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Calculation of the free energy of protein folding and delineation of its pre-organization are of foremost importance for
understanding, predicting and designing biological macromolecules. Here, we introduce an energy smoothing variant of
parallel tempering replica exchange Monte Carlo (REMS) that allows for efficient configurational sampling of flexible solutes
under the conditions of molecular hydration. Its usage to calculate the thermal stability of a model globular protein, Trp cage
TC5b, achieves excellent agreement with experimental measurements. We find that the stability of TC5b is attained through
the coupled formation of local and non-local interactions. Remarkably, many of these structures persist at high temperature,
concomitant with the origin of native-like configurations and mesostates in an otherwise macroscopically disordered unfolded
state. Graph manifold learning reveals that the conversion of these mesostates to the native state is structurally
heterogeneous, and that the cooperativity of their formation is encoded largely by the unfolded state ensemble. In all, these
studies establish the extent of thermodynamic and structural pre-organization of folding of this model globular protein, and
achieve the calculation of macromolecular stability ab initio, as required for ab initio structure prediction, genome annotation,
and drug design.
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INTRODUCTION
The importance of accurately defining the molecular ensembles of

proteins was recognized early by Levinthal, who concluded that

folding of a random coil by way of a diffusive search of its

combinatorially vast conformational space is incompatible with the

biological energies and timescales of protein folding [1].

Consequently, either the conformational space of unfolded

proteins deviates from that of a random coil, or the conformational

search is not entirely diffusive, being guided by folding pathway(s),

leading to proposals of hierarchical (thermodynamic) and

framework (kinetic) folding models, respectively [2–5]. The extent

to which these two fundamental mechanisms cooperate in the

biological attainability of the folding search is unknown.

Structured unfolded states have been observed in a variety

proteins [6–11]. However, it is unknown whether these macro-

scopically observed structures correspond to the conformations of

individual residues, or to an average of microscopic configura-

tional states that are composed of groups of residues. The former is

consistent with the random, albeit conformationally biased

(statistical) coil model of the unfolded state, and means that

efficient folding is achieved largely by way of kinetic pathways.

The latter is not, and implies that the unfolded state is

thermodynamically pre-organized. Establishment of the extent of

such pre-organization determines the relative contribution of the

hierarchical (thermodynamic) and framework (kinetic) folding

mechanisms, and is thus of major importance for understanding,

predicting and designing biological macromolecules.

Study of this question has been made difficult by the

spectroscopic limits of resolving microscopic ensemble sub-states

that exist under the conditions of physiologic temperature,

pressure, and hydration [12]. Such resolution is achievable

theoretically by using molecular mechanics calculations, but is

practically limited by the computational limits of simulating

proteins in water under physiological conditions. These limits stem

precisely from the dependence of conformational sampling of

flexible solutes on the molecular properties of the solvent.

Conventionally, these limitations are overcome through the

implicit treatment of solvent effects, as in the approximation of

Born [13]. However, its tested implementations do not appear to

reproduce the thermodynamics and structures of natural proteins

under physiologic conditions [14], though recently introduced

algorithms appear to be more accurate [15–17].

Usage of Monte Carlo (MC) algorithms that utilize simulta-

neous changes of many conformational variables, such as loop

torsion MC and replica exchange MC (REM), has shown promise in

efficiently calculating convergent ensembles of proteins in aqueous

solution [18–22]. However, application of loop torsion MC to

protein folding depends on the analytical solutions of the loop closure

problem, currently available for six polypeptide torsions [23]. REM

or parallel tempering MC achieves changes of all conformational

variables in aqueous solution through the use of global updates such

as molecular dynamics (MD), but requires prohibitively large

numbers of replicas in order to generate sufficient energy overlaps,

as required by the Metropolis criterion [24,25]. This Metropolis limit

derives from the statistics of energy fluctuations, whereby the energy

overlap between adjoining replicas required for efficient MC
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exchange scales as n2K, where n is the number of degrees of

freedom, which are mostly of bulk water molecules. Recently, partial

REM and REM with solute tempering (REST) have been developed

to extend the Metropolis limit of REM for the simulations of protein

folding in aqueous solution [26,27]. Both do so by reducing the

effective number of the degrees of freedom that contribute to the

Metropolis energy criterion.

