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The genus Vitis is represented by several coexisting species in Europe. Our study focuses on naturalised rootstocks that
originate in viticulture. The consequences of their presence to the landscape and to native European species (Vitis vinifera ssp.
silvestris) are evaluated. This study compares ecological traits (seven qualitative and quantitative descriptors) and the genetic
diversity (10 SSR markers) of populations of naturalised rootstocks and native wild grapevines. 18 large naturalised rootstock
populations were studied in the Rhône watershed. Wild European grapevines are present in four main habitats (screes, alluvial
forests, hedges, and streamside hedges). In contrast, naturalised rootstock populations are mainly located in alluvial forests,
but they clearly take advantage of alluvial system dynamics and connectivity at the landscape level. These latter populations
appear to reproduce sexually, and show a higher genetic diversity than Vitis vinifera ssp. silvestris. The regrouping of
naturalised rootstocks in interconnected populations tends to create active hybrid swarms of rootstocks. The rootstocks show
characters of invasive plants. The spread of naturalised rootstocks in the environment, the acceleration of the decline of the
European wild grapevine, and the propagation of genes of viticultural interest in natural populations are potential
consequences that should be kept in mind when undertaking appropriate management measures.
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INTRODUCTION
The genus Vitis is represented by several coexisting species in

Europe. Vitis vinifera L. ssp. silvestris (Gmelin) Hegi is the only extant

wild European taxon.

Many spontaneous forms of grapevine cultivars are also

naturalised in Europe. They belong to V. vinifera L. ssp. vinifera,

introduced for at least a thousand years when domesticated forms

of grapevine were spread throughout Europe [1]. Several

American and Asian Vitis species have been introduced during

the last century as rootstock.

In this paper we will only focus on the naturalised rootstocks

and the native European wild grapevines present in natural

environment.

Rootstocks were introduced to Europe after the phylloxera

invasion, a pest which rapidly spread through vineyards, destroy-

ing large areas of sensitive cultivars. Grafting European varieties

on pathogen-resistant rootstock is now a normal procedure and

many varieties of rootstock have been developed by breeders. The

more common American species used for this purpose are: Vitis

riparia Michaux, Vitis rupestris Scheele, Vitis rotundifolia Michaux,

Vitis berlandieri Planchon and Vitis labrusca L.. Other species from

Europe (V. vinifera L.) and Asia (Vitis amurensis Ruprecht) are also

used. Several traits have been selected by breeders, such as

resistances to phylloxera (V. riparia, V. rupestris and V. berlandieri),

nematodes, drought (hybrids berlandieri-rupestris), limestone (V.

vinifera), salt and frost (V. amurensis).

American species are known to easily interbreed and barriers to

hybridisation are mainly phenological [2,3]. Location of glacial

refugia, low contrasted landscape, human influences such as cattle

farming, fire and forest management have induced sympatry which

favours hybridisation of different Vitis species in the central United

States [3], complicating the morphological identification of species.

Vitis species are known to play an important role in plant

communities in the United States. Two species are reported to

produce numerous long-living seeds (V. aestivalis and V. rotundifolia,

[4]), which are able to germinate even five years after burial in the

forest floor. Moreover, their quick and thick growth is able to

effectively change plant communities [5]. These species are most

abundant in moderate to highly disturbed locations. Early stages in

forest development seem to be especially suitable, but individuals

covering mature trees can also occur. V. rotundifolia is reported to

be widespread and not associated with any specific ecosystem [6].

However, three of the main Vitis species used in rootstock breeding

programmes are restricted to streambeds and gullies (V. riparia, V.

rupestris and V. berlanieri [5]). Their presence in floodplains allows

American species to benefit from landscape connectivity created

by streams and rivers [7,8]. In this way, they also partly overlap

the ecological niche of European V. vinifera ssp. silvestris [9].

