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Background. High-throughput mutagenesis of the mammalian genome is a powerful means to facilitate analysis of gene
function. Gene trapping in embryonic stem cells (ESCs) is the most widely used form of insertional mutagenesis in mammals.
However, the rules governing its efficiency are not fully understood, and the effects of vector design on the likelihood of gene-
trapping events have not been tested on a genome-wide scale. Methodology/Principal Findings. In this study, we used
public gene-trap data to model gene-trap likelihood. Using the association of gene length and gene expression with gene-trap
likelihood, we constructed spline-based regression models that characterize which genes are susceptible and which genes are
resistant to gene-trapping techniques. We report results for three classes of gene-trap vectors, showing that both length and
expression are significant determinants of trap likelihood for all vectors. Using our models, we also quantitatively identified
hotspots of gene-trap activity, which represent loci where the high likelihood of vector insertion is controlled by factors other
than length and expression. These formalized statistical models describe a high proportion of the variance in the likelihood of
a gene being trapped by expression-dependent vectors and a lower, but still significant, proportion of the variance for vectors
that are predicted to be independent of endogenous gene expression. Conclusions/Significance. The findings of significant
expression and length effects reported here further the understanding of the determinants of vector insertion. Results from
this analysis can be applied to help identify other important determinants of this important biological phenomenon and could
assist planning of large-scale mutagenesis efforts.
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INTRODUCTION
Complete collections of well-defined mutants have helped shed light

on the biology of model organisms, such as flies [1–3] and bacteria

[4,5]. Likewise, the development of a complete collection of mouse

mutants would enhance our ability to understand mammalian

biology [6]. Libraries of mutant mouse embryonic stem cells (ESCs)

are particularly valuable because they can be readily cryopreserved

and used to generate mutant mice. Gene trapping in ESCs is an

effective, high-throughput technique for generating insertional

mutations in the mouse genome [7]. Ultimately, however, non-

targeted trapping becomes inefficient; some genes are repeatedly

trapped, and others are trapped rarely, if at all [8,9]. A better

understanding of the characteristics that determine susceptibility (or

resistance) to trapping would be useful, as it would further

understanding of vector insertion into the genome and could help

guide large-scale mouse mutagenesis efforts.

The factors that determine the ‘‘trappability’’ of individual

genes (i.e., their likelihood of being inactivated by gene trapping)

are unclear. The integration of gene-trapping vectors into

chromosomal DNA is potentially influenced by a number of

factors, including the intrinsic properties of the vector, the

expression level of the gene in mouse ESCs, chromatin structure,

DNA substrate recognition, and gene size. In addition the

existence of highly favored integration sites (hotspots) complicates

efforts to understand the factors that control trappability. [10]

Gene expression levels in ESCs are believed to positively

correlate with trapping efficiency with expression-dependent

vectors, but the extent of the expression effect in different gene-

trap vectors has not been systematically quantified or compared.

Splice-acceptor (SA) gene-trap vectors depend on the integration

of a new SA sequence to interrupt the trapped gene [11,12]. When

successful, SA-trap vectors inactivate the trapped gene and result

in an antibiotic-resistance gene product that allows for selection of

the mutant cell lines. These vectors lack a promoter, so

endogenous gene expression is required to drive transcription of

the vector product. However, gene expression has not been tested

on a large scale while controlling for gene length, which is also

thought to affect trappability.

In polyadenylation (poly-A) gene-trap vectors, by contrast, the

antibiotic-resistance gene is driven by a strong promoter within the
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vector. The stability of the transcript for the antibiotic-resistance

gene depends on the poly-A signal from the trapped gene [13].

Because the transcription of the antibiotic-resistance gene product

does not depend on the endogenous expression of the trapped

gene, poly-A trap vectors are predicted to trap genes regardless of

whether the gene is expressed in ESCs.

The method of vector delivery to cells (retroviral vector versus

plasmid DNA) may also influence which genes are inactivated by

gene trapping. Retroviruses are predicted to insert at the 59 end of

transcriptionally active genes and may recognize specific substrates

in genomic DNA. Little is known about the insertion of plasmid

vectors. Both plasmid and retroviral methods have been used in

SA gene trapping, while poly-A approaches have exclusively used

retroviral delivery methods.