Here, we introduce another such variant, termed replica

exchange MC with energy smoothing (REMS), that does so by

manipulating the energy expression itself. We show that in spite of

deforming the free energy surface to some extent, REMS yields

apparently canonical free energy distributions in the energetic

regime of biological systems. Consequently, we apply REMS to

simulate the thermal folding of a small globular protein, the 20-

residue Trp cage TC5b, under the near physiologic conditions of

molecular hydration. We show that such an approach can be used

for efficient and accurate calculation of protein stability ab initio, at

least with respect to the folding of TC5b. And finally, by using self-

consistent clustering and machine graph learning, we examine the

origin of cooperativity and thermal stability of various structural

motifs in this model protein. As a result, we offer a demonstration

of the extent of thermodynamic and structural pre-organization of

protein folding, important for understanding the mechanics of this

phenomenon, with implications for a variety of problems, such as

those that require calculations of free energies including structure

prediction, genome annotation, and drug design.

RESULTS AND DISCUSSION

Canonical molecular ensembles in water using REMS
TC5b is a small globular protein, consisting of several natural and

redesigned structural motifs (Fig. 1). To generate a set of molecular

ensembles of the thermal folding of TC5b, we equilibrated 32

replicas of TC5b in explicit water at 273–363 K, corresponding to

the temperature range of experimentally measured thermal

stability of TC5b [28]. This approach differs from earlier replica

exchange simulations of TC5b [29–31], in particular by using

periodic boundary conditions that are large enough (60660660

Å3) to accommodate a fully extended TC5b in explicit water,

a 100 ps MD trajectory phase prior to replica exchange to achieve

equilibration (Fig. 2A), and a 2 ps thermalization time during

exchange to prevent quenching (Fig. 2B).

We used a smoothing time of 200 fs for the calculation of the

Metropolis criterion during REMS (Methods), since the smoothed

energy at this time shows small fluctuations, and most importantly,

preserves approximately Boltzmann-weighted sampling. The

difference between smoothed and near instant mean energies is

less than 2.8 kcal/mol, and is not significantly different from that

at shorter and near instant time intervals (Student’s t-test p = 0.73;

Fig. 2C), less than 10% of the total energy of the system. Usage of

such energy smoothing leads to a distribution of and a mean

potential energy of water (Fig. 3B) as well as temperature

dependent heat capacity of water (Fig. 3C) which are statistically

indistinguishable from those of exactly canonical simulations. On

the other hand, usage of extremely long smoothing time of 600 fs

leads to a gross underestimation of water’s heat capacity,

consistent with significant deviation from canonical sampling

(Fig. 3C). Approximately canonical REMS with smoothing time of

200 fs leads to efficient replica exchange with mean exchange

probabilities of about 30% (Fig. 4A); conventional REM of this

system in explicit water being limited by Metropolis statistics of less

than 1% (data not shown). Evolution of the calculated 32

ensembles for more than 4,000 exchanges with mean transition

probabilities of about 30% means that the highest and lowest

temperature replicas are exchanged on average more than 40

times, as confirmed by tracking the initial lowest and highest

temperature replicas, containing the predominantly native and

unfolded states, respectively, as they diffuse in temperature space

in the course of the simulation (Fig. 4B). Consequently, the final

simulation exceeds the apparent computational time constant of

self-diffusion of TC5b by nearly three orders of magnitude

(Fig. 4C), consistent with the simulation’s convergence [21].

Calculation of thermal stability of TC5b
In order to examine the origin of thermal stability of TC5b, we

calculated the apparent stabilities of various conformational motifs

of TC5b as a function of temperature (Fig. 5). Their choice was

guided by the naturally occurring secondary and tertiary structural

elements, as well as those that were specifically redesigned in

TC5b [28] (Fig. 1). At 273 K, REMS calculated conformational

ensemble of TC5b is largely folded, with nearly all molecules

forming the N-terminal a-helix, the b-turn, the C-terminal

polyprolyl helix (Fig. 5A), and tertiary and secondary hydrophobic

cores (Fig. 5B). In contrast to the average NMR structure, the b-

turn hydrogen bond and salt bridge, as well as the a-helical

hydrogen bonds are largely (,90%) but not persistently formed.

On the other hand, the a-helical salt bridge is formed only in half

of the ensemble (Fig. 5B), in agreement with the experimental

observations of TC5b [28,32–34].

