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Background. We applied the Virtual Northern technique to human brain mRNA to systematically measure human mRNA
transcript lengths on a genome-wide scale. Methodology/Principal Findings. We used separation by gel electrophoresis
followed by hybridization to cDNA microarrays to measure 8,774 mRNA transcript lengths representing at least 6,238 genes at
high (.90%) confidence. By comparing these transcript lengths to the Refseq and H-Invitational full-length cDNA databases,
we found that nearly half of our measurements appeared to represent novel transcript variants. Comparison of length
measurements determined by hybridization to different cDNAs derived from the same gene identified clones that potentially
correspond to alternative transcript variants. We observed a close linear relationship between ORF and mRNA lengths in
human mRNAs, identical in form to the relationship we had previously identified in yeast. Some functional classes of protein
are encoded by mRNAs whose untranslated regions (UTRs) tend to be longer or shorter than average; these functional classes
were similar in both human and yeast. Conclusions/Significance. Human transcript diversity is extensive and largely
unannotated. Our length dataset can be used as a new criterion for judging the completeness of cDNAs and annotating mRNA
sequences. Similar relationships between the lengths of the UTRs in human and yeast mRNAs and the functions of the proteins
they encode suggest that UTR sequences serve an important regulatory role among eukaryotes.
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INTRODUCTION
Now that the human genome sequence is nearly complete [1–3],

the next step is to characterize the organization, function, and

diversity of the human genome. Reliable computational detection

and analysis of genes in mammalian genomes remains a challenge

due to the low percentage of coding sequence, the existence of

many short exons and long introns, and the high diversity of

alternate transcript forms [1]. Therefore, most efforts to annotate

the human genome have relied heavily on the analysis of expressed

sequences generated from human RNA. Recently however, the

focus has shifted from the generation of ESTs, which are generally

short clones representing a fraction of their parent transcript, to

the generation of full-length cDNAs. Due to a number of large-

scale full-length cDNA sequencing projects, over 20,000 human

genes have been validated by at least one putative full-length

cDNA [4].

Although full-length cDNA sequencing projects provide the

basis for virtually all human gene identification and analysis, they

suffer from several limitations. First, they are expensive and labor-

intensive. Second, there are no fool-proof methods for cloning only

full-length cDNAs, or identifying cDNA clones that are not full-

length. There are a number of well-accepted cloning methods that

enrich for full-length cDNAs [4], but these methods may yield the

true 59-end only 80% of the time [5]. Methods for identifying

cDNA clones that are not full-length typically involve either

comparison of the clones to other clones, computational analysis of

the cDNA’s sequence to identify a translational initiation site, or

computational analysis of the genome sequence upstream from the

cDNA to identify a putative promoter [6]. Although all of these

approaches are valid and important analyses, none of them

actually ensure that the clone is full-length, especially in cases

where the full transcript may be difficult to clone, for example, due

to secondary structure in the transcript. Third, long transcripts are

under-represented in cDNA clone libraries. Finally and most

importantly, full-length cDNA projects suffer from a strong

sampling bias due to very large differences in expression levels

between different transcripts. For that reason, only the most

abundantly expressed transcripts are well-sampled in cDNA

libraries. Most genes are represented in these libraries by fewer

than two full-length transcripts [4], allowing many inabundant

transcripts and transcript variants to go undetected [7]. Further-

more, the small numbers of cDNA clones representing most genes

makes estimates of the relative abundance of transcripts from

tissue to tissue, and variant to variant, unreliable. Due to these

limitations, it is unlikely that the goal of completely characterizing

the human transcriptome, including all transcript variants across

all tissues, disease states, and developmental stages, will be

accomplished by full-length cDNA sequencing alone.

Characterization of RNA transcripts by length does not have

the resolution to identify precise sites of transcript initiation or

termination, precise splice sites, or even exon-intron structure, but

it does provide an unbiased measurement of transcript length,

a quantity that is relatively difficult to obtain through full-length

cDNA sequencing alone. This independent characterization of

mRNA length is useful in determining if clones are in fact full-

length, and provides an additional parameter for computationally

identifying genes from the genome sequence. By comparing our
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length measurements to the Unigene, Refseq [8], and H-Inv [4]

databases, our measurements allowed us to evaluate current

progress in cataloging the transcriptome.

RESULTS

Evaluation of the human Virtual Northern
We applied the Virtual Northern technique [9] to the human

genome in order to further characterize the human transcriptome.

Virtual Northern analysis uses gel electrophoretic separation of

mRNAs by length, and DNA microarray analysis to read out the

results for a large set of genes in parallel. Briefly, we separated

human brain mRNA by length on an agarose gel, sliced the gel

into 50 narrow sections each containing RNA from a small range

of lengths, and hybridized the RNA from each slice to a separate

cDNA microarray (Figure 1). The data for each cDNA from all 50

microarrays were combined into a profile that peaks in the slice, or

slices, that contain mRNAs complementary to a given cDNA

sequence represented on the microarray (Figure 2). We searched

each length profile for peaks by l1 norm baseline deconvolution,

and estimated a confidence value for each peak with a boot-

strapping approach. The experiment was performed in triplicate

and the results from all three replicates were combined to create

a dataset of peaks along with their associated confidence values for

each cDNA. Concordance between the three replicates was

strongly correlated with microarray signal strength, ranging from

virtually 100% for the most strongly expressed genes to almost 0%

for the most weakly expressed genes. Replication of the

experiment greatly reduced the noise, and increased confidence

of many weak but legitimate peaks. Using a set of well-studied

(‘‘gold standard’’) genes with mRNAs of known length, we

converted the locations of the peaks within each profile into

transcript lengths in nucleotides. The conversion explicitly

accounted for the length of each transcript’s poly(A) tail by adding

a fixed length to each known length. A fixed length of 225

nucleotides was calculated to provide the best fit between the peak

locations and the known transcript lengths. We also explicitly

calculated our accuracy, allowing us to calibrate our bootstrap
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Figure 1. Virtual Northern scheme.
doi:10.1371/journal.pone.0000460.g001
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values to the probability that an observed peak represents a real

transcript (the true positive rate).