The recent release of a near-complete mouse genome, advances in

techniques for estimating the levels of gene expression in a cell, and

the availability of a public gene-trapping database (www.genetrap.

org) make it possible to globally assess the likelihood that a gene will

be inactivated by gene trapping. In this study, we used regression

techniques to model the effects of gene length and gene-expression

levels on gene trapping in different gene-trap vectors. We also sought

to define hotspots for gene-trapping events by using the regression

models to identify genes trapped more frequently than predicted by

the models. Our findings provide an improved understanding of the

factors that control vector insertion in the genome.

RESULTS AND DISCUSSION

Association of gene expression and length with

gene-trap likelihood
We sought to formally test the hypothesis that length and/or

expression influence the probability that a gene will be trapped.

We applied stringent criteria to the genes included in this analysis,

limiting the dataset to genes for which accurate genomic mapping

and curated annotation were available. Because absolute gene

expression estimates, as opposed to fold changes, were necessary

for this analysis, we employed Affymetrix Gene Chips and the

GCRMA (GeneChip Robust Multi-array Analysis) gene expres-

sion estimation method (http://www.bioconductor.org) on a rep-

resentative sample of E14 mouse embryonic stem cells. GCRMA

expression estimates were validated by comparisons to RT-PCR

data in the same E14 mouse ESC line [10] (Table S1). The

correlation between GCRMA and the RT-PCR-derived expres-

sion was high (Spearman’s r = 0.67, P-value,.0001), and the

relationship between expression and gene-trap likelihood in

endogenous expression-dependent vectors is consistent with pre-

vious analysis of trap likelihood with SA-plasmid vectors [10]. This

level of quality control and validation gave us confidence that we

accurately assessed relative gene expression throughout the full

range of transcriptional activity.

For this study, we focused on three major types of gene-trap

vectors (Figure 1), for which enough genes had been trapped to

allow robust comparisons. We analyzed 16322 gene-trap cell lines

in the public database (www.genetrap.org) (Table 1). We first

constructed scatter plots of the trapping frequencies for genes

versus known gene length and our expression estimates in E14

ESCs for each vector type (Figure 2). We then used regression

modeling to test length and expression simultaneously, so that we

could assess the effects of each variable on trapping, independently

of the other. For each vector, we fit a regression model to the

number of times each gene was trapped as a function of gene

length and expression. Spline-based modeling methods were used

to accommodate potential nonlinearity in the models of trap

likelihood. The expected number of traps for each gene per million

trapping events, as predicted by the fitted models, was plotted

against a grid of length and expression values (Figure 3).

The probability that a gene would be trapped with SA-plasmid

and SA-viral vectors increased with both gene expression and gene

length. SA vectors showed highly statistically significant (P,0.0001)

effects due to gene expression (Table 2). In comparison, the poly-A

vectors showed much weaker, albeit statistically significant, expres-

sion effects (P,0.013). The trapping efficiency of the SA-plasmid

and poly-A vectors also increased with gene size (P,0.0001). SA-

retroviral vectors exhibited a similar length trend (P,0.0001), but for

unknown reasons, these vectors displayed a plateau effect in the

largest genes, where trapping likelihood did not increase.

The strong effect of expression on trap likelihood is likely due to

two factors. First, this effect is an inherent property of antibiotic

selection, and differences in the expression trends of endogenous

expression-dependent vectors stem from differences between cell-

culture and sequencing protocols. Second, the presence of the

small expression effect in poly-A vectors, where none is expected,

suggests that gene-trap likelihood is, at some level, dependent on

transcriptional activity and chromatin structure. Previous studies

of retroviral insertion with vectors similar to gene-trap vectors

yielded contradictory results concerning the effect of gene-

expression level on vector insertion [14–16]; however, retroviruses

are known to integrate preferentially into transcribed genes, likely

owing to the effects of chromatin structure [17].

Although poly-A vectors do not appear to depend substantially

on gene expression levels, their use poses additional challenges.