Stabilities of both local and non-local structural motifs exhibit

an apparently sigmoid melting transition (Fig. 5). In particular, the

N-terminal a-helix melts with an apparent melting temperature of

300–310 K, depending on the exact residue monitored, consistent

with the presence of N-terminal fraying, wherein the helical

residues closer to the terminus are less stable (Fig. 5A). Similarly,

the b-turn melts with an apparent melting temperature of about

310 K (Fig. 5A), associated with the destabilization of the tertiary

core and the b-turn/tertiary salt bridge (Fig. 5B). Calculation of the

Figure 1. Structure of native TC5b. The structure is composed of an N-
terminal a-helix with its a-helical/secondary Q5:K8 salt bridge (red), type
I b-turn S13-S14-G15 with its b-turn/tertiary D9:R16 salt bridge (blue), and
a hydrophobic core that includes both a-helical Y3:W6 and tertiary
W6:P19 interactions (gold mesh).
doi:10.1371/journal.pone.0000446.g001
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Figure 2. Equilibration and calibration of REMS simulations of TC5b
in explicit water. A. Instantaneous potential energy (U) as a function of
MD time during evolution of the 273 K replica in the canonical NVT
ensemble prior to initiating REMS, demonstrating its equilibration, as
reflected in the energetic stability during the last 50 ps. B. In-
stantaneous potential energy (U) as a function of MD time upon
replica exchange from 276 to 273 K, demonstrating thermalization in
less than 2 ps. C. Average potential energy ^U& of 273 K replica as
a function of energy smoothing time (ts). As ts approaches 2000 fs, the
standard deviation of ,U. approaches the fluctuation of the energy
distribution in that time domain. At ts = 200 fs, energy-smoothed ^U&
of REMS is statistically indistinguishable from the instantaneous U used
during conventional REM; double-sided p = 0.73. Bars represent 61s.
doi:10.1371/journal.pone.0000446.g002
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Figure 3. REMS calculation of approximately canonical ensembles of
pure water. A. Histograms of potential energies (U) of different
temperature replicas, demonstrating energy overlaps between adjoin-
ing temperature REMS replicas, as required for efficient MC exchange. B.
Comparison of histograms of potential energies (U) of water ensembles
at 273 K calculated using canonical MD (NVT) and REMS. Usage of REMS
yields statistically indistinguishable mean energies and slightly in-
creased energy fluctuations, as compared to those of canonical MD
simulations, as shown by their normal fits (solid curves). C. Heat
capacities at constant volume (CV) of pure water at different
temperatures, as obtained experimentally (solid squares), and calculat-
ed using canonical MD (dotted diamonds) and REMS (dashed circles).
Usage of REMS with extremely long smoothing time of 600 fs (REMS*,
solid stars) leads to a significant underestimation of the heat capacity of
water at low temperature. Sizes of symbols represent 61s.
doi:10.1371/journal.pone.0000446.g003

Folding Graph Manifolds

PLoS ONE | www.plosone.org 3 May 2007 | Issue 5 | e446



280 300 320 340 360
0

25

50

75

100

T (K)

<
P

(x
n|

x m
)>

(%
)

A.

B.

1 10 100 1000 10000
0.2

0.4

0.6

0.8

1.0

Exchange (N)

N
or

m
al

iz
ed

∆ 0-
N

C.
1 10 100 1000 10000

260

280

300

320

340

360

380

Exchange (N)

T
(K

)

Figure 4. Sampling and efficiency of REMS simulations of TC5b in
explicit water. A. Mean probabilities ^P& of MC exchange between
adjoining replicas xn and xm as a function of temperature, demonstrat-
ing that usage of REMS leads to efficient replica exchange. B. Exchanges
of replicas in the temperature space, tracking the initial lowest (red
dashed) and highest (blue solid) containing the predominantly native
and unfolded states, respectively, as they diffuse in temperature space
in the course of the simulation. C. Divergence of the normalized
difference (D) of fraction of formed hydrophobic core W6:P19 (closed
squares), hydrophobic core Y3:W6 (open circles), salt bridge D9:R16

(closed stars), a-helical Y3:L7 (solid circles) and the b-turn D9:S14 (open
squares) hydrogen bonds between initial and final structures as
a function of replica exchange for the 363 K replica. These measure
were chosen because their non-local nature should be most sensitive to
initial configuration memory effects. The total length of REMS
simulation exceeds the apparent computational time constant of self-
diffusion by nearly three orders of magnitude.
doi:10.1371/journal.pone.0000446.g004
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Figure 5. Thermal stability of TC5b. A. Fraction of formed a-helix
L2YIQWLK8 (dashed black), b-turn S14 (solid green), and polyprolyl helix
P18 (dotted blue), as defined using self-consistent clustering and
enumeration of their backbone dihedral angles. Note that P18 remains
unchanged in its backbone conformation due to its definition in
CHARMM. Individual a-helical residues have varying thermal stability,
with the more N-terminal ones being less stable, consistent with the
existence of a-helical fraying. B. Fraction of formed a-helical salt/
secondary bridge Q5:K8 (solid red), a-helical hydrogen bond Y3:L7

