the PDR circuitry–which controls behavioral output–is

the same whether the discrimination is made along the vertical or

horizontal axes, this difference in acuity is likely to reflect the

reliability of only the sensory apparatus and not a combination of

the reliability in the motor and sensory segments. Indeed, we

found that the RFs of neurons in the auditory space map are about

twice as tall as they are wide. This ratio of neuronal acuity in

elevation and azimuth was also observed with discrimination

metrics derived from signal detection theory, and analysis with

a computational habituation model (Table I). Studies based on
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lesions [16,23] as well as microstimulation [24] have implicated

the space map in auditory orientation. The results of the present

study suggest that azimuth and elevation acuity of the space map

are faithfully reflected in spatial discrimination of the barn owl,

suggesting an additional involvement of the space map in auditory

spatial discrimination.

Behavioral acuity
Our measures of auditory spatial discrimination revealed a clear

difference between performance in azimuth and in elevation.

Spatial hearing in the barn owl has previously been analyzed by

evaluating the owl’s ability to orient toward the source. Konishi

[25] first measured spatial acuity by the pattern of talon marks

made by an owl striking a concealed sound source and reported

that acuity in elevation (7u) was not significantly different from that

in azimuth (5u). Knudsen et al. [9] measured localization in a head-

pointing task and showed that when the target was within the

frontal 10u of azimuth or elevation, errors in azimuth and

elevation were indistinguishable from each other. At eccentricities

greater than 50u elevational localization accuracy was significantly

worse than azimuthal accuracy. However, Knudsen and collea-

gues also point out that the owls were reluctant to localize sounds

at extreme elevations which may have contributed to a loss of

accuracy in elevation. More recently, Poganiatz and colleagues

[26,27], using a head pointing task in VAS, demonstrated that

while localization of eccentric sources in elevation is more error-

prone than in azimuth, localization accuracy of centrally located

sources was roughly equal in azimuth and elevation. The results

from this VAS study are confounded by the fact that the birds

were not explicitly trained to aim their heads at the target but only

to make head turns toward the half of the frontal hemisphere (left,

right, upper, lower) in which the targets were located.

Thus, our study of spatial discrimination showed a robust

difference between vertical and horizontal acuity, whereas those

based on spatial orientation have produced more equivocal results.

While the methodological differences cannot be ignored, this

difference may also reflect a difference in the way that the space

map is used for the two tasks.

Neuronal space tuning
That SSNs in the barn owl midbrain are better tuned in azimuth

than in elevation was first reported by Knudsen and Konishi [7,8].

While all subsequent neurophysiological examinations have

confirmed this result, the impact of such a discrepancy on

behavior has not been discussed or described. The present results

show that the difference in horizontal and vertical acuity is

consistent with the aspect ratio of the RFs of the SSNs.

The shape of spatial RFs is related to the distribution of the

binaural cues across space and the sharpness and variance of

neuronal tuning to the binaural cues. In the barn owl, interaural

differences in timing and level (ITD and ILD), which are

subserved by anatomically parallel and physiologically indepen-

dent pathways, serve as cues for localization [13,28–31].

Measurements of the filtering properties of the barn owl’s ears

[32] show that ITD varies as a function of azimuth, reaching

maximal values of about 200 ms, and remains relatively constant

across frequencies. ILD, like ITD, varies with azimuth at low

frequencies, but at frequencies above 4 kHz, the axis along which

ILD varies becomes increasingly vertical and non-monotonic

One possible reason for the vertical elongation might be that the

cross-correlation-like process, with which ITD is thought to be

computed [33], provides for sharper tuning curves and less error

than the inhibitory, subtractive process thought to be involved in

the computation of ILD [29,34,35]. On the other hand, if we

assume that neuronal jitter is comparable in the ITD and ILD

pathways, receptive-field shapes would be determined by the

steepness of the ITD and ILD gradients across space [14,15,36].

The latter predicts that the aspect ratio of RFs as well as that of

perceptual acuity would depend in a predictable fashion on the

frequency and location at which acuity is estimated.

Neuronal Codes and Perceptual Acuity
The discrepancy in the accuracy with which owls could aim their

heads at an auditory target and the half-height width of their

spatial RFs had led to assertions that owls gathered information

from numerous coarsely-tuned neurons to achieve the high

behavioral accuracy [37,38]. More recent studies of the IC of

guinea pigs and gerbils showed that such coarse coding processes

need not be invoked [3,4]. The change of firing rates evoked in the

IC by a change in ITD was reliable enough to afford resolution in

ITD discrimination observed in humans, if the guinea pig or gerbil

neurons used a ‘‘lower-envelope’’ strategy [39] wherein the best

neurons are relied upon. McAlpine and colleagues added that

small headed mammals may depend on the slope of ITD functions

instead of the peaks to localize sound. This idea also explained why

the peaks of ITD tuning functions were often at ITD values

beyond the physiological range of these mammals–putting the

peaks at these large ITDs places the slope at the midline, where

perceptual acuity is assumed to be highest [40,41].

