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Background. Treating hepatitis C with interferon/ribavirin results in a varied response in terms of decrease in viral titer and
ultimate outcome. Marked responders have a sharp decline in viral titer within a few days of treatment initiation, whereas in
other patients there is no effect on the virus (poor responders). Previous studies have shown that combination therapy
modifies expression of hundreds of genes in vitro and in vivo. However, identifying which, if any, of these genes have a role in
viral clearance remains challenging. Aims. The goal of this paper is to link viral levels with gene expression and thereby
identify genes that may be responsible for early decrease in viral titer. Methods. Microarrays were performed on RNA isolated
from PBMC of patients undergoing interferon/ribavirin therapy. Samples were collected at pre-treatment (day 0), and 1, 2, 7, 14
and 28 days after initiating treatment. A novel method was applied to identify genes that are linked to a decrease in viral titer
during interferon/ribavirin treatment. The method uses the relationship between inter-patient gene expression based
proximities and inter-patient viral titer based proximities to define the association between microarray gene expression
measurements of each gene and viral-titer measurements. Results. We detected 36 unique genes whose expressions provide
a clustering of patients that resembles viral titer based clustering of patients. These genes include IRF7, MX1, OASL and OAS2,
viperin and many ISG’s of unknown function. Conclusion. The genes identified by this method appear to play a major role in
the reduction of hepatitis C virus during the early phase of treatment. The method has broad utility and can be used to analyze
response to any group of factors influencing biological outcome such as antiviral drugs or anti-cancer agents where microarray
data are available.
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INTRODUCTION
Treating with peginterferon/ribavirin combination therapy pa-

tients who have chronic hepatitis C virus (HCV) infection results in

a varied response in terms of outcome and decrease in viral titer

[1–4]. For patients who respond well there is a sharp decrease in

viral titer within 24–48 hours after treatment initiation whereas in

other patients there is little or no effect on the viral titer and only

temporary, or no, clearance of the virus over a long period [5,6].

Previous in vitro studies have shown that combination interferon

treatment induces or decreases expression of hundreds of genes

[7–10]. One of the major problems, however, is to identify which

of these genes are linked to viral clearance in vivo.

In this paper we report a novel mathematical method to explore

the association between decrease in viral titer and changes in gene

expression in hepatitis C patients following combination treatment

with pegylated interferon and ribavirin. The viral clearance time

course profile will not necessarily directly correlate with the gene

expression time course profile even if the gene is an active

participant of the interferon treatment response because the

decrease of the viral levels depends on the interplay of many genes

and gene products. Therefore, an indirect approach was used in

which the relationship between gene expression across days and

viral decrease was examined using inter-patient distances (prox-

imity) according to both characteristics.

Using this approach we selected thirty seven gene probes that

were linked with the anti-HCV response during the first 28 days of

treatment. A visual demonstration of the association of detected

genes with the viral decrease is demonstrated by a comparison of

patient clusterings. Indeed, the inter-patient proximities according

to the pattern of decrease in virus titer provide an unsupervised

clustering of patients based on changes in viral levels. Similarly,

the inter-patient proximities according to expressions of the

specified genes across time provide another unsupervised cluster-

ing of patients. A visual inspection of viral-titer based and selected

genes expression based clusterings of patients indicates their close

relationship. Since the unsupervised clustering of patients accord-

ing to the pattern of viral clearance is in good correspondence with

an a priori biological categorization of patients into marked, slow
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and poor response at day 28 [11],the selected subset of genes can

be considered as genes that are involved specifically in treatment

response. Such genes products may have anti-viral activity or be

related to the immune response against virus-infected cells.

MATERIALS AND METHODS

Patient population
The Virahep-C study included a cohort of 401 participants who

provided written consent at 8 U.S. clinical centers between

September 9, 2002 and January 7, 2004. Per protocol, all

participants were treated for up to 48 weeks with pegylated

interferon alfa-2a (PEGASYS, Roche Inc. Nutley, NJ) at 180 mcg

weekly by self-administered subcutaneous injection and ribavirin

(COPEGUS, Roche, Inc. Nutley N.J.) by mouth at 1000 mg/day

for those who weighed less than 75 kg or 1200 mg/day for those

who weighed at least 75 kg. Treatment was discontinued at week

24 in participants who had a detectable serum HCV RNA virus in

duplicate qualitative assays using the Roche Cobas Amplicor

HCV Test, v2.0 (sensitivity 50 IU/ml). The primary endpoint of

the study was the sustained virologic response, defined as an

undetectable serum HCV RNA at week 72 (at least 24 weeks after

completion of treatment). The clinical trial was #-NCT00038974.