(dotted red), b-turn/tertiary salt bridge D9:R16 (solid blue), b-turn
hydrogen bond D9:S14 (dashed green), tertiary hydrophobic core W6:P19

and Y3:P19 (solid and dashed black), and secondary hydrophobic core
Y3:W6 (dashed red), as defined by using self-consistent clustering and
enumeration of their distances. Note that the a-helical salt/secondary
bridge is only partially formed at low temperature, even though the rest
of the structure is nearly fully folded by other measures. Similarly, the
secondary hydrophobic core Y3:W6 persists even at high temperature,
where the rest of the protein is largely unfolded by other measures.
Importantly, substantial amount of residual native structure persists at
high temperature. C. Fraction of formed mean a-helical structure
(dashed black), mean b-turn structure (solid green), mean tertiary
structure (solid black) in the REMS calculated ensembles, and native
fraction measured experimentally using chemical shift dispersion
(squares), as adapted from the first study of TC5b [28].
doi:10.1371/journal.pone.0000446.g005
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overall melting temperature of TC5b, by using mean ensemble

conformational statistics, where all conformational motifs are equally

weighted, yields an apparent value of approximately 310 K (Fig. 5C),

in good agreement with the experimentally measured value of 315 K

[28]. This finding differs from those of earlier replica exchange

simulations of TC5b, which overestimated the apparent melting

temperature by about 100 K, possibly because of continuum Born

solvation [30], or constricted boundary conditions [29]. However, it

is important to note that our study is limited by the use of a single

(CHARMM) force field and initial (native) conditions, which may

bias and limit sampling, respectively.

Unfolded state ensemble
Experimental studies of TC5b indicate a substantial amount of

residual structure in the unfolded state ensemble at high

temperature [28]. Our calculated high temperature ensemble also

exhibits such structures, in particular possessing up to about 10%

b-turn, 20% a-helical content, and 30% tertiary hydrophobic core

(Fig. 5). Remarkably, nearly 60% of molecules in the high

temperature ensemble contain the secondary hydrophobic core

(Fig. 5B), in agreement with the experimental findings of such

residual structure, as observed by using both NMR and

fluorescence spectroscopies [28,32]. This residual structure may

arise from the persistence of various native-like conformations

(isolated a-helical turn or hydrophobic core) in different molecules

of the unfolded state ensemble that is otherwise non-native and

heterogeneous. Conversely, this residual structure may be due to

configurations of groups of conformations (associated a-helix and

hydrophobic core) in an unfolded state ensemble that is relatively

homogeneous with respect to these native-like configurations.

Though indistinguishable macroscopically, these characteristically

composed molecular ensembles diverge in the ways they affect

protein folding and stability.

Graph manifold learning of the unfolded state

ensemble
In order to discover the origin of residual structure at high

temperature, we applied a graph-based approach designed to

learn the natural coordinates of highly dimensioned data. By

embedding the molecular ensemble in a graph based on geometric

similarity, and projecting the individual structures onto a manifold

that preserves nearest-neighbor geometric relations of this graph,

we are able to distinguish globally organized configurations,

termed mesostates, from groups of structures comprised of

unrelated conformations (Methods). Indeed, the high temperature

manifold is comprised of several such mesostates, including

configurations of secondary structures such as the N-terminal a-

helix and the b-turn, as well as more complex configurations that

contain both the a-helix and the tertiary hydrophobic core, for

example (Fig. 6). These configurations are not due to the use of the

NMR structure as the starting configuration for REMS, as the

latter’s memory is lost after about 30 replica exchanges and the

final ensemble is evolved for more than 4,000 exchanges

(Fig. 4B&C). Instead, these configurations appear to pre-organize

the unfolded state ensemble for folding by virtue of arranging

individual interactions and conformations in the context of native-

like mesostates. This pre-organization is likely inherent to the

polypeptide sequence of TC5b, as suggested by energy minimi-

zation calculations of fragments of TC5b [35].

Folding cooperativity and pre-organization
In order to estimate the extent of pre-organization of the thermal