Poly-A vectors do not require endogenous regulation of transcrip-

tion, so there is a potentially greater chance that insertion in

a ‘‘non-genic’’ locus could still confer antibiotic resistance. This

could account for the diminished proportion of poly-A gene-trap

events that can be mapped to a gene (Table 1). In addition,

preferential integration at the 39 end of genes in these vectors is

due to nonsense-mediated decay of transcripts of the antibiotic-

resistance gene-trap products. This decay typically occurs when

the vector inserts upstream of the final intron [18]. As a result,

insertion of poly-A-trap vectors at the 39 end more frequently

yields drug-resistant colonies. This bias is worrisome because the

likelihood that a gene-trap mutation will cause a null allele

decreases as the insertion site moves towards the 39 end of a gene.

Newer poly-A trap vectors may overcome the nonsense-mediated

decay issue [18] and could be an attractive alternative to

expression-based gene-trapping vectors.

In addition to expression, we found that gene length affected

trapping likelihood for all three vectors. This finding was

somewhat surprising because certain vector types are thought to

insert primarily into the ends of genes and therefore might not be

expected to exhibit significant gene-length effects. For example,

retroviral vectors preferentially inserted at the 59 end of genes in

one study [9]. Likewise, the poly-A trap vectors included in this

study insert preferentially into the 39 ends of genes [18]. Such

preferential insertion could eliminate the effects of overall length.

In addition, the first or last introns may be the dominant

determinants of this length effect, and that total gene length might

not capture this effect. Nevertheless, we found a clear enrichment

in the trapping of long genes with all retroviral vectors.

While individual insertion-specific intron length may be of

ultimate importance to the length effect observed in this study,

measurement of intron size and identification of the intron of

insertion are less reliable due to the prominence of alternative

splicing and the difficulty of mapping specific gene-trap vector

insertion sites. Further characterization of trends affecting the

intron of insertion is necessary to better understand the gene-

length effect described here.

Modeling Genomic Insertion
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Hotspots of vector insertion
Though well known in the field of gene-trapping [9], hotspots are

difficult to define rigorously [19]. These loci, in which vector

insertion is highly enriched, are of interest not only to the gene-

trap community, but also to the gene therapy [19], cancer biology

[20], and HIV fields [21]. Prior attempts to define hotspots have

likely been confounded by ignoring effects of expression and length

that we define here. To identify loci trapped with frequencies

elevated beyond those predicted by expression and length, we

flagged genes significantly outside the model prediction space and

defined them as hotspots. We used an iterative fitting process to

identify these genes separately for each vector (hotspots listed in

Table S2).

Each vector type had a unique set of hotspots, with marked

differences based upon the method of vector delivery (plasmid or

retroviral), as shown in Table 2. Hotspot insertions were more

frequent with SA-retroviral retroviral vectors (30% of total traps)

than with SA-plasmid vectors (10% of total traps). Poly-A vectors

showed a smaller hotspot effect (21% of total traps) than other

retroviral vectors. These proportions could underestimate the

actual number of genomic hotspots, as we only considered well-

defined genes.

This increased presence of hotspots in retroviral-based gene

trapping could reflect the tendency of retroviral insertional

machinery to interact with specific sites in the genome [19,22–

24]. The mechanism driving hotspots with plasmid vectors is less

well understood but might involve genomic regions with high

recombination frequencies and high rates of double-stranded

break repair [25–27]. The quantitative method of identifying

Figure 1. Diagram of major mechanisms of gene trapping of an endogenous gene with two exons. (A) In the SA-trap, the SA site allows trapping
when inserted into any part of the gene via plasmid or viral integration. (B) The poly-A trap relies on the poly-A (pA) of the endogenous gene because
the neomycin-resistance gene does not have a poly-A tail. Note that the poly-A trap has its own constitutive promoter (prom). Also indicated are the
splice donor (SD), splice acceptor (SA), and neomycin resistance (NeoR). The major components of each trap were excluded from this diagram to
emphasize on the essential elements needed to understand the trapping models. Detailed maps of each major vector type are referenced in the
Methods section.
doi:10.1371/journal.pone.0000617.g001

Table 1. Summary of gene trap data sets
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vector Data set summary

Lines Traps Genes % in Genes

SA-plasmid 8410 5857 2683 69.60%

SA-viral 3033 1989 708 65.60%

Poly-A 4879 1748 998 35.80%

All IGTC 49258 29147 5788 59.20%

Lines, number of cell lines in public gene trap database; Traps, number of gene-
trap events mapped to a gene; Genes, total number of unique genes trapped;
% in Genes, percent of gene-trap events mapped to exon/intron regions
(including UTR) of known genes.
doi:10.1371/journal.pone.0000617.t001..
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hotspots used here may help future investigations to identify and

characterize cellular and genomic factors that underlie insertional

hotspots.