Fifty two patients for whom gene expression and viral level data

were available at all time points were selected for this analysis.

Based on the log-decline in serum HCV RNA on day 28 of

treatment relative to day 0, as measured by the quantitative Roche

Cobas Monitor HCV Test, v2.0 (sensitivity 600 IU/ml) these

patients were divided into three groups [11] Patients were

identified as poor responders if they had less than a 1.4 log10

IU/ml decrease in serum HCV RNA between day 0 and day 28,

as marked responders if they experienced more than a 3.5 log10

IU/ml decrease or if their viral titers dropped to undetectable by

day 28, and as intermediate responders if the log10 drop in HCV

RNA was between 1.4 and 3.5 IU/ml. For the purpose of

unsupervised clustering of viral titers, patients with undetected

viral levels by the quantitative assay were assigned a viral level of

599 IU/ml and those whose viral levels were undetected by the

qualitative assay were assigned a viral level of 49 IU/ml

This study met all necessary approvals of Institutional Review

Boards of each institution participating in the Virahep-C consortium

(Beth Isreal Deaconess Medical Center, New York Presbyterian

Medical Center, Rush University, University of California at San

Francisco, University of Maryland, University of Miami, University

of Michigan, and University of North Carolina).

Cell preparation and RNA extraction
Peripheral Blood Mononuclear Cells (PBMC) were collected in

sodium heparin-CPT tubes at day 0, 1, 2, 7, 14 and 28. Samples

were shipped overnight from each clinical center to a central

repository by express courier at 4uC. Whole blood was diluted with

an equal volume (8 ml) of phosphate buffered saline, carefully

layered over a 10 ml Ficoll-Hypaque gradient (Amersham/

Pharmacia) and centrifuged at 800 rpm for 20 minutes at room

temperature. The buffy coat layer was transferred to a 15 ml

RNAse-free tube and further diluted with PBS. Tubes were

centrifuged at 100-6 g for 15 minutes at room temperature. The

supernatants were discarded and the PBMC were retained.

The isolation of RNA, quality control, the labeling and hybridiz-

ation on to the micro-arrays have been previously described [7,10].

Array Analysis and Data Processing:
The microarrays were scanned using a dedicated Model 3000

scanner controlled by Affymetrix Microarray Suite 5 software

(MAS5). The average intensity on each array was normalized by

global scaling to a target intensity of 1000. Data were exported

from MAS5 into a custom-designed database (MicroArray Data

Portal) in the Center for Medical Genomics (IUPUI, Indianapolis).

The data from the microarrays has been deposited with NCBI,

GEODATA# GSF7123

Visualization of patient grouping
Visualizing the patient data was simplified through Principal

Component Analysis (PCA) [12] which reduces the dimensionality

of the data into a small number of independent components. An

alternative method to present data grouping is hierarchical

clustering. We used the hierarchical clustering (UPGMA) [13]

algorithm for the clustering.

Both PCA and the clustering of patient’s groupings according to

either viral titer or gene expression data were performed to

visualize the correspondence between predefined grouping of

patients (marked, intermediate, and poor, highlighted by color)

and either gene expression or viral titer based grouping of patients.

Viral titer based proximity of patients and

‘‘candidate’’ genes
Detection of genes that provided clustering similar to viral titer based

clustering of patients was performed by a mathematical method

similar to the mirror tree method for inferring protein interactions

from phylogenetic distance matrices [14,15]. This method was

applied to gene expression and linked the gene-specific variability of

patients with their viral titer variability. The link is a correlation

between the matrix of inter-patient distances that is based on viral

titer and the individual gene expression based matrix. If a gene

expression based matrix correlates with a viral titer matrix, then it

can be concluded that there is a link between expression of that

specific gene and the viral levels in patients. Such a link considers

both the direct correlation between the expression profile of a gene

across patients and the viral titer pattern of patients, and the indirect

involvement of the gene in the viral level change process. A detailed

description of the method follows.

The distance between patients’ viral titer changes from day 0 was

used to estimate the inter-patient proximity with respect to viral

change. Similarly, the gene expression based inter-patient proximity

was measured for each gene. The correlations between each gene

based matrix proximity and viral titer based matrix-proximity were

estimated and genes with the highest correlations were selected.

As metrics of inter-patient proximity two measures were used:

Euclidean distance and the coefficient of covariation. The larger the

coefficient of covariation, the closer the patients are whereas the

smaller the Euclidean distance the closer the patients are. Thus, the

inter-patient distances based on viral titer time-course measurements

created a grouping of patients that reflected the response of patients

to antiviral treatment. On the other hand, the inter-patient

proximities based on gene expression measurements across days

(gene expression profile) for a specific gene reflected the variability of

patients either according to response of this gene to treatment, or

according to genetic heterogeneity of patients, or both.