folding of TC5b by the residual structure of the high temperature

ensemble, we calculated the apparent cooperativities of forming

pairs of conformations into configurations, as expressed by the

probabilities of forming these configurations conditional on the

formation of their constituent conformations (Table 1). The

conditional probabilities of forming these four-body interactions

are related to the mesostate organization of the thermal folding

reaction. Consistent with the presence of configurations containing

the N-terminal a-helix in the high temperature ensemble (Fig. 6),

the apparent conditional probability of forming both the a-helical

hydrogen bond and the a-helical salt bridge exceeds the expected

probability of forming this configuration assuming independence

of its constituent conformations by more than a factor of 10

(Table 1). Similar effect is observed for the apparent cooperativ-

Figure 6. Manifold of unfolded mesostates. Mapping of the unfolded
state ensemble, as calculated using the 363 K replica, onto the two top
coordinates of its locally linear embedding space (open black circles),
and the two top coordinates of its principal component projection
(solid green circles). Principle component analysis fails to discern
mesostate structure of the unfolded state ensemble, with the entire
ensemble located near the origin of the PCA projection. On the other
hand, displacement along the manifold from the origin of the LLE map
coincides with the formation of native-like mesostates, containing: 1) a-
helical/secondary salt bridge (red), 2) b-turn/tertiary salt bridge (blue),
3) a-helix and a-helical hydrophobic core, and 4) nearly native
configurations with both the a-helix and the tertiary hydrophobic core.
doi:10.1371/journal.pone.0000446.g006

Table 1. Folding cooperativity in the unfolded state ensemble
of TC5b

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ppair Pi Pj Ppair/Pi Pj

a bridge+a hbond 0.30 0.14 0.19 11

a hbond+a core 0.54 0.19 0.59 4.8

a core+3u core 0.27 0.59 0.16 2.9

3u core+b hbond 0.29 0.16 0.27 6.7

b hbond+3u bridge 0.51 0.27 0.29 6.5

Conditional probabilities of forming pairs of native interactions, as listed, with
Ppair = P (i+j|i ; j), the probability of forming both interactions i and j under the
condition that either i or j is formed. The overall probabilities of forming
individual interactions i and j are defined by Pi and Pj, respectively, and the
product Pi Pj expresses the probability of forming both interactions i and j in the
absence of any cooperativity between them. This cooperativity is expressed by
the ratio Ppair/Pi Pj.
doi:10.1371/journal.pone.0000446.t001..
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ities of formation of other configurations, involving both the

secondary and tertiary hydrophobic cores and b-turn (Table 1).

This surprising phenomenon is likely due to the thermodynamic

coupling between the formation of individual native-like con-

formations and their organized configurations, such that native-

like conformations are adopted essentially in the context of

topologically native configurations.

Apparent coupling between local (conformational) and non-

local (configurational) contacts has been noted earlier during the

folding of Gō lattice polymers, where its origins were related to the

details of the potential energy function defining the native state

[36–38]. As the Gō protein model is supplemented with backbone

interactions, local backbone conformations can lead to progressive

non-local organization [39]. The finding of analogous conforma-

tional-configurational coupling during the folding of TC5b

(Table 1), where on the other hand the folding process is defined

by an atomic polypeptide in the context of a semi-empirical,

classical force field (Methods), suggests that such coupling is

inherent to the properties of the hydrated polypeptide itself.

The apparent cooperativity between forming concomitant a-

helical and tertiary hydrophobic cores of TC5b exceeds the expected

non-cooperative value by nearly a factor of 3 (Table 1). Because the

formation of both a-helical and tertiary hydrophobic cores defines

most of the native topology of TC5b (Fig. 1), this suggests that the

residual unfolded state structure in the form of native-like

configurations and mesostates at high temperature (Fig. 6) is

responsible for most of the folding search. This phenomenon is

similar to the pre-organization of a-helix formation in hydrated

polyalanine [40], for which the microscopically pre-organized

unfolded state contributes as much as half to the folding search

[21,41]. Altogether, the findings of such extensive pre-organization

of both secondary structures as well as globular proteins suggest that

the apparent biological efficiency of protein folding is due in large

part to the thermodynamic pre-organization, as opposed to kinetic

guidance. This pre-organization acts to reduce the conformational

space available to the diffusive search of the unfolded state ensembles

that are pre-ordered in configurational mesostates.

Graph manifold learning of folding mesostates
In order to assess how the thermal folding reaction can proceed by