Summary of gene-trap likelihood models
The ability of these expression and length-dependent models to

explain trapping probabilities was quantified by the percent

reduction in deviance compared to a null model with no covariates

in the datasets after hot-spot removal, analogous to the use of R-

squared in linear regression models. The percent reduction in

deviance was greater for SA-plasmid and SA-retroviral models

(34% and 19%, respectively) than for the poly-A model (6%). For

the expression-dependent SA vectors, these models explain

a substantial proportion of the deviance. The low explanatory

ability of the poly-A vector model reflects the relatively lower effect

of expression on gene-trap likelihood, and to some extent the

smaller effect of length.

Regardless of whether a gene has been inactivated by gene

trapping in our experimental data, our models can predict the

likelihood that a gene will be trapped in a single trapping event.

These predictions serve as ‘‘trapping scores’’ for each gene. The

raw trapping scores were corrected for the effects of both hotspots

and gene-trap events that could not be mapped to a gene. The

corrected scores, reported for the 7435 well-defined genes included

in our dataset in Table S2, allow the overall trapping efficiencies of

different vectors to be compared.

To validate our model, we compared the expected number of

traps from the SA-retroviral model with the observed number of

traps in gene-trap cell lines produced by Lexicon Genetics [28].

This validation set contained 48,809 cell lines from Lexicon

Genetics that could be annotated to our gene set (data in Table

S2). The Spearman’s correlation coefficient for the comparison

was 0.429 (P,0.005). This level of concordance gives us further

confidence that gene-trap likelihood was successfully modeled.

Although these models describe a significant proportion of the

variance in trap likelihood between mouse genes, other factors

undoubtedly contribute to trap likelihood, and therefore, trapping

scores should be interpreted on a limited scope for individual

genes. For instance, the expression-based vectors used in this study

fail to trap secreted and membrane-bound proteins (data not

shown). Other genomic factors that control vector insertion,

transcription, splicing, translation and protein localization all likely

play some role in determining trap likelihood. Further examina-

tion of genes where the number of observed traps departs from

model predictions may help identify other important mechanisms

affecting insertional mutagenesis.

Our models have other limitations relating to experimental and

modeling constraints. The restricted number of total genes for

which high-confidence annotation and ESC expression data were

available reduced our dataset size. We also were limited to using

expression measurements from a single ESC line, and different

global expression states potentially exist between the different ESC

lines used in gene trapping. These constraints may affect the

accuracy of our models, contributing to the overall noise, and

these effects may be stronger at the end of the length and

expression scales, where there are fewer data points.

Conclusion
Our findings offer a more complete understanding of factors

governing the accessibility of genes to trapping. We report the first

formal testing of the effects of gene expression and gene length on

trapping likelihood. While the effects of expression in SA-trap

vectors is confirmatory, the detection of an expression effect in

poly-A vectors is an important finding and matches previous

reports of a role of transcriptional state in vector insertion

likelihood. The length effect reported for all vectors described in

this study is a novel finding that requires further characterization

to understand the relative importance of the underlying biology. In

addition the identification of expression and length-independent

insertional hotspots is an important result and could benefit fields

other than gene-trapping. Ideally, the empirically quantified

relationships we provide here can be generalized to all genes in

the mouse genome. Mutagenesis in mouse and human ESCs will

continue to evolve with new and more powerful techniques, and

the results from this initial analysis will hopefully aid future

mammalian gene mutagenesis efforts.

MATERIALS AND METHODS

Gene-trap data
Data for gene-trap cell lines were generated with the International

Gene Trap Consortium (IGTC) identification and annotation

pipeline [29]. Annotations were obtained by genome and

transcript-based homology searching. Publicly available gene-trap

cell lines included in the IGTC database were used for the gene-

Figure 2. Trapped genes by length and expression. For each vector type, genes were plotted according to their size and level of expression in ESCs.
Genes that have been trapped are shown in red. The circle size is proportional to the number of times a gene has been trapped.
doi:10.1371/journal.pone.0000617.g002
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trap data sets, and all gene-trap cell-line sequences used in our

analysis can be found in the NCBI Genome Survey Sequence

database [30].