The Euclidean distance between the natural logarithms (ln) of

changes in viral levels from baseline (day 0) for patient i and

patient j was defined as:

Vij~
X

d~1,2,7,14,28

(( ln (vid ){ ln (vi0)){( ln (vjd ){ ln (vj0)))2

where vid is the viral titer value for ith patient on day d. Denote

V~fVij ,1ƒivjƒkg as the vector of Euclidean distances

Identifying Linked Genes
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between each pair of patients with dimension k(k21)/2, where k is

the number of patients.

Similarly, the inter-patient Euclidean proximities with respect to

the natural logarithm (ln) of the gene expression for the rth gene on

day d were estimated by

Grd
ij ~(( ln (gr

id ){ ln (gr
i0)){( ln (gr

jd ){ ln (gr
j0)))2,

where gr
id is the expression of rth gene for ith patient on day d. Let

G
rd

~fGrd
ij ,1ƒivjƒkg denote the vector of inter-patient prox-

imity according to expression of rth gene at day d. Corresponding

to Vij, define Gr
ij~

X

d~1,2,7,14,28

Grd
ij to be the inter-patient Euclidean

proximities with respect to the gene expression for the rth gene.

Denote vectors G
r
~fGr

ij ,1ƒivjƒkg with dimension k(k21)/2.

The inter-patient proximities according to expression of

all genes was then estimated by the vector of the same k(k21)/2

dimension G~fGij ,1ƒivjƒkg, where Gij~
XN

r~1

Gr
ij , where

N is the number of genes on the array. Note that

G~
XN

r~1

G
r
~
XN

r~1

X

d~1,2,7,14,28

G
rd

We will refer to the vectors Ḡ rd and Ḡ r as GDeu and Geu

vectors respectively. Vector Ḡ will be referred to as the main

vector (MVeu) of the method and has equal biological importance

to the virus titer related vector V̄ (VTeu) . Indeed, MVeu is the

vector of distances between each pair of patients across all genes

and all days. These distances reflect differences between patients

both due to individual variability and due to the response of

patients to the combination treatment. Thus, inter-patient

distances across all genes and all days are the superimposition of

patient’s individual and response differences. The norm of MV is

a cumulative measure of how patients are divergent according to

their gene expression. Genes that are not co-regulated (the

majority of them) have random distances with other genes thus

making a minimal impact in the length of the MV. Indeed, gene

vectors G with random signals are distributed symmetrically in

k(k21)/2 space. Under summation they will compensate each

other, reducing the norm of the MV vector. Therefore, a large

norm for MV is defined by a relatively small number of co-

regulated groups of genes, and these groups are related to the

biological divergence of patients (including the divergence of their

response). From a biological point of view it is important to

understand whether the input of genes in MV is correlated with

the virus titer vector VT in k(k21)/2 space. If they are, then the

variability of patients according to gene expression is closely

related to their treatment response; if not, then gene expression

variability of patients is defined by their other characteristics.

Similarly to Euclidean distance based vectors Ḡ rd, Ḡ r, Ḡ and V̄

of the k(k21)/2 space, the covariance based vectors Ḡ rd,cov,

Ḡ r,cov, MVcov (Ḡ cov) and VTcov (V̄ cov) of the same space k(k21)/2

were defined as follows. The element of VTcov vector is thus

V cov
ij ~

X

d~1,2,7,14,28

(jid{ji):(jjd{jj), where

jid~ ln (vid ){ ln (vi0), and ji is the average of jid across

Figure 1. The clustering of 52 patients according to viral titer measurements across days. All viral titer values of each patient are normalized by the
same patient day 0 viral titer measurement. The Euclidean measure based hierarchical (UPGM) clustering indicates a good separation of the early
response Marked (pink) and Poor response (green) patients. The Slow (yellow) patients are mostly concentrated at the intermediate branch of the
clustering tree.
doi:10.1371/journal.pone.0000584.g001
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days 1, 2, 7, 14, and 28. Similarly, for the rth

gene, Gr,cov
ij ~

X

d~1,2,7,14,28

(br
id{bi)

:(br
jd{bj), where

br
id~ ln (gr

id ){ ln (gr
i0) and b̄ i is the average of br

id across all

genes and all days.