way of configurational mesostates, we examined the folding

ensemble at the midpoint of its folding transition as comprised by

the 310 K replica, by using graph manifold learning. At the folding

midpoint, the unfolded and native state ensembles are equi-

populated, and their inter-conversion defines all of the possible

folding pathways [42]. Projections of individual configurations of the

folding ensemble onto its LLE space map a star-shaped manifold,

with multiple mesostates radiating from the origin of the projection

(Fig. 7). Displacement along the M1 coordinate of the manifold

coincides with the transformation between the native and unfolded

structures, with configurations near the origin of the LLE map being

partially native-like (Fig. 7). Displacements along the M2 and M3

coordinates coincide in part with the transformations of the a-helix

and the b-turn, respectively, either in the context of native-like or

unfolded topologies, depending on the particular location along the

M1 coordinate (Fig. 7). The LLE mapping identifies a wide variety of

folding mesostates, including those that possess a near native

topology and a-helix but lack a native b-turn, those that lack the

tertiary hydrophobic core and the native b-turn but retain the a-

helix, as well as those that possess a near native b-turn and

hydrophobic cores but lack the a-helix (Fig. 7). The existence of such

mesostates explains the observed stabilities of their constituent

conformational motifs (Fig. 5), as well as the apparent cooperativities

of their configurations (Table 1). Combined with the star-shaped

organization of the manifold of TC5b’s folding ensemble, the variety

of these folding mesostates suggest that the thermal folding reaction

of TC5b is structurally heterogeneous. Though the folding of TC5b

is pre-organized extensively by the unfolded state ensemble

(Table 1&Fig. 6), this heterogeneity implies a relative diversity of

available folding pathways, in agreement with experimental studies

[43]. Determination of the exact subset(s) of folding mesostates that

contribute to the kinetic transition state ensemble and the overall

folding mechanism is an important direction of future work.

Conclusions
Insofar as the free energy of flexible polymers can be described by

a configurational partition function, our study shows that

molecularly adapted variants of replica exchange, including

REMS introduced here, can be used for the calculation of the

free energy and cooperativity of protein folding ab initio. In

addition, structural configurations and mesostates unknown a priori

but adopted by the folding ensemble can be discovered and

characterized by using graph manifold learning methods such as

LLE. Our findings indicate that the thermal folding of a model

Figure 7. Folding reaction manifold. Mapping of TC5b’s folding
ensemble at the midpoint of its thermal transition, as calculated using
the 310 K replica, onto the top three coordinates of its LLE manifold.
Displacement along the M1 coordinate of the manifold coincides with
the transformation of the 5) nearly native and 6) partially unfolded
mesostates that lack the tertiary hydrophobic core and the native b-
turn, but retain a frayed a-helix and the tertiary salt bridge.
Displacement along the M2 coordinate coincides in part with the
transformation of the a-helix from mesostate 7) that possesses a near
native b-turn and hydrophobic cores and a non-a-helical but compact
N-terminus, and mesostate 8) that lacks the native hydrophobic cores
and has a non-native b-turn centered at K8 that is part of the N-terminal
a-helix in the NMR structure. Displacement along the M3 coordinate
coincides with the transformation of the b-turn, including mesostates 9)
that have a near native b-turn and tertiary salt bridge but have an
unfolded a-helix and hydrophobic cores, and 10) possess a near native
topology and a-helix but lack a native b-turn.
doi:10.1371/journal.pone.0000446.g007

Folding Graph Manifolds

PLoS ONE | www.plosone.org 6 May 2007 | Issue 5 | e446



globular protein, Trp cage TC5b, involves a structurally hetero-

geneous set of configurations and mesostates (Fig. 7). Some of

these configurations persist in the molecular ensemble at high

temperature (Fig. 6), concomitant with the pre-organization of

TC5b’s folding by such ordered unfolded state ensemble (Table 1).

Combined with observations of thermodynamic pre-organization

of polypeptide secondary structures [21,41], these findings suggest

that macromolecular modularity, as described by ensemble

mesostates, likely plays an essential role in determining the

structures and stabilities of biological macromolecules.

Furthermore, the successes and failures of current de novo protein

design approaches likely reflect the significance of configurational

organization of protein ensembles and the latter’s contribution to

protein stability, respectively [44]. Since TC5b’s thermal stability

and apparent folding cooperativity, two hallmark features of

equilibrium folding of all natural proteins, are related to the

residual structure of TC5b’s unfolded state ensemble (Figs. 5&6),

this suggests that the design of naturally stable proteins may be

based on the structural preferences of unfolded polypeptides [45],

as obtained computationally for example [46]. Indeed, TC5b has

been re-designed recently by using just such an approach [47].

Application of advanced methods such as replica exchange Monte

Carlo to sample the rugged energy spaces of proteins, and graph

manifold learning to analyze the vast structural spaces of the

molecular ensembles that constitute them, should prove useful for

a variety of ab initio approaches to structure prediction, genome

annotation, and drug design.

METHODS

Molecular systems
To understand the origin of protein stability and cooperativity, we

chose to examine a protein the folding of which is well

characterized structurally, thermodynamically, and kinetically.