Because numerous gene-trap vectors were used to create the cell

lines represented by the IGTC, we chose three representative

vector groups for analysis: the plasmid pGTlxf series (SA-plasmid),

the retroviral FlEx vectors (SA-retroviral), and a combination of

poly-A trap vectors (poly-A). The SA-plasmid vectors were

produced by BayGenomics (http://baygenomics.ucsf.edu). The

SA-viral vectors are a conditional system used by the German

Gene Trap Consortium (http://www.tikus.gsf.de) [31]. Poly-A cell

lines are from the Centre for Modeling Human Disease gene-trap

project (http://www.cmhd.ca/genetrap) [13]. Poly-A vectors

designed to take advantage of nonsense-mediated decay [18] were

not included in this analysis. Exon trap vectors are similar to SA-

trap vectors but depend on direct, in-frame integration into the

open-reading frame of a gene [32]; however, these vectors behave

similarly to SA vectors due to cryptic splicing [33] and were

therefore omitted from this study. Secretory vectors containing

transmembrane signal sequences [34,35] were also excluded.

Vector maps are available on each gene-trap resource website.

More information on gene-trap data is available on the IGTC

website (http://www.genetrap.org).

Gene Data
Gene length and annotation data were from mouse build 36 of the

Ensembl database [36]. Length was computed as the full

transcribed genomic region, including the UTR when present.

This analysis used a set of 7435 well-characterized genes (Table

S2) for which complete sequence data were available. Similar sets

of ‘‘sentinel genes’’ have been used in analyses of gene-trap data

[28]. For this study, this set includes known genes annotated to

a Mouse Genome Informatics (MGI) symbol and an Entrez Gene

ID and not primarily identified by Riken clones. Single-exon genes

were omitted from the model, because they lack of a splice donor

site necessary for proper function of SA and poly-A trap vectors.

Expression Data
For all gene-expression data, mouse E14 ESCs were prepared as

described [37] (http://www.baygenomics.ucsf.edu). For GeneChip

studies, we performed four biological replicates using Affymetrix 430

2.0 arrays, and RNA samples were prepared as described by the

manufacturer (Affymetrix, Sunnyvale, CA). The 430 2.0 GeneChip

contains 45,101 probe sets, including 9242 probe sets that were

unambiguously mapped to a single Ensembl identification. Only

probes marked as type ‘‘_at’’ were used for the final analysis, because

we had the highest confidence of proper hybridization in these probe

sets. All other probe sets were discarded, because the probes may

cross-hybridize to mRNA products of other genes (Affymetrix). We

selected the probe set with maximal expression when there was more

than one representing a single gene.

Expression values were calculated with GCRMA (v. 1.1.5;

http://www.bioconductor.org), a method that purports to give

good estimates of expression in the entire expression spectrum

[38]. While on/off calls and removal of genes based on a low

signal-to-noise ratio may allow elimination of some spurious

expression results, use of GCRMA and full data inclusion were

necessary to model the likelihood of trapping, especially at the

lower boundaries of expression. Expression values for a subsample

of genes from the same cell type in the same tissue-culture

conditions were confirmed in TaqMan quantitative RT-PCR

experiments [37]. Raw and normalized data for these experiments

can be accessed using GEO series accession GSE8128.

Figure 3. Models of trap likelihood for gene-trap vectors. Models of
the likelihood of trapping a gene with particular length (x-axis) and
expression (y-axis) values for each gene-trap event were created
through an iterative process, in which outliers (P,0.001) were removed
before the final model was created. Probability (z-axis) is given as events
per million traps.
doi:10.1371/journal.pone.0000617.g003
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Analysis
Spline-based methods were used in multinomial regression models,

with gene length and expression as model predictors and the number

of trap events in each gene as the outcome. Knot placement for

splines was based on gene-distribution percentiles. Models were

iteratively fitted to genes remaining at each round after cumulative

removal of hotspot genes, defined as genes with an observed trapping

frequency far above the expected frequency. We identified such

genes, using a cut-off of P,0.001 and re-ran the analyses without

them. These probabilities were calculated by using the Poisson

approximation to the binomial distribution with a large number of

trials and a low probability of success and were corrected for the

estimated model overdispersion. We then re-fit the model with the

hotspots deleted, repeating the process until no additional hotspots

were identified. The level of significance 0.001 P value was selected

to be conservative in the culling of genes that did not fit the model, as

we wanted to limit the number of genes removed to only those that

far exceeded predicted trap likelihood. P values for the length and

expression effects in the final models are reported, and deviance that

can be explained for each model was computed.