V. vinifera ssp. silvestris has been used by humans since the Early

Neolithic, as shown by the amounts of pips recorded in

prehistorical sites, in caves and along lakes [2]. Cultivation of

wine or table grapes was developed four to six thousand years ago

in Transcaucasia and rapidly spread out in the Near East and later

in southern Europe, following trade routes [1,2]. Several authors

have suggested that native wild grapevines have been involved in

local domestication events during the spread of viticulture in

Europe [1,2,10–12]. This wild taxon is still considered as a gene

pool for viticulture [13].
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Because of the recent loss of suitable habitats due to direct and

indirect human impact, V. vinifera ssp. silvestris is now endangered

throughout its range. Its distribution across Europe has been

drastically reduced [9] and it is therefore legally protected in some

European countries. The two main known factors threatening wild

grapevine populations are diseases issued from viticulture and

eradication of wild grapevines through forest and river management

[14,15]. Moreover, the human-driven deepening of the water table

allows grapevine pests and diseases to enter within the floodplain

forests, and other woody climbers to become more competitive [9].

As a consequence, populations are generally small and dispersed,

with about five individuals per population in average (pers. obs.).

Our study combines both ecological and genetic approaches to

better understand the current status of Vitis populations in wild

settings in Europe. This study aims to outline occurrences of

naturalised rootstock away from viticulture areas, to define the

overlap of ecological niches between native and naturalised Vitis

groups, to give insights about the escape processes and creation of

networks between naturalised populations, and to evaluate the

spread potential of naturalised populations, especially by consid-

ering viticulture as regular source of genotypes escaping.

RESULTS

Ecology
A total of 24 populations of naturalised rootstocks were identified

at various distances from vineyards (Figure 1 A. to C. and Map

S1). In these populations, the number of adult individuals ranged

from one to over hundred. Additionally seedlings and young plants

were regularly observed (Figure 1 D. and E.).

Populations in screes and alluvial forests were discovered

(Figure 2), representing known habitats of the wild grapevines

[9,16]. In addition, two new habitats were discovered and

designated as hedges and streamside hedges. These two habitats

generally occur in open areas, with a similar vegetation structure

containing a single row of trees surrounded by shrubs. They

essentially differ from screes and alluvial forests by the geo-

morphology of the site (low slope and small area covered by the

population) and the growth strategy of the grapevines which are

positively linked to shrub and grass strata (V_Grass and V_Shrubs).

Distance to water level discriminates streamside hedges from

hedges. Streamside hedges are commonly found along canals, they

differ from alluvial forests by the low alluvial activity of the stream.

Figure 1. Maps of naturalised rootstock populations (based on Map S1). The stars represent the naturalised rootstock populations. Landscape
structures are indicated (red–vineyards, patches of points–forests, grey–floodplain vegetation, squares–crop fields and black–habitations). The black
scale bar is 500 meters long. A. Anthropogenic escaped population located in Switzerland. The escaped individuals are less than 50 meters away from
the vineyard. B. Intermediate site between anthropogenic and natural escaped population. Naturalised rootstock individuals are 500 meters away
from the vineyard, and begin to occupy areas subject to flooding. C. Natural escaped population. The naturalised rootstock individuals are no longer
linked to vineyards and have colonised the river bed in a stream curve. D. Escaping individuals along a road nearing vineyards. E. Seedlings of
naturalised rootstocks growing on the riverbed of a stream in a natural escaped population.
doi:10.1371/journal.pone.0000521.g001
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V. vinifera ssp. silvestris is present in all four habitats, with a regular

frequency (Table 1). Naturalised rootstocks are abundant in alluvial

forests but absent from the screes. One naturalised rootstock

population is outlined in hedges and one in streamside hedges

(Table 1).

Genetics
Naturalised rootstocks and V. vinifera ssp. silvestris individuals clearly

belong to two distinct genetic pools. Three methods (PCoA,

K-means and Bayesian clustering) were used to investigate the

genetic dataset without detecting intermediate individuals

(Figure 3).

The genetic profile of each naturalised rootstock was compared

to a representative subset of rootstock clones cultivated in the

Rhone Valley. No collected individual appeared to be a true-to-

type rootstock clone, according to our reference set based on 20 of

the most common clones in Switzerland and France. Moreover, 19

different genotypes out of the 23 analysed individuals were

discovered.