The resulting dataset contained 21,933 combined length profiles

with peaks ranging in confidence from 6% to 100%. At a high

stringency 90% confidence cutoff, we identified 8,774 clones with

at least one length, and a mean confidence for all peaks of 97%

(Table 1). Of those 8,774 clones, 118 (1.3%) had a two peaks. The

mean and median of all lengths at 90% were 2,165 and 1,996

nucleotides respectively. These values are similar to a poly(A) tail-

corrected mean of 2,635 nucleotides and median of 1,965

nucleotides previously estimated for the human genome [1].

Using information downloaded from the National Center for

Biotechnology Information (NCBI) website (http://www.ncbi.nlm.

nih.gov/Ftp/) on August 8, 2005, each cDNA clone spotted on the

microarrays could be associated with the human gene or genomic

locus from which it derives [8]. Out of 41,418 cDNA clones on the

microarrays, 31,708 (76.6%) of them could be assigned to at least

one Entrez gene (Table 2). The remaining 9,710 clones with no

assignment to an Entrez gene represent putative expressed

sequences whose cognate genes remain uncharacterized. Since

multiple clones can map to the same locus, the 31,708 clones

represent 15,552 distinct genes. We identified a transcript at

$90% confidence for 6,238 (40%) of the 15,552 currently

annotated human genes represented on the microarrays. As

shown in Table 2, the percentage of clones for which we identified

a peak was much lower among the clones with no assignment to an

Entrez gene than those with a gene assignment. This probably

reflects the enrichment in this set of clones for cloning artifacts, or

rarely expressed genes that would be difficult to detect by either

hybridization or cDNA cloning based methods.

The precision with which we measured human transcript

lengths was estimated based on the deviations between transcript

lengths inferred from the Virtual Northern method and the lengths

of the mRNAs in our ‘‘gold standard’’ set (see Materials and

Methods), and on the variation among multiple measurements for

the same gene. As we previously found in our analysis of yeast

transcripts, one major limitation of precision was the precision

with which the gel was sliced [9]. In this case, due to the

approximately exponential relationship between gel mobility and

RNA length, the range of lengths represented by each 2 mm slice

increased from 24 to 331 nucleotides with decreasing distance

from the origin over the range analyzed. However, as a fraction of

RNA length the variation represented in each slice remained

a constant 5.6%. Nevertheless, the average absolute deviation
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Figure 2. Example length profile with deconvolution results. An example length profile is shown in blue. The normalized ratio from each length
fraction is plotted against the length fractions in order, where the first length fraction is the one with the highest gel mobility. The rolling baseline is
shown in green, and the deconvolution result is shown in red.
doi:10.1371/journal.pone.0000460.g002

Table 1. Results of data filtering and peak finding
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Spot type
Number of spots
on each array

Number of profiles with at least
one peak of 90% confidence

Human 41418 (39355) 8774 (7989)

M. jannaschii 320 (40) 189 (26)

Nonhuman 175 (89) 0

Total 41913 (39484) 8963 (8015)

Since these microarrays contained duplicated spots, the parentheses represent
the number of unique spots or profiles in the dataset.
doi:10.1371/journal.pone.0000460.t001..
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Table 2. Association between cDNA clones and human genes
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of human clones with a
peak of at least % confidence 90% Whole array

Assigned to at least one human locus 7905 (7146) 31708 (29972)

Assigned to only one human locus 6819 (6485) 28244 (27055)

Not assigned 869 (843) 9710 (9383)

Total 8774 (7989) 41418 (39355)

Since these microarrays contained duplicated spots, the parentheses represent
clones after averaging.
doi:10.1371/journal.pone.0000460.t002..
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between 184 Virtual Northern measurements and the length of

their matching gold standard mRNA was 12.2%. This estimation

of precision is twice the width of each slice, but it is likely an

overestimate of the true deviation. As shown in Figure 3, sixteen

outliers were excluded from the calculation of the best fit line.

With those outliers also excluded from the precision calculation,

the average absolute deviation becomes 5.5%. We therefore consider

5.5% (approximately the gel slice width) to be a more accurate

estimate of our measurement precision since the larger estimate is

probably inflated due to the inclusion of false positive measurements.

Additionally, the deviations between multiple measurements for the

same gene were calculated. That average standard deviation was

calculated to be only 2.7% over 1,846 combined profiles represent-

ing 492 unique sequences represented on the microarrays. Since the

variations among replicate measurements are substantially less than

the imprecision in the transformation of gel mobility to mRNA

length, we conclude that the measurement precision is 5.5%,

approximately the gel slice width.

Unigene Cluster Analysis
Many of the distinct clones in our dataset for which we measured

a transcript length are associated with the same Unigene cluster.

We examined all such clusters to determine if the length

measurements from all clones associated with the same cluster

were the same. Distinct clones belonging to the same Unigene

cluster can sometimes detect alternative transcripts with distinct

expression patterns (Jeremy Gollub, personal communication).

This discordant behavior can be caused by a number of technical

factors including chimeric or misidentified clones, Unigene cluster

or human genome assembly errors, or cross-hybridization artifacts.

A more interesting cause of discordant expression patterns is the

inclusion of clones in the same Unigene cluster that inadvertently

represent different transcript variants of the same gene.

We began by analyzing the transcipt length measurements

derived from microarray hybridization data for the 1,236 cDNA

clones that map to more than one Unigene cluster. Clones can

map to as many as three clusters due to any of the factors discussed

above. We compared the length measurements for each of the

1,236 clones to the length measurements of all of the other clones

in our dataset that map to any of the same clusters. For many of

the clusters in this set, there were no other clones in our dataset

that mapped to the same cluster, so in many cases we could only

compare a clone to a subset of the clusters to which it belongs. We

performed this analysis on lengths of 34%, 50%, and 90%

confidence, but obtained similar results in each case. The

following represents the analysis of the 90% confidence lengths.