Trapping scores were computed directly from the fitted model as

the predicted probability of trapping, and corrected by multiplying

the proportion of events that trapped a modeled gene rather than

a hotspot or gene-trap event that could not be mapped to a gene.

Statistical analysis was performed with SAS (SAS Institute, Cary,

NC) and the R statistical environment (http://www.r-project.org).

Model Specification
Because each experiment (trap event) selects one of a known set of

genes that could be trapped, the data fit the statistical framework

of multinomial regression. Let n = 1 to N index experiments that

trapped a gene. For each experiment, we assumed that the

probability that gene j is the one that is trapped is a function of

covariates. Let x be the matrix with a row for each gene and

a column for each covariate. A multinomial model for which gene

is trapped in each experiment is then defined by:

Pfj trappedjxg~exp½f (xj)�=f
X

i

exp½f (xi)�g , ð1Þ

where the sum in the denominator is over all genes that might be

trapped, f is a function of the covariates, and xi is the vector of

covariates for gene i. For example, a simple linear model with two

covariates would be f(xi) = b1xi1+b2xi2. Here we restrict attention to

genes whose length and expression are known and to the

experiments where one of these genes was trapped. Letting j

denote the gene trapped in the nth experiment, we can write the

log-likelihood (up to a constant that does not depend on the

covariates) for experiment n as:

ln~f (xj)� logf
X

i

exp½f (xi)�g ð2Þ

Letting hi denote the number of times gene i was trapped, we can

then write the log-likelihood for the entire set of experiments as:

l~
X

n

ln~
X

i

hif (xi)�Nlogf
X

i

exp½f (xi)�g: ð3Þ

For any given parametric form for the function f, we can

estimate the parameters by finding those that maximize this log-

likelihood, with the general optimization features of the

NLMIXED procedure in SAS. For both covariates (gene length

and expression), we applied logarithmic transformations and then

used cubic parametric splines [39], choosing among models with

different degrees of freedom with the Akaike information criterion

[40] adjusted for overdispersion [41]. We assumed that the effects

of these two covariates were additive, f(xi) = f1(xi1)+f2(xi2). Adding

interaction terms did not substantially improve fits to the data.

To calculate a fitted probability of trapping for each gene, we

used equation (1) with the best-fitting parameters for f1 and f2

SUPPORTING INFORMATION

Table S1 Compares the expression as measured using RT-PCR

with expression estimates derived using GCRMA methods.

Found at: doi:10.1371/journal.pone.0000617.s001 (0.03 MB XLS)

Table S2 Summarizes the dataset used for this analysis. Included

are the length and expression values for genes included in the

analysis, number of traps in each gene by gene-trap vector, and the

derived trap score for each gene. Hotspots genes are tagged in the

trap score column for each vector. Omniback gene-trap events, used

here as a validation set, are listed in the final column.

Found at: doi:10.1371/journal.pone.0000617.s002 (1.60 MB XLS)
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Table 2. Hotspot Effects and Model Summary
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Vector Model Summary Hotspot Effect

Modeled
Events

Modeled
Genes

Expression
P Value

Length
P Value

Explained
Deviance

Hotspot
Genes

Traps in
Hotspots

% Total
Traps

SA-plasmid 3513 1545 ,0.0001 ,0.0001 34% 26 366 10.42%

SA-retroviral 1187 400 ,0.0001 ,0.0001 19% 18 358 30.16%

Poly-A 805 442 0.013 ,0.0001 6% 9 170 21.12%

Modeled events and genes represent the number of trap events and unique trapped genes considered in the modeling process. P values for expression and length
represent likelihood ratio significance tests. Explained deviance is analogous to the percent of the variance that is explained in a linear regression model. Hotspots
reported as the number of genes that fell outside the hotspot cut-off, the number of trap events in the hotspot gene set, and as the percent of modeled traps in
hotspot genes.
doi:10.1371/journal.pone.0000617.t002..
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