The associations between vectors G, GD and vectors MV and

VT both for Euclidian and Covariance metrics were estimated by

the Pearson correlation coefficients. We assume that (i) the expres-

sion of the gene log-signal in a patient is normally distributed, (ii)

expression values of a gene across patients are independent, and

(iii) for all genes there are no dependences of between-patient

distances according to gene expression and between-patient

distances according to viral titer values. The method detects

linkage of genes with viral titer as statistically significant deviations

against the point (iii), i.e., differences in correlation coefficients

from 0. The statistical significance of correlation coefficients may

be calculated using Fisher’s Z transformation[16] for correlation

coefficients which is distributed normally with mean zero and

variance 1/[{k(k21)/2}23]. We can alternatively estimate the

significance of R2 (the square of the correlation coefficient) assuming

a beta distribution with 0.5 and k(k21)/2 degrees of freedom. If we

take into consideration that there is a weak mutual depend-

ence between each pair of patient distances with the same patient is

in both pairs, the significance estimation according to beta distribu-

tion with 0.5 and k(k21)/4 degrees of freedom will compensate this

weak mutual dependence of inter-patient distances.

MV and VT relationship and selection of VT-linked

genes
In order to take into account both Euclidean and Covariance

measures of proximity in the selection of VT-linked genes, the

analysis was done as follows. A multidimensional scaling[17] was

applied to reduce the dimensionality of the k(k21)/2 space.

Namely, the mutual proximities of gene (G) and gene-day (GD)

vectors estimated through their correlations with MV and VT

vectors (vectors are prepared according to Euclidean and covari-

ance measures) were represented by two-dimensional Euclidean

distances in the principal component analysis (PCA) [12] space.

Two principal components (PC1 and PC2) were detected accord-

ing to 8 initial variables, these variables being correlation coeffi-

cients for vector pairs (Gcov-MVcov), (GDcov-MVcov), (Gcov-

VTcov), (GDcov-VTcov), (Geu-MVeu), (GDeu-MVeu), (Geu-

VTeu), (GDeu-VTeu) across all gene-days. The first principal

component appears to be defined by correlations of G and GD

vectors with MVcov and MVeu vectors, and the second one by

Figure 2. The PCA visualization of inter-patient proximities according to day 0 normalized per day viral titer values. First two Principal
Components cover 93% of data variability and thus gives the good presentation of the patient distribution in the 5 dimensional space. There is the
clear divergence of Marked (dark blue points) and Poor (green points) response patients. The separation line (dotted blue line) indicates the virtual
border between these two populations. Slow patients (pink points) are mostly concentrated along the borderline.
doi:10.1371/journal.pone.0000584.g002
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correlations of G and GD vectors with VTcov and VTeu vectors.

This implies that gene (G and GD) correlations with two MV

vectors are independent from gene correlations with two VT

vectors, and therefore the general variability of patients according

to gene expression is not related to the response to the

combination therapy of patients.

The deviation of some GD-vectors from the core of their

distribution in the multi-scaling space in the direction of VT vectors

(i.e. at PC2 direction) indicates a link of these gene-days (and genes)

with viral titers. As the initial criterion for gene-day detection the

PC2.threshold was used. The statistical significance of such gene

detection was checked by Fisher’s Z-test and via beta distribution for

correlation coefficients of G(GD) vectors regarding VTcov vector.

Both tests used an adjusted number of degrees of freedom to

compensate for a weak inter-dependence of vector coordinates.

The more accurate check of the gene detection significance and

the estimation of False Discovery Rate (FDR) were performed

through permutations. In the first step the distribution of

‘‘random’’ gene-days in the multiscaling space was prepared

through permutation of gene-days log-signals over 52 patients of

the study. After that correlations of permutated gene-day based

inter-patient matrices with VT and MV vectors in k(k21)/2 space

were calculated, and the previously found transformation of the

initial 8-dimension space into the multiscaling space was applied to

these correlations.

The FDR estimation for the detected set of real genes was done

as follows. The sub-space that the gene set is occupied in the

multiscaling space was defined as the sphere around the central

position of this set. The ratio of the number of permutated gene-

days inside the sphere (normalized to the size of real gene set) to

the number of the real gene-days inside the sphere is the False

Discovery Rate estimation for a sphere of the given radius.

RESULTS
As a first step, the correlation between patient classification based

on decrease in virus titer by day 28 and the unsupervised viral titer

based clustering of patients was tested. Namely, natural log-

transformed viral titers of the 52 patients were normalized using

the baseline viral level (i.e. day 0) [i.e. ln(vi )2ln(v0) ], where vi is

the viral titer value at day i. The clustering of patients was done by

the hierarchical UPGMA method [13] using a Euclidean measure

of similarity. The branches of the clustering tree (patients) were

labeled by type of response according to the initial categorization

of the early response (marked, intermediate, and poor) [11] (Fig 1).