For 217 clones, we could compare the clone to only one cluster. In

108 (50%) of those cases, the clone matched (i.e. shared a length in

common with) that cluster. For 115 clones, we compared the clone

to two clusters. In 61 (53%) of those cases the clone matched only

one cluster, in another 29 (25%) of those cases the clone matched

both clusters, and in 25 cases (22%) it matched neither. For the two

clones that we could compare to three clusters, one matched one of

the three clusters and the other matched two. Although we were not

able to compare each clone to each of the clusters to which it

belongs, there is clearly a high prevalence of both clones that match

only a single cluster and clones that match multiple clusters.

Therefore, the set of clones that map to multiple Unigene clusters are

not simply incorrectly assigned to multiple clusters. Many appear to

hybridize to mRNAs transcribed from multiple genes.

We then analyzed 4,883 Unigene clusters with an average of 2.6

clones per cluster (Table 3). Excluding clones that mapped to

multiple Unigene clusters, we grouped the clones from each cluster

into subclusters based on whether or not the microarray

hybridization results derived from those clones yielded the same

transcript length measurements. Clones yielding concordant

transcript lengths were placed in the same subcluster while clones

yielding discordant transcript lengths were placed in separate

subclusters. Using lengths of at least 90% confidence, 28% of the

Unigene clusters were broken up into 2 to 3 subclusters.

We also identified groups of clones from the same Unigene cluster

containing overlapping sequence. Using information available from

the UCSC genome browser [10], we determined the genome

coordinates of the cDNA clones in our dataset. Excluding clones that

mapped to multiple locations in the genome, we subclustered clones

belonging to the same Unigene cluster on the basis of whether or not

their genome coordinates were overlapping. With the 90%

confidence length set, 67% of the Unigene clusters were broken up

into 2 to 5 subclusters based on their genome coordinates.

We then compared the length-based subclusters to the co-

ordinate-based subclusters in order to explore the possibility that
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Figure 3. Calibrating the relationship between gel mobility and
transcript length. The precise gel mobilities of all peaks from gold
standard genes are plotted against the natural log of the sum of their
matching Refseq length and an estimated poly(A) tail length of 225
nucleotides. The least squares fit to a line is shown by a black line with
the parameters y = 0.054731 x+5.997276 (R2 = 0.99). Closed circles
represent points used to determine the calibration line. Points shown
by open circles were excluded from the least squares calculation.
doi:10.1371/journal.pone.0000460.g003

Table 3. Unigene cluster analysis
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Number of clones/cluster Number of clusters

2 3027

3 1168

4 437

5 170

6 41

7 19

8 13

9 3

10 2

11 2

12 1

Total 4883

doi:10.1371/journal.pone.0000460.t003..
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the length-based subclusters represent alternate transcript variants

that are being detected by clones that map to distinctly different

sections of the underlying gene. As a result, we found a high

degree of similarity between the patterns of length- and co-

ordinated-based subclustering. With the 90% confidence length

set, 64% of the pairs of clones in different length subclusters were

also in different coordinate subclusters. This was a significantly

higher percentage than would be expected based on chance (chi-

squared test, p = 7.261029). One interesting result is shown in

Figure 4 for four clones representing the glucose transporter

SLC2A1 gene. IMAGE clone 151248 was split from the other two

clones in its Unigene cluster on the basis of both length and

genome alignment. Although IMAGE clones 207358, 25389, and

2547341 are perfect matches for the 39-end of the SLC2A1 gene

and identify lengths that agree with the annotated SLC2A1

transcript, clone 151248 aligns within an intron and identifies

a distinctly shorter transcript. Clone 151248 may therefore

represent a novel exon of SLC2A1, a novel gene residing in

SLC2A1’s intron, an unspliced SLC2A1 pre-mRNA species, or even

accidentally cloned genomic DNA. Based on additional EST

evidence and conservation with multiple other vertebrate genome

sequences [10], it appears to represent a novel SLC2A1 transcript

as shown in Figure 4. Likewise, the majority of discrepancies

between lengths measured by different clones from the same

Unigene cluster that we have identified are due to clones that

deviate from the established annotation. Many of them likely

represent novel transcripts.

Comparison of measured transcript length to the

Refseq and H-Inv databases
We compared our transcript length dataset to the lengths of the

sequences in the human Refseq database. Using information

downloaded from the NCBI website (http://www.ncbi.nlm.nih.

gov/Ftp/), we were able to associate 17,364 unique clones for

which we had a total of 23,324 length measurements with 11,530

Entrez genes, and 15,104 Refseqs. There are more Refseqs than

genes, because the Refseq database stores alternate transcripts

associated with the same loci, so some genes in the dataset have as

many as 21 associated Refseqs.

We compared each of the length measurements in our dataset

with each of the Refseqs for the clone’s parent gene. We declared

a match if our length measurement deviated by no more than

three fraction lengths (16.5%) from a poly(A) tail-corrected Refseq

length for the same gene. Considering only length measurements

of $90% confidence, 61% of 7,182 lengths matched a Refseq. In

order to determine the significance of the match between Refseq

and our measurements, we used a permutation analysis to

calculate the match that would occur between our data and

Refseq based on chance. The association between genes and

Refseq lengths was randomized 10 times, and each time the match

between our data and the Refseq lengths of unrelated genes was

calculated. The frequency of random matches was consistently

about 22% across all permutations at all confidence levels. For the

length measurements that did not match their corresponding

Refseq lengths, we calculated which was longer. The Refseq was

typically longer. At 90% confidence, the Refseq length exceeded

our length measurement in 4,378 cases (77%).

It is not entirely surprising that our transcript length dataset

matches Refseq only half of the time. If we assume that the human

genome encodes 25,000 genes [3], that 74% of all genes are

alternately spliced with an average of 2.7 alternate splice forms

[11,1,4], and that 24% of all genes have alternate polyadenylation

sites [1], we would conservatively estimate that the human genome

encodes a total of 70,000 different transcripts. As of this writing the

Refseq database (Release 12) contains 29,476 mRNA sequences,

approximately 42% of the estimated 70,000. Furthermore, the

brain is known to be the tissue with the greatest amount of

alternative splicing [12,13]. It is therefore likely that our Virtual

Northern experiment has detected many mRNA transcript

variants that remain to be annotated in Refseq.