Rootstocks clearly have a broader genetic diversity, compared

to V. vinifera ssp. silvestris (Table 2). Observed heterozygosities (Ho)

are higher for the rootstock (D = 0.14), but this result is not

significant. The genetic diversity indexes such as allelic richness

(D = 5.70***) and Shannon’s index (D = 0.64***) are significantly

higher for rootstocks. Variance in allele sizes details a wide variety

of alleles for rootstock (VarRepSSR = 22.45, D = 14.56*).

DISCUSSION

Ecology
Screes are generally unlikely to be invaded by alien species [17].

Indeed, naturalised rootstocks have not yet been found in such

environments despite populations being located in viticulture

regions. This situation is typically observed in the Swiss Alps where

viticulture had to exploit hillsides up to an altitude of 1000 meters.

Screes are generally spatially isolated, which limits the income of

naturalised rootstocks to zoochory. Establishment of new popula-

Figure 2. Scatterplot of the PCoA analysis of the ecological dataset (Gower similarity index). The two first axes display 45.97% and 20.92% of the
total variance. Individuals (in black) are labelled according to their habitat (Alluvial Forest, Scree, Hedge, and Streamside Hedge). A total of 20
variables (in grey) are used: slope (%, quantitative), exposition (NSEW or flat, binomial categories), area covered by the population (m2, quantitative),
vegetation type (forest, forest edge or clearing, binomial categories), vertical structure of the grapevine on tree, shrub or grass strata (V_Trees,
V_Shrubs and V_Grasses, semi-quantitative), distance to the water level (m, quantitative), type of stream (river, rivulet, canal, river branch, lake or
absence of water nearby, binomial categories).
doi:10.1371/journal.pone.0000521.g002

Table 1. Occurences of Vitis vinifera ssp. silvestris versus
naturalised rootstock populations in the four different
habitats.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V. vinif. silvestris Rootstocks

Occurences (populations) Total

Alluvial Forests 10 16 26

Screes 12 0 12

Hedges 10 1 11

Streamside Hedges 5 1 6

Total 37 18 55

The sampling represents 124 individuals collected in 55 populations.
doi:10.1371/journal.pone.0000521.t001..
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tions then depends on seed reproduction. Soil conditions, colluvial

activity, or competition with local adapted species, such as

brambles, may explain the absence of seedlings of naturalised

rootstocks in screes.

V. vinifera ssp. silvestris is adapted to screes [18]. Their spatial

isolation protects these locations from direct human disturbances.

Introduction of pests such as phylloxera is therefore hampered by

the ecological features specific to screes. Unfortunately, current

wild grapevine populations are usually small and isolated from

each other (pers. obs.). Many populations also seem to be

senescent and their future mainly relies on vegetative reproduction

(pers. obs.). Anthropogenisation of alpine alluvial regions and the

systematic eradication of wild grapevine populations by forest

management may have played a central role in this isolation.

Consequently, the existing connectivities between alluvial forests

and screes [19,20] was drastically reduced if not halted.

Hedges are a new habitat revealed by our study. In many

aspects, they can be considered as functional extensions of other

known habitats but with a different vegetation structure. These

habitats are arranged in corridors in the landscape, promoting

dispersal of ornithochorous species [21].

A single naturalised rootstock population was found in hedges.

However, its presence shows that some rootstock individuals are

able to settle in such habitats. Many naturalised individuals were

observed in vineyard borders, but they were not included in the

present study as we only focused on habitats distant from

viticulture.