This hypothesis-free clustering based on inter-patient Euclidean

distances according to viral titer demonstrated that patients could

be placed into three groups corresponding to the response

classification of patients. Indeed, the biggest and most compact

cluster consists of poor response patients (the left branch of the

tree). The right branch of the cluster contains just marked response

patients. The middle branch of the cluster contains a mix of all

three classes of patients. If only poor and marked response patients

are considered, then there is no misclassification for extreme right

and left clusters of the hierarchical classification.

Another compact visualization of patient grouping according to

the same baseline-normalized viral titer data was performed using

PCA. The first two principal components covered 93% of total

data variability. The distribution of patients using the classification

given above demonstrated clear separation of poor response

patients from marked response patients (Fig 2, see separation line).

In the second step, the viral titer linked genes were determined.

We defined VT-linked genes as the ones that produced a clustering

of patients similar to viral titer based clustering of patients. The

procedure for their detection was as follows: Gene expression for

each day was normalized with regard to day 0 expression, as was

Figure 3. The schematic representation of the algorithm’s main idea. Any matrix of inter-patient distances for k patients could be presented as
a point (vector) in k (k21)/2 dimensions space. There are two main vectors in this space; the inter-patient matrix according to viral titer (blue dotted
vector) and inter-patient matrix according to expression of all genes (black vector). The expression of every gene is presented as a point (vector) in
the same space: the inter-patient matrix according to the expression values of this gene. Some genes could be close to viral-titer vector VT or/and to
all gene expression vector MV. Inter-patient matrices according to expression of individual genes (G) at specific days (GD) are dots of the figure.
Points of high correlation with VT vector (pink dots) are VT-linked genes. MV linked genes (green dots) define individual variability of patients
according to their gene expression. The genes not linked with the two main vectors genes are in red.
doi:10.1371/journal.pone.0000584.g003
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done for viral titer. The determination of genes was based on the

hypothesis that the between-patient proximities according to gene

and gene-day expression pattern of specific genes are correlated

with the viral titer based inter-patient proximities. Thus we looked

for genes (gene-days) that ‘‘associated’’ with the viral titer. The

selection was done through multidimensional scaling PCA

representation for the space of correlations between inter-patient

distance matrices (Fig 3). The deviations of some GD-vectors from

their uniform distribution in the PCA space in the direction of VT

vectors (Fig.4, pink dots) indicated a link of these gene-days (and

genes) with viral titer behavior of patients. Thus, gene-days with

the second principal component (PC2) value more than 5 were

selected. Genes having less than 3 gene-days with PC2 greater

than 5 were filtered out.

The correlation coefficients of all detected genes with VTcov (as

representing VT group of inter-patient matrices) are more that

0.24 (Table S1) which corresponds to a p-value of less than 1.0E-

08 for 1326 (52*51/2) degrees of freedom.

The permutation analysis (see M&M) was based on 1000

permutations of gene-day signals across all 22000 genes at 5 days.

The minimal radius of the sphere that covers 80% of gene-days of

the selected 37 genes in the 4-mer multi-scaling space is 2.6. This

radius corresponds to FDR 1% of the detection. The four

dimensional multi-scaling space was taken because such a number

of PCA components cover more than 80% of gene expression data

variability.

Most of detected genes (Table 1) have been identified previously

as interferon induced in PBMC or A549 cells in vitro [7,18]

supporting the conclusion that these are meaningful genes

although they were identified in an unsupervised manner. Table

S1 lists the top 37 probe sets with details of each probe set and

with the day-by-day correlations between gene expression and

viral titer.

Visualization of the sources of variation of patients according to

gene expressions of genes- classifiers was simplified through PCA,

which reduced the dimensionality of the data into a relatively small

number of components. PCA presentation is illustrated in Figure 5.

The baseline-normalized expression of these 37 genes (probe sets)

appears to be a good discriminator of Marked vs. Poor. Indeed,

the PCA presentation of the distribution for 52 patients according

to expression profiles across all days of these 37 probe sets

demonstrates the obvious shift of poor response patients to

negative values of the component 1 (Fig 5). The PCA presentation

of the data distribution is relevant because the first two

Figure 4. The two-dimensional PCA representation (cover 63% of data variability) of inter-vector correlations in k (k21)/2 space – the space of
distances between inter-patient matrices. One may interpret this figure as the view from above on Fig. 3 schema. Follow to multidimensional-
scaling method the proximities between gene based inter-patient matrices as estimated through their correlations with MV and VT matrices were
represented by inter-gene (gene-days) Euclidian distances in the PCA two-dimensional space. Positions of VTeu, MVeu (Euclidean metrics) and VTcov,
MVcov (covariance metrics) matrices in the PCA space are seen on the insert. VT linked genes are denoted by pink dots. MV-linked genes are in the
frame on the figure right.
doi:10.1371/journal.pone.0000584.g004
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components of PCA analysis cover a major portion (63%) of total

data variability. One can see the same basic separation of marked

vs. poor response patients in clustering in Fig. 6.