We also compared our transcript length dataset to the lengths of

the cDNA clones in the H-Invitational (H-Inv) full-length cDNA

database [4]. Release 2 of the H-Inv database contains 56,419

cDNA clones representing a total of 25,585 different loci. Entrez

genes were associated with 40,623 of those. We were therefore

able to associate 15,403 clones for which we had a total of 20,583

length measurements with 45,005 H-Inv cDNAs. We compared

our length measurements to the H-Inv clone lengths just as we

compared them to Refseq. The correspondence between our 90%

confidence length measurements and the H-Inv cDNAs was 69%.

Although we calculated a higher correspondence between our

dataset and the H-Inv clones than we did to Refseq, an analogous

permutation analysis showed that the probability of a random

match was also higher, approximately 35%. Thus, the correspon-

dences between our dataset and Refseq, and our dataset and H-

Inv are similar. We also examined the lengths in our dataset that

did not match an H-Inv clone to see which was longer. Here, we

found an almost 50-50 split across all confidence levels, indicating

no systematic difference in lengths between our measurements and

the H-Inv clones.

In order to better understand the relationship between our

lengths and the Refseq and H-Inv databases, we directly compared

the Refseq and H-Inv databases using the same procedure with

which we had compared them to our data. The correspondence in

length between the two was 58% with a 21% probability of

a random match. Thus the correspondence between a well-

annotated cDNA clone set and an mRNA transcript database

based on cDNA sequence was no greater than the correspondence

between either resource and our length dataset. This was

SLC2A1

IMAGE:151248 (1339 nts.)

IMAGE:25389 (2432 nts.)

IMAGE:2547341 (2418 nts.)

IMAGE:207358 (2489 nts.)

Proposed 

novel

transcript

Figure 4. Solute carrier family 2 (facilitated glucose transporter), member 1 (SLC2A1) gene. The SLC2A1 gene is pictured schematically. The
transcribed portion of the gene is shown with the filled boxes representing exons. The ORF is represented by the taller boxes. The genomic positions
of four cDNA clones that map only to the SLC2A1 gene, and a proposed novel SLC2A1 transcript, are shown relative to the SLC2A1 gene. The transcript
length measured for each clone is shown in parentheses.
doi:10.1371/journal.pone.0000460.g004
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somewhat unexpected since it is possible for Refseqs to be based

on cDNAs included in the H-Inv clone set. We also found a strong

bias for the Refseq to be longer than the H-Inv clone. Nearly 79%

of the Refseqs that were not approximately equal in length to their

corresponding H-Inv clones were longer. Comparison of Refseqs

and available cDNA sequences from the same gene to the genome

sequence quickly explained the strong bias toward longer Refseqs.

In every case we’ve examined, the Refseq extends from the 59-

most cDNA to the 39-most cDNA even when those cDNAs are

anomalies that sometimes extend far past the endpoints of virtually

all other available cDNA sequences. Thus, there is a tendency for

Refseqs to contain additional sequence on their 59- and 39-ends

beyond what is commonly observed for transcripts from the same

gene. It remains to be determined whether this additional

sequence represents biologically relevant sequence whose inclusion

in the mRNA is rarely needed, or if it represents rare

transcriptional accidents.

Relationship between ORF Length and mRNA length
We had previously identified a close linear relationship between

open reading frame (ORF) length and mRNA length in the yeast

genome [9], so we were interested in determining whether a similar

relationship exists for human mRNAs. Since Refseq entries

include coding sequence information, we extracted the position

of the ORF from every Refseq entry and used that information to

calculate the length of the 59-UTR, ORF, and 39-UTR for every

Refseq. We excluded Refseqs for noncoding RNAs and Refseqs

with calculated 59- or 39-UTRs less than 20 nucleotides from

further analysis (20% of the total). Figure 5 shows a plot of the total

length of each human Refseq mRNA versus the length of its ORF.

Remarkably, mRNA length shows an excellent fit to a linear

relationship with ORF length (R = 0.86). Furthermore, the

parameters of the best fit line also show that, even over the entire

range from 300 to 104,000 nucleotides, transcript length closely

approximates the ORF length plus a fixed length of approximately

1,263 nucleotides. This is remarkably similar to the relationship

between ORF and mRNA lengths in the yeast genome. The

difference is the average total UTR length, which is approximately

four times longer in humans than in yeast. Furthermore, the average

total UTR length estimated by the linear fit agrees well with previous

estimates of UTR lengths in human mRNAs of 1,238 nucleotides

[14] and 1,070 nucleotides [1]. In order to further characterize the

relationship between coding regions and untranslated regions in

human mRNAs, we calculated the correlations between ORF and

UTR length, 59-UTR and 39-UTR length, 59-UTR and ORF

length, and 39-UTR and ORF length (Table 4). These correlations

are all very small and not all positive. This means that the lengths of

the three components of an mRNA, the 59-UTR, ORF, and 39-

UTR, are essentially uncorrelated.

We also performed a similar analysis with the H-Inv database.