Both non-European and native Vitis species are largely present

in alluvial forests. Vegetative reproduction and abiotic-driven seed

dispersal are, in our opinion, implicated in streamside habitats, like

alluvial forests or streamside hedges. Streams disperse seeds,

pruning wastes, or broken branches to new alluvial locations,

promoting settlement of new populations along the alluvial

network (pers. obs.). These new sites depend on the geomorphol-

ogy of the river. Former riverbeds or stream curves are especially

suitable for new population establishment [5]. Additionally, floods

regularly remove parts of the vegetation and create open areas,

Figure 3. Scatterplot displaying genetic data. Three methods are compared in order to identify individuals: ordination (PCoA calculated on a Jaccard
similarity matrix), non-hierarchical clustering (K-means, with two groups assumed) and Bayesian clustering (Structure 2.0, with admixture model). The
main axis displays 43.48% and 14.93% of the total variance. K-means groups are represented with polygons surrounding individuals belonging to the
rootstock group (dashed line) or V. vinifera ssp. silvestris group (entire line). Bayesian probabilities are represented with pie charts. The white part of
the pie represents the probability to belong to the rootstock group, while the grey part the V. vinifera ssp. silvestris group. Six common cultivated
rootstocks were included in the analysis (Asia1–V. amurensis, US1–SO4 cl 5, US2-Rupestris du lot cl 110, US3-Riparia gloire cl 1, US4-Richter 110 cl 7,
US5–V. aestivalis). Hybrids between both groups are clearly absent. Moreover, none of the 23 naturalized rootstocks collected were a true-to-type
clone of the cultivated rootstocks included in the analysis.
doi:10.1371/journal.pone.0000521.g003

Table 2. Compared genetic diversity indices of Vitis vinifera
ssp. silvestris versus naturalised rootstock populations.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

V. vinif. silvestris Rootstocks D p-value

N.indiv 101 23 — —

Ho 0.58 0.72 0.14 0.106

Rs 6.5 12.2 5.70 *** 0.002

Shannon Index 1.35 1.99 0.64 *** 0.003

VarRepSSR 7.89 22.45 14.56 * 0.049

N.indiv–Number of individuals included in the analysis, Ho-observed
heterozygosity, Rs-Allelic Richness per locus, Shannon Index of diversity,
VarRepSSR-variance in allele sizes, D is difference between the statistics of both
taxa, p-value is calculated with the non-parametric Wilcoxon test. The sampling
is exhaustive for populations of V. vinifera ssp. silvestris and one to four
individuals were collected in the escaped rootstock populations.
doi:10.1371/journal.pone.0000521.t002..
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covered with sand, that are free of competition. For instance,

gravel bars in alluvial zones are known to be suitable sites for alien

species [22].

At the convergence of small streams, the main rivers may also

act as collectors of naturalised species, and generally shelter

naturalised rootstocks proliferations.

Many discovered sites may originate from such dispersal

strategies as they were found close to large vegetal deposits

accumulated during flooding. Along the original Rhone riverbed,

in Lapalud (84), a dense cover of rootstock seedlings was observed

on the ancient riverbeds. In that case, the large flood of the winter

2003–2004 may have played a central role in the long-distance

abiotic-driven seed dispersal event. Similar occurrences were

found along the main tributaries of the Rhone and Durance rivers

(Codollet (31), Baix (07) or Villeurbanne (69)). This process has

also been documented in European grapevines [9].

Naturalised rootstocks undoubtedly originate in viticulture

areas. Their escape process is not yet documented. We suggest

two origins: Anthropogenic escaped populations, and natural

escaped populations. The two functional types of naturalised

populations are linked, and belong to a source-sink metapopula-

tion system. The transition between the anthropogenic and natural

escaped populations is recognizable on vegetation maps (figure 1,

A. to C. and Map S1).

Anthropogenic escaped populations represent directly contam-

inated zones and originate from management of viticulture. These

populations generally cover important surfaces and constitute

active sources of escaping individuals. Vineyard edges and

abandoned vineyards belong to this category. These areas and

their surroundings are often covered with bushes colonised by

rootstocks [23].

Genetics of such populations are expected to vary greatly

depending on the considered naturalised rootstock. The official

rootstocks in France [24] are dioecious, but both sexes are allowed

in vineyards. For instance, Riparia gloire de Montpellier,

Rupestris du lot, Teleki 5C and SO4 are common male clones.