The apparent dichotomy between small-headed mammals, which

are thought to use a slope code, and owls, which are argued to use

a peak-based, ‘‘local code’’ (i.e., a space map) for sound localization,

was recently postulated by [42]. However, this may be more

a dichotomy in the tasks used to measure sound localization. If the

task is one of discrimination, where the subject must report whether

(or by how much) two sounds differ in their location, then it is

reasonable to hypothesize the involvement of a slope code, and to

predict that slopes should fall where behavioral acuity is highest. If,

however, the task is one of orientation, where subjects must point

their heads (or eyes) at the source, it seems simplest to invoke a space

map where the focus of neural activity can be used to direct a saccade

[43]. The owl’s space map can function, not just in the latter mode as

an auditory display, but also as a slope code. Because the cells of the

space map have sharp RFs across all of frontal space, there will

inevitably be neurons that dramatically change their firing rates

when a source is moved from one location to another in

a discrimination task. These are the cells along skirts of a neural

image, and they form the basis of a slope code.

Our analysis postulates that the ability of the owl to discriminate

changes in spatial location is dependent on the variance that has

accumulated in the sensory pathways up to the ICx. However, we

do not have an independent estimate of the contributions of motor

error on the behavioral response. A recent analysis of tracking of

Table 1. Behavioral and neuronal discrimination ratios.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Discrimination Azimuth(u) Elevation(u) Ratio (El./Az.)

Behavioral discrimination (D = 1.0) 3.5 8.4 2.4

Behavioral discrimination (D = 1.8) 6.0 12.0 2.0

RF tuning widths 20.0 41.0 2.1

Habituation model (D = 2.0) 5.7 12.4 2.4

Behavioral discrimination was assessed at a resolution of 1.5u, and neuronal
discrimination was assessed at a resolution of 5u. Neuronal ratios values shown
below were obtained by noting the angular separations which corresponded to
arbitrarily selected discrimination values.
doi:10.1371/journal.pone.0000675.t001..
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visual targets in primates [44] suggests that in the visual system at

least, errors in sensory estimates of stimulus parameters are the

main contributors to behavioral output, and that contributions

from the motor system are less obvious. The fact that degradation

in neuronal sensitivity in the owl (elevation vs. azimuth) causes

a proportional degradation in behavior suggests that the variances

of the motor system do not influence behavioral predictions of the

habituation-based model.

MATERIALS AND METHODS

Behavior
Spatial discrimination behavior was measured using a discrimination

assay based on the habituation of the acoustically evoked pupillary

dilation response, details of which are available elsewhere [1]. The

PDR was measured with an infrared pupillometer whose output

voltage was plotted as a function of time, aligned with the onset of the

stimulus. The magnitude of a PDR was defined as the area under

this curve over the 2 s interval following stimulus onset. We

compared the magnitudes of the PDR elicited by habituating and

test stimuli using the discrimination metric standard separation (D) [45]:

D~#(mx�mxzDx)=(%sx A sxzDx)# ð1Þ

The quantities mx and mx+Dx refer to the mean magnitudes of PDR

evoked by habituating and test stimuli respectively. Similarly, sx and

sx+Dx refer to the standard deviation of the PDR elicited by

habituating stimuli and test stimuli. The index standard separation

does not require that the distributions be normal or that the

variances be equal [45].

Stimuli consisted of reproducible noise bursts with flat spectra

(within 1 dB) between 3 kHz and 11 kHz, presented from speakers

arrayed as shown in Fig. 1b at a distance of 1.98 m from the bird.

All stimuli were presented at 52 dB SPA. The owl’s ability to

discriminate between two sound sources, separated in either

azimuth or elevation, was investigated in 1.5u increments.

Azimuthal discrimination was assessed using sound sources that

straddled the midline at the bird’s eye-level. Elevation discrimi-

nation was assessed using sound sources that straddled eye-level,

and were placed at the midline of the subject. Below, negative

azimuths and elevations refer to loci to the left of midline and

below eye level, respectively.

Sound sources were aligned as closely as possible such that

a source placed at 0u azimuth and 0u elevation would cast an

image onto the retina at the visual fovea, or area centralis, of the

barn owl’s eyes [46]. This alignment was established at the time

the headplate was mounted to the skull, ensuring that sound

sources could be placed stereotaxically at reliable and reproducible

locations relative to the barn owl’s eyes and skull.