H-Inv clone records also include coding sequence information, so

we were able to calculate the 59-UTR, ORF, and 39-UTR lengths

for every H-Inv cDNA. Removal of H-Inv clones with 59- or 39-

UTRs less than 20 nucleotides filtered out nearly half of the clones

(42%). We calculated the same correlations as before. As shown in

Table 4, the correlations are all quite different between H-Inv and

Refseq. Collectively, these results suggest that many of the H-Inv

cDNA clones are not full-length. ORF length is negatively

correlated with both 59- and 39-UTR length. This means that

the 59-UTRs for longer ORFs are generally shorter. Since full-

length cDNAs are produced by reverse transcribing mRNA by

priming from the poly(A) tail, it follows that putatively full-length

cDNAs are more likely to be complete on their 39-end. Since the

primary difficulty in reverse transcribing long mRNAs is the

relatively high probability that the reverse transcriptase will fall off

the RNA before it finishes transcribing the entire mRNA, it also

follows that cDNAs with longer ORFs are less likely to contain

complete 59-UTRs (or even complete ORFs). This is exactly what

we observed. The most negative correlation we calculated was

between ORF and 59-UTR length. It should be noted that the

presence of significant numbers of incomplete clones in the H-Inv

set did not affect the overall correspondence between the lengths

from our dataset and the lengths of the H-Inv clones. The genes

used in the comparison were represented by an average of three

H-Inv clones. As long as any one of those clones was full-length,

our length measurement could register a match. We repeated the

comparison of our length dataset to the H-Inv clone lengths but

with the clones with short UTRs removed. The percentage of

length measurements with a match fell 5–6% at all confidence

levels, but the probability of a random match fell by a slightly

greater amount at all confidence levels, indicating that removal of

those clones essentially removed only accidental matches.

Identification of functionally distinct groups of

genes whose UTR lengths deviate significantly from

the norm
We investigated whether the length of an mRNA or any of its

component sequences has any relationship to the biological role of

the protein it encodes. In order to accomplish this, we downloaded

the Gene Ontology (GO) annotation (biological process, molecular

function, and cellular component) for every clone in our dataset

that was associated with a single Entrez gene. We calculated the

mRNA = 1.03 x (ORF) + 1263
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Figure 5. Relationship between ORF length and transcript length.
Refseq length in nucleotides is plotted against ORF length in
nucleotides. The black line is the linear least squares fit. It has the
parameters mRNA = 1.03 (ORF)+1263 (R2 = 0.74).
doi:10.1371/journal.pone.0000460.g005

Table 4. Correlations between ORF, UTR, and mRNA lengths
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Correlation Refseq H-Inv

ORF to mRNA 0.86 0.45

ORF to UTR 0.05 20.24

59-UTR to 39-UTR 0.05 20.03

59-UTR to ORF 20.02 20.24

39-UTR to ORF 0.05 20.12

doi:10.1371/journal.pone.0000460.t004..
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total UTR length for every length measurement in our dataset that

could be associated with a Refseq by subtracting the length of the

Refseq’s ORF from the length measurement. We then compared the

distribution of lengths for every distinct GO classification annotated

to at least 10 lengths in our dataset with the distribution of all lengths

in the dataset using a Student’s t-test (two-tailed, unequal variance).

We also performed this analysis using the Refseq lengths themselves.

These analyses identified groups of genes with the same GO

annotation whose UTR lengths were significantly longer or shorter

than average. The results using our length measurements and the

Refseq lengths were largely the same. The results were also largely

the same across all confidence levels. Tables 5 and 6 show the five

most significant GO annotations for UTRs both longer and shorter

than average along with their associated ontology and t-statistics

(using the 90% confidence lengths).

One remarkable thing about the lists of GO annotations

associated with deviant UTR lengths is their similarity to the

analogous lists generated for the yeast genome [9]. In both

organisms, the UTRs of mRNAs encoding ribosomal, nucleolar,

and proteasomal proteins are shorter than average, while the UTRs

of mRNAs encoding proteins involved in signal transduction,

transcriptional regulation, regulation of metabolism, and cell cycle

regulation are longer than average. We previously hypothesized that

longer than average UTRs contain additional sequences important

for the regulation of the translation, cellular localization, or decay of

their mRNA. We believe that the observation that the UTRs of

mRNAs encoding proteins of regulatory function are longer than

average in man as well as yeast strengthens this hypothesis and points

to the importance of post-transcriptional regulation in the fate of

mRNAs of eukaryotes in general.

We also searched for GO annotations enriched among genes for

which we had identified more than one putative transcript length.

We performed a t-test analysis as before. However, no GO

annotations showed statistical significance. We then repeated this

analysis to search for GO annotations enriched in genes with

multiple Refseqs. In this analysis, we identified a small number of

GO annotations that had more Refseqs than average. Although

these GO annotations were only marginally significant statistically,

many of them were involved in signal transduction, specifically

protein phosphorylation and dephosphorylation, and transcrip-

tional regulation. A previous analysis of alternative splicing in

human [7] also identified genes involved in signal transduction

and transcriptional regulation as having higher than average

numbers of alternative splice forms.

DISCUSSION
We applied the Virtual Northern technique to the human genome.

Using mRNA purified from human brain as our sample, we

obtained provisional length measurements from 21,257 cDNA

clones representing a total of 11,536 human genes. Thus, we were

able to derive at least one measurement of transcript length for

nearly half of the 25,000 genes the human genome is predicted to

encode, and from 6,238 of those genes at high (90%) confidence.

This is a reasonably high fraction considering that we analyzed

mRNA from only a single organ, albeit the organ with the highest

transcriptional diversity [12,13]. Our transcript length dataset has

a mean and median of 2,165 nucleotides and 1,996 nucleotides

respectively. These numbers agree well with previous estimates for

the human genome [1]. At high ($90%) confidence, only about

1.3% of the clones in our dataset detected two transcript lengths.

Current estimates for alternative splicing are that 74% of multi-

exon genes have alternate splice forms, and that alternatively

spliced genes have an average of 2.7 different splice forms [11,4].

Our detection rate for alternative transcript variants is expected to

fall short of those estimates for two reasons. First, we only

examined a single tissue, so our analysis was only able to detect

transcript variants expressed in the brain. Second, our length

fractionation procedure had a theoretical maximum resolution of

about 5–6% of total transcript length. Any transcript variants

whose lengths differ by less than that would not be reliably

resolved. That range is sufficient to exclude detection of alternative

splices resulting from the use of alternate exons of similar length,

the inclusion/exclusion of a single short exon, or the use of

alternate nearby 59 or 39-splice sites.