Anthropogenic escaped populations constituted with these root-

stocks are expected to be clonal since only vegetative reproduction

can multiply individuals. 5BB Kober, 101-14 Millardet et de

Grasset, 161-49 Couderc and Fercal are examples of common

female rootstocks. Among them, five common rootstocks in Spain

were shown to be fertile in semi-natural conditions (5BB Kober:

24.4 seeds per bunch (SPB), 161-49 Couderc: 76.6 SPB, 19-62:

17.9 SPB, 41B MGT: 18.7 SPB and 1202C: 28.8 SPB [25]). Those

varieties can therefore reproduce in a vegetative or a sexual way.

Production of seeds depends on pollen availability, which may

have many origins: (I) the rootstock itself, (II) an adjacent

naturalised male population or (III) the European cultivars. The

rootstock may self-pollinate depending on its hermaphrodism rate

(expected to be low, Reisch and This, personal communication).

An adjacent anthropogenic escaped population constituted by

male rootstocks may be the paternal parent. Its presence would

depend on composition and arrangement of rootstocks in

vineyards. European cultivars could also pollinate anthropogenic

escaped populations. The low genetic barriers are exploited by

breeders to produce interspecific varieties. Sexual reproduction

would probably lead to a huge diversity of genotypes in such

populations, as Vitis cultivars are known for their high level of

heterozygosity [26].

Natural escaped populations benefit from the dispersal strategy

of the species and the existing connectivity of the landscape. Those

populations are the direct consequence of an invasive process

followed by escaped species. The settlement site is distant from

vineyards and requires a long distance colonisation event. On the

local scale, the presence of natural escaped populations directly

depends on geomorphological and landscape structure parameters.

These populations of rootstocks can be located in convergence

zones such as alluvial regions, allowing several different rootstock

varieties to meet. The huge available diversity of rootstocks is

revealed once the plant escapes and crosses with other naturalised

individuals. With 19 different genotypes out of 23 individuals, our

results may suggest that this phenomenon is already under process.

Consequently, these populations are likely to acquire a large

genetic diversity in a short term, depending on their location and

potential contacts with other naturalised individuals.

Genetics
Our results show that naturalised rootstocks and wild grapevine

individuals clearly belong to two distinct genetic pools, confirming

previous results [27]. Moreover, no hybridised or introgressed

individual could be detected in our sampling. Consequently, we

assume that our diversity measurements are not likely to be biased

by including hybrids in one or the other pool, which would

artificially increase the genetic diversity indices.

The ecological niche of European wild grapevines is large and

complex. This may explain the high genetic diversity indices

shown by our results and by other European studies [26,28].

Interestingly, rootstocks show even higher diversity indices even

though they are nearly restricted to alluvial zones. This high

observed diversity clearly outlines the wide geographic origins of

the naturalised rootstocks compared to European wild grapevines

[29–31]. Indeed, rootstocks are obtained by selection and crosses

of Vitis species of American, Asian and European origin, thus

mixing a large pool of genes.

Naturalised rootstock populations show additional interesting

features, they possess many traits of vine growing interests.

Rootstock varieties were developed to fit a given environment, e.g.

V. berlandieri is used in crossings for its tolerance to calcareous soils.

Additionally, resistances to cultural pests and diseases such as

phylloxera, downy mildew or powdery mildew may confer to

naturalised rootstocks a strong competitive advantage compared to

the native taxa, if a selection pressure is present.

Several studies outlined the wide genetic diversity of non-native

species in the United-States (reviewed by Ellstrand et al. (2000)

[32]). Non-native species generally arise from multiple introduc-

tion events. They provide genotypes and alleles from disparate

sources. If introduced populations spread and coalesce, there is

a ‘‘great opportunity for hybridisation among these independent

lineages’’. Indeed, hybrid-derived populations are found to have

more genetic variation than parent species. Such hybridisation

events may explain the origin of new invading species.

Conclusion
The four different objectives of the paper were adressed.