DISCUSSION
The goal of this paper is to link heterogeneous sets of observations

(gene expressions and viral levels) without an a priori hypothesis.

We developed a mathematical model that can be applied to any

situation using gene expression and viral titer or any other

attributes. Application of this approach to patients treated with

interferon/ribavirin is based on the assumption that distances

between sets of patient’s attributes reflects a biological demarca-

tion of patients. As patient attributes we applied the following

measurements: (i) viral titer profile during the first four weeks of

treatment (viral levels on days 0, 1, 2, 7, 14, and 28), and (ii) the

expression of all 22,000 genes of the Affymetrix array across the

time course of the treatment.

The difference among patients according to all 22,000 genes on

the array reflects the overall gene expression heterogeneity of

hepatitis C patients undergoing interferon/ribavirin treatment.

This could be due to differences in response, to genetic

heterogeneity, or to difference in arrays and handling of RNA.

The differences between patients according to any single gene

reflect the gene-specific variability of the hepatitis C patients. The

gene-specific variability that correlates with the viral titer

variability is what is analyzed in this paper and which may be

independent of the above. No differences were found in gene

expression in an analysis of RNA isolated from PBMC before

treatment, when patients were divided into responders and non-

Table 1. Genes hypothesized to be important in the anti-hepatitis C response.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Gene name Unigene ID Genbank ID Gene description

BLZF1 Hs.494326 U79751 Basic leucine zipper nuclear factor.

DDX58 Hs.438386 NM_014314.1 RIG 1 ( helicase)

DNAPTP6 Hs.230767 AK002064.1 DNA polymerase activated protein

EIF3S6IP Hs.446852 AA862804 Eukaryotic initiation factor 2.

EPHB2 Hs.523329 AI038197 Ephrin B/tyrosine kinase receptor family.

FLJ20035 Hs.481141 AI093428 Helicase

FLJ38348 Hs.546523 AV755522 coiled-coil domain 75 ( CCDC75):RNA binding proteins

G1P2 Hs.458485 NM_005101.1 ISG15 ubiquitin—like modifier.

G1P3 Hs.287721 NM_022873.1 IFI6: inhibitor of apoptosis

HERC5 Hs.26663 AA905126 Ubiquitin ligase 5

HERC6 Hs.435365 NM_017912.1 Ubiquitin ligase

IFI27 Hs.532634 AA991433 Unknown function

IFI44 Hs.82316 BE049439 hepatitis C associated microtubule protein.

IFI44L Hs.389724 NM_006820.1 histocompatibility 28

IFIH1 Hs.389539 NM_022168.1 Helicase domain 1.

IFIT1 Hs.20315 AA975472 IFI56, Induced protein with tetratricopeptide repeats-1.

IFIT3 Hs.47338 AA991285 Interferon-induced protein with tetratricopeptide repeats 3, ISG60

IFIT5 Hs.252839 N47725 IFI58, induced proteins with tetratricopeptide repeats. 5

IFRG28 Hs.43388 AA970212 Receptor transporter 4

IRF7 Hs.166120 AA991566 Interferon regulatory factor 7

LAMP3 Hs.518448 BX116004 lysosomal associated membrane 3.

MX1 Hs.436836 NM_002462.1 GTP-binding protein

MX2 Hs.926 AI015252 Dynamin and GTPase family

OAS2 Hs.414332 NM_016817.1 2959Oligo A synthetase 2, 69/71kD.

OASL Hs.118633 CB125965 2–5 oligo A synthetase like.

PABPC4 Hs.169900 T05603 Inducible Poly A binding protein

PCTK3 Hs.445402 BC000281.1 PCTAIRE protein kinase 3

PLSCR1 Hs.130759 AI825926 Phopholipid scramblase: enhances anti-viral gene response.

RPL22 Hs.515329 BE250348 60 S ribosomal protein: EB virus binding protein

RSAD2 Hs.17518 AI337069 viperin, cig 2.

SAMD4 Hs.98259 AB028976.1 translation regulator.