We compared our transcript length dataset to the lengths of the

sequences in the human Refseq database. A total of 23,324 length

measurements were compared to 15,104 Refseqs. For length

measurements of greater than 90% confidence, 61% matched the

length of a transcript recorded in the Refseq database. A rough

calculation estimates that the Refseq database currently contains only

about 40% of the transcripts encoded by the human genome. With

about half of the length measurements in our dataset unrepresented

by a Refseq sequence, our data supports that estimate.

Analysis of the transcript length measurements without

a matching Refseq showed that the Refseqs from the correspond-

ing gene were longer than our length measurement nearly three

quarters of the time. We also observed this bias toward longer

Refseqs in our comparison between the Refseq and H-Inv full-

length cDNA clone databases. This appears to be due to the

inclusion in many Refseqs of all of the sequence from the 59-most

cDNA to the 39-most cDNA for a given gene. Although this is

presumably done to counter the difficulty of identifying full-length

cDNAs and to ensure for many mRNAs that the full transcript is

represented, it appears that, for many genes, the most extreme

boundaries for a transcript are not necessarily the most common.

It remains to be determined whether the additional sequence

Table 5. Top five GO annotations whose UTRs are significantly
shorter than average

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GO annotation t-statistic Ontology
Refseq t-
statistic

Number of
lengths

Ribosome 1.83E-30 MF/CC/BP 8.21E-25 152

Mitochondrion 7.84E-18 CC/MF/BP 2.50E-42 351

Glutathione transferase
activity

7.01E-08 MF 2.43E-08 21

Proteasome core complex 1.86E-07 CC 2.41E-12 21

Oxidoreductase activity 3.24E-05 MF 3.96E-21 221

Biological process (BP), molecular function (MF), and cellular component (CC).
doi:10.1371/journal.pone.0000460.t005..
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Table 6. Top five GO annotations whose UTRs are significantly
longer than average

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GO annotation t-statistic Ontology
Refseq t-
statistic

Number of
lengths

Signal transduction, small
GTPase

1.03E-08 BP/MF 5.16E-05 137

Intracellular protein transport 2.22E-05 BP 6.17 E-04 122

Ubiquitination 2.60E-05 MF/CC 5.58E-07 136

Membrane 7.60E-05 CC 5.88E-03 428

Regulation of transcription 8.69E-04 BP/MF 3.11E-16 410

Biological process (BP), molecular function (MF), and cellular component (CC).
doi:10.1371/journal.pone.0000460.t006..
..
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occasionally observed on the ends of transcripts is, for some genes,

biologically relevant sequence regulated to occur in only a fraction

of transcripts, or if it is merely unregulated, irrelevant transcrip-

tional noise.

We found a striking relationship between human mRNA

lengths and the lengths of the ORFs they encode. Comparison of

the ORF and mRNA lengths of the sequences in the Refseq

database identified a close linear relationship between ORF and

mRNA length. Remarkably, this linear relationship has the same

form as the relationship we identified between yeast mRNAs and

their ORFs, namely that the mRNA length equals the ORF length

plus a fixed length of approximately 1,263 nucleotides. Thus in

man, as in yeast, the distribution of lengths of untranslated regions

in mRNAs does not depend on the length of the ORF.

Several analyses suggested that the H-Inv full-length cDNA

clone database contains many clones that are unlikely to be full-

length. First, nearly half of the clones in the database have 59- or

39-UTRs shorter than 20 nucleotides. In many of these cases the

59-UTR is completely missing. In contrast to the strong correlation

between ORF and mRNA length, and the small correlation

between ORF and 59-UTR length that we identified in Refseq, the

H-Inv clones showed a weaker correlation between ORF and

clone length and a moderately negative correlation between ORF

and 59-UTR length. This is exactly the relationship we would

expect for a set of cDNAs that are not truly full-length, since the

primary difficulty in producing full-length cDNAs is obtaining the

full 59-end. Comparison of the H-Inv clones to our mRNA length

dataset can now be used as an additional criterion to determine

which individual cDNAs are not full-length.

Having a discovered a relationship in yeast between the length

of an mRNA’s untranslated region and the function of the protein

that it encodes, we performed a similar analysis with our human

dataset. We were able to identify various functional classes whose

UTRs were either longer or shorter than average. Remarkably,

there was substantial similarity between yeast and man in this

relationship. In both organisms, the UTRs of mRNAs encoding

ribosomal, nucleolar, and proteasomal proteins were shorter than

average while the UTRs of mRNAs encoding proteins involved in

signal transduction, transcriptional regulation, and the regulation

of metabolism were longer than average. A recent study of

microRNAs extended this observation to Drosophila, and suggested

that the observed relationship was due to an evolutionary pressure

to enrich or deplete microRNA target sites from the mRNAs of

certain genes [15]. Ubiquitously expressed genes involved in basic

cellular processes appear to have evolved mRNAs with short

UTRs, perhaps reflecting a relative paucity of regulation by RNA

binding proteins and microRNAs. In contrast, genes involved in

more complex regulatory processes such as embryonic develop-

ment have evolved longer UTRs with many microRNA target sites

and perhaps also binding sites for RNA binding proteins,

providing an additional layer of regulation. A few functional

groups of genes were more likely to have mRNAs of more than

one length. Our analysis corroborated a previous analysis of

alternative splicing, which identified genes involved in signal

transduction and transcriptional regulation as having higher than

average numbers of alternative splice forms [7].

MATERIALS AND METHODS

RNA preparation
One whole human brain from a 36 year old male was flash frozen

in liquid nitrogen approximately 18 hours postmortem. Brain

tissue was provided by Hannes Vogel, Professor of Pathology at

Stanford University School of Medicine. Consent was obtained

from the donor to use his tissues for research purposes, and the

Stanford Medical Board approved their use in this study. The

whole brain was crudely pulverized while frozen, and 360 g of

tissue was homogenized in a Waring blender containing 38%

phenol, 5% glycerol, 10% 1 M sodium acetate pH 4.8 by volume,

guanidinium thiocyanate at a final concentration of 0.8 M,

ammonium thiocyanate at a final concentration of 0.4 M, and

approximately 1 mg/L of the red dye Sudan III. Total RNA was

prepared as previously described [16], and poly(A) purified using

the OligotexTM mRNA kit from Qiagen to create the final human

brain mRNA sample.