Naturalised rootstocks are present in the ecological niche of V.

vinifera ssp. silvestris. Especially in alluvial zone, they compete with

the native taxa and are able to compromise its survival. As

viticulture represents constant sources of new alien populations,

this phenomenon concerns European vineyards near to alluvial

ecosystems. Current naturalised populations are well established in

these functional webs, and they may not have yet colonised the

entire river network, but have the potential to do so. Modelling

studies should be conducted to better define the potentially

invaded sites.

The accumulation of rootstocks in natural escaped populations

tends to create hybrid swarms of rootstocks. These progenies have

a huge diversity and benefit from exchanges of several genes of

Vitis Complex in Europe
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viticultural interest. Thus new introduced genes in viticulture

environment may spread in the naturalised rootstock network,

leading to a rapid loss of control of escaped genes. These latter

populations may represent a clear danger and should remain

under control via appropriate management measures:

N Properly define the identity of wild grapevines in order to avoid

misidentifications or refer to Vitis specialists for a clear

identification of individuals.

N Eliminate naturalised populations by considering the escape

process: (I) vineyards borders, (II) hedges, (III) alluvial zones.

Many important questions are proposed to stimulate researches

about this complex situation. Will the naturalised rootstocks pool

widen its ecological niche, especially in the context of its ability to

exchange genes of interest? What would be the consequences of

such exchange?

At the moment, no crosses between wild grapevines and

naturalised individuals have been found. As sympatry between

both taxa is a reality, questions about genetic barriers are of

concern. Do they rely on sexual incompatibility, or are ecological

causes (such as phenology mismatches) involved?

Naturalised rootstocks must be controlled. Their presence in the

landscape is a consequence of human activity and they should be

treated as an invading species before representing a real threat.

MATERIALS AND METHODS

Field data collection
The study area includes the Rhone and the Durance Valleys,

extending from the Alps (Valais, Switzerland) to the Mediterra-

nean Sea (Bouches-du-Rhône, France). Only ‘‘natural’’ popula-

tions distant from vineyards were considered. A preliminary study

based on a good knowledge of the general ecology of wild

grapevines, known locations, vegetation surveys and maps [33–36]

targeted areas with high potential.

Each sample location was recorded by GPS. Pictures of the site

and of some individuals were taken. Ecological data such as slope

(%, quantitative), exposition (NSEW or flat, binomial categories),

area covered by the population (m2, quantitative), vegetation type

(forest, forest edge or clearing, binomial categories), vertical

structure of the grapevine on tree, shrub or grass strata (semi-

quantitative), distance to the water level (m, quantitative), type of

stream (river, rivulet, canal, river branch, lake or absence of water

nearby, binomial categories) were collected for each site.

In the field, four different habitats could be easily differentiated

and designated as hedges, riparian forests, streamside hedges and

screes, according to Delarze et al. [37]. The 20 ecological variables

were investigated with an ordination (PCoA calculated with

a Gower similarity index, Figure 2). The habitats were not

included as variables in the analysis, but were used to label the

ordination, which confirmed their distinct identities.

Plant Material
Morphological identification of European grapevines from Asian or

American rootstocks was based on phenotypic traits [2,38]. For

instance, the American rootstocks have broader than larger trilobate

leaves. Each of the three lobes ends in a narrow apex, and the

underside is glabrous. The sinus is widely open at the insertion of the

petiole. The stems and petioles are reddish. The plant is dioecious. In

autumn, it forms short bunches (10 cm), of round black berries.

The floral morphology, leaf characteristics and variation

associated with V. vinifera ssp. silvestris [2] leads to many errors in

vegetation surveys. General trends for leaf morphology can still be

observed for European wild grapevines, despite the existing

variability. Leaves are small, five-sided, and hairy on the lower

surface. Pips are small and round, with an apiculate apex [39].

Chalazal ornamentation lies in the centre of the dorsal face, and

the carina is deeply shaped on the ventral face. Naturalised

European cultivars return to wild phenotypes and are thus difficult

to distinguish; however the remaining individuals still have

hermaphroditic flowers and cultivar shaped pips (pers. obs.). We

do not consider these in the current study.