The smallest such protein is the 20-residue Trp cage [28], TC5b

(NLYIQWLKDGGPSSGRPPPS; Fig. 1), a derivative of the Gila

monster extendin-4 that has been truncated and redesigned to

include an N-terminal a-helix cap (N1), a-helical/secondary salt

bridge (Q5:K8), b-turn/tertiary salt bridge (D9:R16), and optimized

hydrophobic stack (Y3:W6). In addition, TC5b contains a naturally

occurring type I b-turn S13-S14-G15, type II polyproline helix P17-

P18-P19, and a hydrophobic core containing both local secondary

L2-Y3-I4 and non-local tertiary W6:P18 and Y3:P19 interactions.

NMR structure of TC5b (PDB code 1L2Y; model 1) was used as

the starting configuration for our studies. The structure was

solvated under periodic boundary conditions using a 60660660

Å3 cubic box of equilibrated TIP3 water, and energy minimized

using the CHARMM27 potential energy function in the presence

of one randomly placed chloride ion to yield electroneutrality

[48,49]. The resulting system was heated using molecular

dynamics with a linear gradient of 20 K/ps and equilibrated in

the isothermal-isobaric (NPT) ensemble at 273 K and 1 atm

pressure for 100 ps, using the Leapfrog Verlet integrator with

velocity rescaling, 2 fs integration time step, energy-conserving

Nose-Hoover thermostat, SHAKE to constrain hydrogen atoms,

center of mass updates to remove rotational and translational

solute motion, and particle mesh Ewald (PME) summation to

calculate electrostatic interactions, as implemented in CHARMM.

Because these calculations were already in progress, we did not use

the subsequently introduced CHARMM backbone dihedral

parameter correction [50]. Upon equilibration, systems were

60.7660.7660.7 Å3 in volume, containing a total of 21,640 atoms

and 7,112 water molecules. Such size and equilibration was

necessary to thermalize and unfold this protein (see below). This

system was used as the initial state for molecular dynamics

equilibrations in the canonical (NVT) ensemble for 100 ps at mean

temperatures of 273+3n K, where n = (0, 31).

Replica exchange
For REM, we utilized the MMTSB Tool Set, a recently developed

collection of Perl scripts that interface with CHARMM [51].

Thirty two replicas were prepared as described above, thermalized

at temperatures that were spaced between 273 and 363 K, a range

chosen based on the experimentally observed thermostability of

TC5b [28]. Each replica was simulated independently in the

canonical ensemble under periodic boundary conditions using

Leapfrog Verlet molecular dynamics with velocity rescaling, 2 fs

integration time step, Nose-Hoover thermostat, SHAKE con-

straint, and PME electrostatics. Every 2 ps, an exchange between

replicas n and m neighboring in temperature was attempted using

the energy smoothed Metropolis criterion: P (xn | xm) = 1 if DE #

0 and P (xn | xm) = exp(–DE) if DE.0, where P is the probability of

exchange, DE = bn ^Un&ts–bm ^Um&ts, b= 1/kBT, U is potential

energy, and ts is the MD smoothing time preceding the exchange

over which the energies of the instantaneous configurations xn and

xm are box averaged. Value of ts was tuned interactively to produce

mean exchange acceptance rates of about 30%, while preserving

approximately Bolzmann sampling, with ts of 200 fs used to

generate the results described below. In the limit where the

smoothing time is very long and the distribution of energy

approaches the fluctuations in that time domain, e.g., ts.600 fs

(Fig. 2C), REMS is expected to produce ensembles with

significantly reduced energy differences among states, allowing

transitions between states that would otherwise by very different in

their energies.

Upon each exchange of replicas neighboring in temperature,

another exchange using the new pairs of neighboring replicas was

attempted in order to maximize the tempering effect and the

movement of replicas across the sampled temperature range.

Upon a completed exchange, velocities of the exchanged

configurations were rescaled to the new temperatures, another

exchange was attempted 2 ps later, and the entire REMS

simulation was produced for a total of 4,710 exchanges, while

discarding 100 initial exchanges, corresponding to more than

0.3 ms of aggregate MD time, and sampling more than 150 million

configurations.

Energy smoothing of REMS is equivalent to introducing an

error into the calculation of the Metropolis criterion, and

consequently produces non-stationary distributions of Markov

chains of configurations. Though different in origin, this feature of

REMS is analogous to the lack of stationary distributions

produced by other tempering methods such as variants of Jump-

walking (J-walking), where the conventional MC walker is allowed

large transitions sampled from a different temperature ensemble,

yielding generally non-stationary distributions of states [52,53].

Nevertheless, it can be shown that approximately canonical

distributions of states can be generated by using tempering MC

methods such as J-walking when the jumping frequency is low

compared to the total length of the MC walker, e.g., when the

deformation of the free energy of the system is small relative to the

differences in energy of major ensemble states [54,55].