Length fractionation
A 50 mg aliquot of the poly(A) RNA and a RNA ladder (a mix of

the MillenniumTM and CenturyTM markers from Ambion) was

heat denatured for 10 minutes at 65uC in formamide, placed on

ice, and immediately loaded on a 1.1% low melting point agarose

gel in 1X TAE running buffer. The poly(A) RNA was loaded in

a wide (5 cm) well to prevent overloading of the gel. The RNA was

then separated by electrophoresis at high voltage (,9 V/cm) for

2–2.5 hours. During electrophoresis, the running buffer was

passively recirculated, and the apparatus was cooled to prevent

the gel and running buffer from overheating. The ladder lane was

excised from the gel, and visualized by ethidium bromide staining.

Based on the mobility of the ladder bands, a portion of the poly(A)

RNA lane, corresponding to RNAs of approximately 400–7000

nucleotides in length, was cut into 50 slices of 2 mm each. RNA

was then recovered from each length fraction by b-agarase

digestion. Each agarose slice was melted at 70uC for 10 minutes,

and then digested with 2 Units of AgarACE enzyme (Promega) at

42uC for 2 hours. The products from each agarase reaction were

recovered using a Microcon-30 column (Amicon) and washed

twice with 10 mM Tris pH 7.0 buffer. In total, length fractionation

was performed in triplicate using three gels that were run and

sliced independently.

Microarray analysis
One third of the recovered material from each length fraction was

reverse transcribed in the presence of amino allyl-dUTP. A mix of

dT20 and random nonamer was used to prime the reaction in

order to maximize the reverse transcription of both polyadeny-

lated and non-polyadenylated RNAs, and to facilitate the labeling

of the entire RNA sequence. The resulting cDNA was fluores-

cently labeled by coupling reactive Cy5 to the amino allyl groups

on the incorporated dUTP. Each labeled length fraction was then

hybridized to a separate human cDNA microarray. Construction

of the human microarrays and hybridization of labeled cDNA to

them was accomplished as previously described [17]. Printing of

the microarrays was preformed by the Stanford Functional

Genomics Facility. To provide an internal hybridization reference,

a 1.5 mg aliquot of the human poly(A) RNA was reverse

transcribed using the same protocol as the length fractions,

fluorescently labeled by coupling the cDNA to Cy3, and included

in each hybridization. Microarrays were scanned with an Axon

Instruments (Foster City, CA) scanner, and the data collected with

GENEPIX PRO 5.1 software (Axon Instruments).

The Cy5/Cy3 fluorescence ratio data was then filtered for

quality. Spots with defects apparent from visual inspection, or

a coefficient of variation of the signal intensity in either channel

greater than 120 were excluded from further analysis. Spots were

also filtered on the basis of the background-corrected intensity in

the reference channel. The cutoff was determined independently

for each microarray by calculating the standard deviations of ratios
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from duplicated spots. For each microarray, the mean of those

standard deviations was calculated with the data from spots with

a background-corrected reference channel intensity less than 150

filtered out. If the mean was greater than 0.2, the filter cutoff was

increased in increments of 25 until the mean was less than 0.2. For

128 of the 150 microarrays, a cutoff of 150 was used. For the

remaining 22 microarrays, the cutoff ranged from 175 to 675.

Finally, for each electrophoretic profile based on the 50

measurements for each analyzed DNA sequence, the median

background-corrected reference channel intensity (MRI) for all

spots in the profile was calculated. Profiles with more than 10

missing data points, or whose MRI was less than 250, were

excluded from further analysis. Sets of three electrophoretic

profiles based on the same analyzed DNA sequence from each

independent length fractionation were excluded from further

analysis if any of the individual profiles were excluded.

For normalization between the length fractions, an internal

standard was prepared with a pool of in vitro-transcribed Bacillus

subtilis RNAs [18]. PCR products representing five different B.

subtilis DNAs were printed onto the microarrays and in vitro

transcribed into RNA. A mix of 400 pg of each B. subtilis RNA was

doped into each gel slice during the agarase digestion, and into

each 1.5 mg reference aliquot before labeling. The internal

standard gives us a way to account for differences in the efficiency

of RNA recovery between the length fractions. The data from

each length fraction was normalized by the value that set the

median of the B. subtilis ratios to 1.5. Due to slight systematic

errors in the normalization of a handful of length fractions, each

length fraction was additionally normalized by making a least

squares fit of the mean of all ratios from each of the fifty length

fractions to a fourth order polynomial, and normalizing the data

from each length fraction by the value that set each mean to the

polynomial’s corresponding value. This normalization ‘‘smooth-

ing’’ had only a minor, fine-tuning effect, modifying each length

fraction by only 1.2-fold on average.

In order to facilitate comparison of data between the three

separate length fractionations, an internal standard was prepared

with a pool of in vitro-transcribed Methanococcus jannaschii RNAs.

PCR products representing approximately 40 regions from the M.

jannaschii genome ranging from 250–10,000 bps were printed onto

the microarrays, and in vitro transcribed into RNA. A mix of

400 pg of each M. jannaschii RNA was doped into each 50 mg

aliquot of the brain mRNA preceding gel electrophoresis, and into

each 1.5 mg reference aliquot before labeling. This set of synthetic

mRNAs fractionated along with the human brain mRNA gives us

a series of profiles with known and consistent characteristics to

assist in comparing the data between the three separate length

fractionations. Both the B. subtilis and M. jannaschii RNAs were in

vitro-transcribed using respectively the T3 and T7 MEGAscriptH
kits from Ambion.

Aligning the data from the three gels
Since the RNA from each length fractionation was electrophor-

esed for a slightly different period of time, the slices from each gel

occur at different distances from the well and represent different

ranges of RNA length. In order to compare the length profiles for

a given gene generated from each length fractionation, it was

necessary to scale the data for two of the length fractionations

along the gel mobility axis so that they correspond to the data from

the third length fractionation. Peaks were manually identified in

the profiles of the M. jannaschii controls in all three fractionations.