Neurophysiology
Neuronal acuity was assessed in three barn owls under nitrous

oxide anesthesia. The RF of isolated space-specific neurons was

determined by presenting sounds from the frontal hemisphere,

using a virtual auditory space paradigm based on individualized

HRTFs [32]. Neurophysiological recordings were obtained from

241 isolated units in the inferior colliculus of the barn owl. Their

location and response characteristics suggest that the vast majority

of these were located in the external nucleus of the inferior

colliculus (ICx). Detailed analysis was confined to clearly isolated

units which had one dominant peak of sound-evoked activity in

their SRFs, and in which secondary peaks, if any, were largely

suppressed. Some units used in the present study have also been

included in previous studies by [11,18].

To compute the standard separation for neural responses,

Dneuron, we adapted Equation 1 such that mx and mx+Dx represented

the mean firing rates between two adjacent loci separated by Dx

and sx and sDx the respective standard deviances.

Modeling
The habituation model attempts to reproduce the essential

features of our behavioral paradigm, the habituation and recovery

of the PDR [11,18]. Neurons in the ICx–which do not habituate

to repeated presentation of the stimulus (Fig. 7b)–project

topographically to a layer of habituating neurons, where the

responses to sound (HS) decline upon repeated presentation

(Fig. 7c). Since spike rate is the only manifestation of stimulus

identity that is transmitted from the ICx to this habituating layer, it

is implied that the cause of habituation is the repeated exposure of

a habituating cell to the same number of incoming spikes. The

magnitude of habituation within each neuron is proportional to its

incoming spike rate, such that all neurons that previously

responded to the HS cease to respond (Fig 7c; third row). When

sound is presented from a different location (test stimulus: TS), the

firing rate of many space map neurons that also responded to the

HS is changed. Some SSNs that responded to the HS cease to fire,

while a new set of SSNs that did not respond to the HS will now

fire in response to the TS. Each of these changes is transmitted as

a change in output firing rate from each ICx neuron to its

corresponding habituating layer neuron. The HL neurons, which

were habituated, had ceased to respond to a particular incoming firing

rate. Thus, the change in incoming firing rate from the ICx neuron

will cause the HL neurons to recover (Fig 7c; fourth row). The

recovery is proportional to the change in firing rate: neurons that

experience the largest changes in firing rate will also recover most,

and fire at the highest rates.

The model also incorporates the trial-to-trial variance in firing

of the space-specific neurons which diminishes the ability of HL

neurons to respond to changes in firing rate induced by a test

sound. This variance was included by scaling the output of each

ICx neuron by its standard deviation. Thus, space-specific neurons

with small variance in their response will contribute more to the

HL neurons’ response, while those with large variances in their

response will have a proportionately reduced contribution to the

output of the HL neurons. This property of our hypothetical HL

neurons is reminiscent of neurons in the fly’s visual system whose

firing rates scale with the variance in prior stimulus inputs [21].

Each of the two components, mean and variance, is included in

the computation as follows. First, the output of each ICx neuron,

R, is normalized by the variance of response to the habituating

stimulus (VHS; Eqn. 2):

OutputICx~R=VHS ð2Þ

The output of each space map neuron was normalized by passage

through a transformation function, causing the spike rate to be

scaled down. Note that when responses are normalized to the

standard deviation (VHS) of RHS, then OutputICx equals the z-

score. The normalized output is then sent to the HL neurons,

where the responses to sound from the HS (RHS) decline upon

repeated presentation. This results in a habituation gradient,

where the output of the habituating cell declines to presentation of

sounds from the habituating location, but declines less as the test

source moves further from the habituating location.

Outputhabituated~R�mean(RHS) ð3Þ
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While responses to the habituating stimulus decline, presentation

of stimulus from a new location causes the neurons to discharge

(Eqn. 3). Thus, habituating layer neurons fail to respond to

stimulus presented from the habituating location (Fig. 7c; third

row), but respond to presentation of stimulus from a new location

(Fig. 7c; fourth row).

The output of each HL neuron is summed and averaged [47]

Dpop~(SN
i~1Di)=N ð4Þ

The quantity Dpop describes the population activity in the

habituating layer, which is transferred to the owl’s pupil. The

output of this model (Fig. 8; dotted lines) yields a close match with

behavior (Fig. 8; solid lines). Note that the pooled output of the

population is scaled here by the total number of participating

neurons N; it is conceivable that the scaling factor could be

different.
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