Fresh leaves were sampled and directly stored in silica-gel. A

preliminary identification of grapevines was performed in the field

and confirmed by our SSR analysis. The sampling is exhaustive

for populations of V. vinifera ssp. silvestris and one to four individuals

were collected in the naturalised rootstock populations. No

European cultivars were detected in our dataset. Fifty-five popula-

tions containing either wild grapevines or rootstocks were selected for

the current study, representing 124 individuals. A total of 20

common cultivated rootstocks were included in the analysis. This

reference dataset was provided either by our own SSR analysis

(Asia1–V. amurensis, US1–SO4 cl 5, US2– Rupestris du lot cl 110,

US3-Riparia gloire cl 1, US4–Richter 110 cl 7, US5–V. aestivalis) or

by consulting the Swiss Vitis Microsatellite Database [40] (Grézot cl

1, Fercal cl 242, Couderc 3309 cl FVA3, Dufour cl 11F, 3006-1,

Couderc 161-49 cl 176, Gravesac, Mgt. 41B cl 153, Kober 5BB cl

114, Mgt. 101-14, Kober 125 AA cl 136, Mgt. 420-A cl 10, Teleki cl

8b, and Teleki 5C cl 236). The SVMD dataset was not included in

figure 3, as only six SSR markers were available online.

DNA amplification and GeneScan
DNA was extracted from dried leaves, following the CTAB

extraction protocol from Rogers and Bendich (1985) [41].

Polyvinylpyrrolidon (PVP) was added to remove Polyphenols and

0.75 M Ammonium acetate was used to increase DNA purification.

DNA amplifications were done in a 15 ml reaction volume, with

1 ml of DNA, 1.5 mM MgCl2, 0.4 U Taq polymerase (promega),

16PCR buffer, 200 mM of dNTP, 0.5 mg/ml Beef Serum

Albumin and 20 pM primers.

Our primer set was constituted with six SSR primers, chosen as

a core-set by the ‘‘International Grape Genetics Community’’ [42]

(VVS2, VVMD5 VVMD7, VVMD27, ssrVrZAG62 and

ssrVrZAG79) and was completed with four additional markers

(VVMD6, VVMD17, VVMD21 and VVMD25 [27,29,43,44]).

One out of each primer pair was labelled with either 6-FAM,

PET, VIC or NED (Applied Biosystems). Amplification products

were diluted ten fold before running GeneScan. Genotyping was

performed in a four-colour multiplex using an ABI3100 sequencer.

The raw data set was interpreted with GeneScan 3.7 and

Genotyper 3.7 [45,46].

Statistical analysis
The SSR dataset was used to separate the European wild

grapevines from the rootstocks. For this purpose, three methods

were confronted: an ordination applied on a Jaccard similarity

index (calculated on transformed SSR dataset-presence/absence

format of each allele), a non-hierarchical clustering method (K-

means, applied on the same transformed SSR dataset, with two

groups assumed and 1000 iterations) and finally a bayesian-

clustering method (Structure 2.0 [47], assumptions: two groups,

admixture model with standard settings, 200000 Burn-in period

and 1000000 Reps). Those three approaches revealed that

naturalised rootstocks and V. vinifera ssp. silvestris were clustered

in two distinct genetic pools (Figure 3). These latter were then

compared to the four habitat categories highlighted by the field
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prospecting and the analysis of the ecological dataset via

a contingency table (Table 1).

Finally, general statistics were calculated (on the non-transformed

SSR dataset) for both grapevine pools in order to better understand

the genetic features of the naturalised rootstocks (Table 2). Our

sampling method restricted the use of population genetic statistics, as

only one to four individuals were sampled in populations of

naturalised rootstocks. We therefore chose to avoid the use of

population genetic statistics (such as F-statistics) and focused on

general statistics performed on each pool separately: the naturalised

rootstocks group versus V. vinifera ssp. silvestris group.

We used the following statistical programmes: FSTAT [48],

Genetix [49] and MSA [50]. Measured indices were: observed

heterozygosity (H.obs), Shannon’s index of diversity [50], Number

of alleles per locus (Rs–Allelic Richness independent of sample size

[51]), and variation of repeats in the SSR motif (VarRepSSR-

independent of sample size [50]). Statistical significance was based

on the mean overall loci and tested with the non-parametric test of

Wilcoxon. R (CRAN) [52] was used for data handling and tests

performing.