Corresponding peaks were compared, and nearly linear relation-

ships between gel mobilities for each of the gels were identified.

The least squares fit to a quadratic equation was calculated for

each relationship. We applied piecewise cubic spline interpolation

to each length profile, and used the above relationships to convert

the gel mobilities for the length profiles from gels 2 and 3 into their

equivalent mobilities in gel 1.

Peak finding by l1 norm baseline deconvolution
In order to identify a small set of underlying peaks within a large

set of potentially noisy microarray-derived length measurements,

we applied a convolutional model to our data. In an abstract

fashion, finding peaks in our length profiles is equivalent to finding

the sparsest solution to an underdetermined system of equations:

min ||x||0 subject to y = Ax, where y is an observed measurement,

x is the underlying signal, A is the convolution operator, and

||x||0 represents the number of non-zeros in the signal. This is

a non-convex combinatorial optimization problem, and in general

finding the sparsest solution is NP hard. Therefore we solve the

problem for the l1 norm [19], which can be cast as a standard

linear program which is convex and tractable, and solved

efficiently using general purpose solvers such as simplex and

interior point methods [20]. In addition when the solution is

sufficiently sparse there is equivalence between the ell1 and sparsest

solutions [21,22].

In order to account for noise in our data [23], we cast our

problem as: min ||x||1 subject to ||y2Ax||#e. While this model

accounts for spurious peaks within noisy data, it is not sufficiently

suitable for our purposes. In our case, we would also like to

accommodate signals with low frequency content which the

deconvolution model represents as multiple peaks. We therefore

incorporate a rolling baseline into the model such that the

observation y is represented as a smooth baseline u with peaks on

top v and noise, and solve the optimization problem: min

||x||1+u||b||1+K||r||2
2 subject to u+v+r = y, Ax = v, and

D2u = b. In other words, we solve for the underlying peaks which

when convolved with the kernel and added to the smooth baseline

result in the observed data. Figure 2 shows an original length profile

along with the rolling baseline and the result of deconvolution.

The kernel was derived directly from the data by identifying

a large number of likely peaks, lining up those peaks, and taking

the median. Peaks were identified in all length profiles by counting

each position greater than its two neighboring positions with

a normalized ratio greater than four (a high threshold for this

dataset) as a peak. The median of the normalized ratio in all of

those peak positions was calculated as well as the median of the

values of each of the five length fractions to each side of the peak

position. This created an 11 element kernel (Figure 6).

Estimating a confidence value for each peak
In order to ascertain a confidence for each peak, we assigned

a probability to each length fraction for every profile. This value

describes the likelihood at every position that we have uncovered

a true peak at that position. We calculated those probabilities by

sampling each value of the deconvolved signal with Poisson noise

to create 100 parametric bootstrap replicates. More specifically,

given the baseline deconvolution result according to our model, we

simulated the experimental data separately at each position by

convolution and a Poisson model. Then, we reconstructed each

simulation by deconvolution to obtain 100 bootstrap replicates.

We counted the fraction of these reconstructions in which there

was a peak and computed a probability.

The final dataset of peaks was determined from the bootstrap

probability profiles derived from each length profile. First, the

results from each of the three gels were combined by averaging the

probabilities for each position from each of the three experiments.
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Every non-zero position in the combined profiles with a probability

value greater than its two adjacent positions was called a peak. A

precise position for each peak was calculated as the weighted

average of each peak position and its two adjacent positions. The

probability for each peak was taken to be the sum of the

probabilities of the peak position and its two adjacent positions.

Conversion of gel mobility to transcript length
A ‘‘gold standard’’ set of genes was developed to help evaluate the

human Virtual Northern data set. The set consists of 100

abundantly expressed genes that are represented on the micro-

arrays by at least one clone, have at least one identified peak in the

dataset, and have at least one curated Refseq [8]. The gold

standard genes are derived from the Entrez genes whose associated

Unigene clusters have the largest number of clones in them. They

are therefore extremely well-sampled by currently existing cDNA

and EST databases giving us a far greater than average

understanding of the sequence and structure of their mRNAs.

Although these genes are all abundantly expressed in at least one

tissue, they are not necessarily abundantly expressed in brain. The

distribution of microarray signals for the gold standard genes is not

significantly different from the dataset as a whole, so they provide

a fair representation of the entire dataset, and do not just represent

the most well-measured genes in the dataset.

The estimated mobilities of all peaks identified from clones

corresponding to gold standard genes were compared to the known

lengths of all of the gold standard genes. As expected, the estimated

mobilities showed an excellent linear fit to the natural log of the

known lengths. Gross outliers (spots deviating from the linear fit by

greater than 0.2) were removed, and the least squares fit to a linear

equation was calculated (Figure 3). A model of the poly(A) tail was

incorporated into the linear equation by adding a fixed length to

each known length. A fixed length of 225 nucleotides was calculated

along with the slope and y-intercept to provide the best fit between

estimated mobilities and transcript length. Using the resulting

equation, the estimated mobility of each peak could be converted to

an inferred transcript length in nucleotides.

Calibration of bootstrap confidence value to true

peak probability
The bootstrap probabilities provide a confidence value for every

peak. They are related to, but not equivalent to the probability

that a peak is bona fide. In order to determine the correspondence

between the bootstrap probabilities and the probability that a peak

is real, we compared our length dataset to the known lengths from

our gold standard gene list. Measured lengths within three

fractions of a known length were considered true positives, and

all other measured lengths were considered false positives. For

each bootstrap value, we calculated the probability that a peak is

real as the fraction of peaks at that value that were true positives.

The resulting curve (Figure 7) was fit by least squares to the

sigmoidal equation y = A+B/(1+e (m2x)/l), and that equation was

used to convert bootstrap probabilities into true positive peak

probabilities.

Data Availability
All data is available for download at http://microarray-pubs.

stanford.edu/humanVN/.
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