SN Hs.31869 N53555 Sialoadhesion

SNF7DC2 Hs.415534 NM_015961.1 chromatin modifying protein 5 (CHMP5)

TBX3 Hs.129895 NM_006187.1 T-box transcription factor 3.

TRIM5 Hs.350517 AF220028.1 tripartite motif-containing 5

USP18 Hs.38260 AA976038 Ubiquitin specific peptidase

doi:10.1371/journal.pone.0000584.t001..
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responders. Thus the differences are reflection of treatment rather

than a reflection of the course of hepatitis C infection.

The gene-specific divergence of patients is checked against the

overall patient divergence according to all genes. It appears that the

process of virus clearance by interferon/ribavirin is not the major

part of the overall gene expression pattern. Indeed, VT-linked genes

(genes identified as viral clearance related) make a rather small input

into the MV vector, which represents the pattern of overall gene

expression variability of patients (Fig.3 and 4).

We examined the variability of patients according to changes in

viral titer with time. This analysis demonstrates that the clustering

of patients [Fig. 1] according to viral titer largely matches the

a priori definition for classification of patients (marked, in-

termediate, poor) used in this and earlier papers [11]. Although

there are a few outliers, in general our initial division using day 28

viral titer appears to have biological as well as mathematical

relevance. Even though the a priori classification of patients was

based solely on the viral decline at day 28 relative to day 0, the

unsupervised clustering of patients based on viral titers at all

6 days resulted in similar clusters, indicating that patterns of viral

declines for marked, intermediate and poor response patients are

different in-between day 0 and day 28. Since the clustering of

patients according to the viral titer profiles is in good correspon-

dence with patient classification (Fig. 1,) the selected 37 probe sets

(table 1 and table S1) could be considered as genes that are

important in the anti-viral and immune response to interferon/

ribavirin therapy.

A very large number of genes are modified by the treatment in

vitro of PBMC with interferon and ribavirin [7,19]. Similar results

have been found recently following the treatment of A549 cells

and Huh 7 cells with IFN-acon1 [10]. Many of the genes listed in

table 1 are known to be involved in the interferon response from in

vitro studies [7,10,18]. In most cases the level of induction for these

genes was much lower in poor response patients than in marked

patients, as would be expected from the relationship to viral titer.

Among the genes we identified as important is IRF-7. This gene

is required for the induction of type I interferons [20–23] and is an

important component of the Toll signaling pathway [24]. Studies

using LPS have indicated that IRF-7 plays an important role in

LPS induced B7.1 activation through the JNK system [25]. B7-1 is

an important co-stimulatory factor required for T-cell activation.

Binding of TLR7 and activation of the NFkB pathway via IRF-7

[26] is required for the endogenous production of interferon-alpha

and beta. Thus the levels of IRF-7 may be important in the overall

Figure 5. The PCA presentation of the divergence between Rapid and poor response patients according to day 0 normalized expression of 35
VT-linked genes across other days. Two first principal components cover 63% of the data variability. The virtual border line between distributions of
Marked and Poor response patients gives three misclassified Marked patients and four misclassified Poor response patients.
doi:10.1371/journal.pone.0000584.g005
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patient response [23], and the endogenous production of IFN-a or

IFN-b would certainly lead to further anti-viral effects. Another

gene recently reported to be involved in the signaling of the

interferon response, is RIG-I, a key ds-RNA sensor protein.

Activation of RIG-I (DDX58) leads to the induction of IRF-3,

IRF-7, and NFkB [27–29]. This pathway is blocked in vitro in

hepatitis C infection by the NS3/4A protein of the virus [29].

However it is unlikely that this occurs in PBMC, since there is no

evidence that PBMC are widely infected with the virus. IFIH1 is

also a DEAD protein with a helicase domain. Its relationship to

RIG-I is unknown. Among the other genes listed in Table 1, many

have been describes as part of the initial response in vivo (in

Chimpanzees) to hepatitis C infection, and are the results of

endogenous interferon production. These include cig 5, (RSAD2),

IFI44, MX1, and the OAS genes [30]. Viperin (cig5) has also been

reported as being induced in the liver in human patients during

hepatitis C infection, presumably by endogenous interferon or

double-stranded RNA [31]. It has been proposed that this gene

product has anti –hepatitis C activity [31]. PLSCR1 has also been

shown to potentiate the anti-viral activity of interferon . When

PLSCR1 expression was decreased by siRNA, higher titers of VSV

and EMC were obtained [32]. G1P3 (IFI-16-6) may function as

a cell survival protein by inhibiting mitochondrial-mediated

apoptosis through the inhibition of caspase 3 activity [33]. Its

role in the anti-viral response or anti-hepatitis response is

unknown. .. Many of the genes on this list have unknown

functions (IFI27, IFIT1, IFIT5, , IFI44, IFI44L, LAMP 3, ,

FLJ20035, IFRG28, DNAPTP6). Other genes are involved in

transcription regulation including RGL1, and TBX3 or translation

repression (SAMD4).). PABPC4 is also known as inducible poly(A)