SUPPORTING INFORMATION

Map S1 Distribution of the studied populations. Distribution of

natural and anthropogenic escaped populations of rootstocks,

within the studied area. (This KML file can be viewed with the

Google Earth mapping system.)

Found at: doi:10.1371/journal.pone.0000521.s001 (0.00 MB ZIP)
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19. Schwarzenbach H (1968) Über das Vorkommen der Wildrebe Vitis silvestris

Gmel. im Wallis. Die Wein-Wissenschaften 23: 145–156.

20. Desfayes M (1989) La vigne sauvage en Valais. Bulletin de la Murithienne 107:

161–165.

21. Forman RTT, Godron M (1986) Landscape ecology. New York; Chichester

[etc.]: J. Wiley. pp 640.

22. Planty-Tabacchi A-M, Tabacchi E, Naiman RJ, Deferrari C, Decamps H (1996)

Invasibility of species-rich communities in riparian zones. Conserv Biol 10:

598–607.

23. Laguna E (2003) Sobre las formas naturalizadas de Vitis en la Comunidad

Valenciana. I. Las especies. Flora Montiberica 23: 46–82.

24. ONIVINS (2007) Liste des clones agréés par variété de porte greffe. Available:
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relations avec le compartiment cultivé. Genet Sel Evol 33: 289–304.

29. Sefc KM, Regner F, Turetschek E, Glossl J, Steinkellner H (1999) Identification

of microsatellite sequences in Vitis riparia and their applicability for genotyping of
different Vitis species. Genome 42: 367–373.

30. Pollefeys P, Bousquet J (2003) Molecular genetic diversity of the French-

American grapevine hybrids cultivated in North America. Genome 46:
1037–1048.

31. Lin H, Walker MA (1998) Identifying grape rootstocks with simple sequence

repeats (SSR) DNA markers. Am J Enol Viticult 49: 403–407.

32. Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the
evolution of invasiveness in plants? Proc Natl Acad Sci U S A 97: 7043–7050.
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d’Amelioration des Plantes 12: 19–44.

40. Vouillamoz J, Frei A, Arnold C (2006) SVMD-Swiss Vitis Microsatellite
Database. Available : http://www.unine.ch/nccr/svmd. Accessed 2007 Mai 8..

41. Rogers SO, Blendich AJ (1985) Extraction of DNA from milligram amounts of

fresh herbarium and mummified plant tissues. Plant Mol Biol 5: 69–76.

42. This P, Jung A, Boccacci P, Borrego J, Botta R, et al. (2004) Development of

a standard set of microsatellite reference alleles for identification of grape

cultivars. Theor Appl Genet 109: 1448–1458.

43. Bowers JE, Dangl R, Vignani R, Meredith CP (1996) Isolation and

characterization of new polymorphic simple sequence repeat loci in grape (Vitis

vinifera L.). Genome 39: 628–633.

44. Bowers JE, Dangl GS, Meredith CP (1999) Development and characterization of

additional microsatellite DNA markers for grape. Am J Enol Viticult 50:

243–246.

45. Applied Biosystems (2001) ABI PRISM Genotyper 3.7 NT.

Vitis Complex in Europe

PLoS ONE | www.plosone.org 7 June 2007 | Issue 6 | e521



46. Applied Biosystems (2001) ABI PRISM GeneScan 3.7.

47. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure
using multilocus genotype data: linked loci and correlated allele frequencies.

Genetics 164: 1567–1587.

48. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and
fixation indices. 2.9.3 ed. UNIL-Lausanne. Available: http://www2.unil.ch/

popgen/softwares/fstat.htm. Accessed 2007 Mai 8.
49. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996) GENETIX

4.05, logiciel sous Windows TM pour la génétique des populations. In:

Laboratoire Génome P, Interactions, editor. Montpellier (France): CNRS UMR
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