binding protein and is upregulated in activated T-cells, but not in

resting T-cells [34]. However in this study it was slightly down

regulated. It also appears to be involved in the regulation of IL-2

[35]. G1P2 is identical to ISG15. This protein is a ubiquitin-like

protein which is conjugated to many cellular proteins [36]. It

appears to interfere with protein poly-ubiquitination and protein

degradation. Its role in the interferon response is unknown,

although it is highly induced. USP18, a member of the de-

ubiquitinating protease family of enzymes, removes ubiquitin

adducts from a broad range of protein substrates. Herc 5 and Herc

6 belong to a family of ubiquitin ligases. Thus many genes involved

in protein modification are essential to the anti-viral response. SN

(Sialoadhesion) very highly induced both in vitro and in vivo is

a member of the sialic acid binding immunoglobulin ( Ig)-like

lectins. And is primarily expressed in resident and inflammatory

macrophage populations [37], [38]. SN deficient mice exhibit

changes in B and T-cell populations and it is proposed that this

molecule regulates the immune system [39].

Two genes that are down regulated correlate with the viral

response: RPL22 (ribosomal protein L22), a component of the 60S

ribosome, and eukaryotic translation initiation factor 3, subunit 6

interacting protein. Whether this decrease is involved in virus

inhibition through modifying IRES-dependent translation of the

HCV genome is speculative.

It is of interest that not only inducible genes appear to be a major

component of the interferon response, but also down regulation

(repression) of a translation factor and ribosomal protein.

Since this was an unsupervised analysis and did not take into

account A/P ( absence/present) filtering, some of the genes are

possibly not involved in the anti-viral response, since they were not

present in specific classes of patients as analysed with MAS5 soft

ware. These include BLZF1, EPHB2, PCTK3 and SNF7DC2

Figure 6. The Euclidean measure based hierarchical (UPGM) clustering of patients according to day 0 normalized expression of 35 VT-linked
genes across other days. Marked (pink) and Poor response (green) patients are mostly separated in two branches of the tree. There are three Marked
and six Poor response patients misclassified.
doi:10.1371/journal.pone.0000584.g006
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In summary we have identified key genes in the response to

interferon/ribavirin in hepatitis C patients using a novel method of

analysis. This is based on correlation with decrease in virus titer.

This method has broad utility and can be used to analyze response

to any group of factors influencing biological outcome.

SUPPORTING INFORMATION

Table S1 Contains 166 gene-days of 37 viral titer linked genes

(probe sets). Not less than 3 gene-days of the gene have component

PC2 values more than 5 (these gene-days are pink dots of the

Fig. 4). The component PC2 is PCA second component after

multidimensional scaling of 8 variables: correlation coefficients in

the space of (52*51)/2 dimensions between Gcov_MVcov,

GDcov_MVcov, Gcov_VTcov, GDcov_VTcov, Geu_MVeu,

GDeu_MVeu, Geu_VTeu, GDeu_VTeu for all gene-days.

Columns of the Table S1 are as follows: SID - Affymetrix probe

set ID; DAY - day of the treatment; Static_CA_1013 - log-

transformed and day0 normalized gene expression values [(Ln(di)-

Ln(d0))] for a patient 1013. The response based classification of the

patient and her/his race are identified in the patient’s name;

Slow_CA_1016; Rapid_AA_1018; .................. - 52 patients of the

study; VTeu_Geu - the following 8 columns are correlations

between corresponding vectors in the space of (52*51)/2

dimensions. These correlations are 8 initial variables for the

multidimensional scaling procedure; VTeu_GDeu; MVeu_Geu;

MVeu_GDeu; VTcov_Gcov; VTcov_GDcov; MVcov_Gcov;

MVcov_GDcov; GENE_SYMBOL - the following are gene

names and descriptions; LOCUSLINK; UNIGENE; GENBANK;

GENE; SOURCE_ID; DESCRIPTION; PC1 - the multidimen-

sional scaling first component; PC2 - the multidimensional scaling

second component.

Found at: doi:10.1371/journal.pone.0000584.s001 (0.23 MB

XLS)
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