In order to evaluate the suitability of REMS to actually recover

canonical energy distributions, we calculated the constant volume

heat capacity of pure water: Cv = (^U2&–^U&2)/kBT2. Because heat

capacity reports squares of energy fluctuations, it is an extremely

sensitive measure of the equipartition of energy that characterizes

canonical ensembles. For this purpose, we used a 20620620 Å3

box of equilibrated TIP3 water under periodic boundary
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conditions, simulated using MD in the canonical ensemble for

1 ns, using MD protocol as described above, at four different

temperatures: 273, 285, 299, and 313 K. We carried out a REMS

simulation of the same system, using replicas at 273, 285, 299, and

313 K, simulated for 1,000 exchanges attempted every 1 ps with ts

of 200 fs, corresponding to aggregate MD time of 1 ns, equal to

that of simulations using canonical MD without REMS. As can be

seen from Fig. 3, usage of the energy smoothed Metropolis

criterion does not lead to any significant distortions of the mean

energy of water under near physiologic conditions of temperature

and pressure, as seen from the comparison of the results of MD

NVT and REMS simulations. More importantly, no statistically

significant differences exist between the constant volume heat

capacities of water calculated using exactly canonical MD NVT

and approximately canonical REMS, both of which are in good

agreement with the experimentally measured values (Fig. 3) [48].

To evaluate the computational efficiency of REMS, we

calculated mean transition probabilities of exchanging pairs of

replicas adjoining in temperature during the course of the

simulation of the thermal folding of TC5b. As can be seen from

Fig. 4, usage of REMS improves the otherwise system size-limited

parallel tempering MC, yielding mean exchange acceptance ratios

of about 30%, similar to traditional MC transition probabilities.

To evaluate sampling efficiency, we calculated the evolution of the

apparent self-diffusion coefficient D02N = (f(0) 2 f(N))/f(final), as

a function of simulation length with respect to the number of

replica exchanges N, where f is a phase space variable, such as the

fraction of the native hydrophobic core of TC5b. If the sampling

of phase space is ergodic, D02N decays to one at long N. This is

a necessary but insufficient condition of ergodicity, since it

depends on the choice of initial and final conditions. Due to the

requirement of carrying out multiple independent simulations, we

are unable to evaluate ergodicity directly [21].

Microscopic analysis and clustering
In the analysis of structures of calculated ensembles, we use the

term conformation to refer to geometries of individual interac-

tions, and configuration to refer to molecular geometries of groups

of interactions. Although canonical structures, such as a-helices

and b-turns, have defined regular geometries, conformations in

solution at ambient temperature exhibit considerable plasticity.

Thus, we utilized a self-consistent method for defining conforma-

tional basins using a stepwise optimal clustering algorithm based

on a self-organizing neural net, as implemented in ART-2 by

Brooks and coworkers [56]. Briefly, the cluster assignments of

structural variables extracted from simulation ensembles were

minimized subject to a constraint on a cluster radius, such that no

member of a cluster was farther than a specified distance from the

cluster center. Because the convergence of such minimizations is

sensitive to initial conditions, we tested the robustness of assign-

ments to conformational basins by recalculating cluster assign-

ments using reshuffled trajectories (data not shown). Cluster

occurrences and probabilities of sampling of conformational basins

as defined in this manner were calculated using a set of home-built

programs, available upon request.

In this manner, we examined the formation of the N-terminal a-

helix by clustering (w,y) dihedral angles of the L2YIQWLK9

polypeptide backbone and intrahelical hydrogen bond distances

between backbone amide hydrogens and carbonyl oxygens,

formation of the a-helical/secondary Q5:K8 salt bridge by

clustering the distance between side chain Q carboxamide oxygen

and K amine nitrogen, formation of the b-turn by clustering (w,y)

dihedral angles of S14 and the hydrogen bond distance between

backbone D9 carbonyl oxygen and side chain S14 hydroxyl

hydrogen, formation of the b-turn/tertiary salt bridge D9:R16 by

clustering the distance between side chain D carboxylate carbon

and R guanidino nitrogen, formation of the polyproline helix by

clustering (w,y,v) dihedral angles of P18, and lastly, formation of

the hydrophobic core by clustering contact distances among side

chain Y3 phenol carbon f, W6 indole carbon d, and P19 imido

carbon d. For all conformational variables, probabilities of forming

native conformations were calculated by using clusters with near

native centroids, as referenced to the NMR structure of TC5b.

Folding manifold learning
Because probabilities of forming structural configurations, such as

folding intermediates, cannot be derived from conformational

probabilities a priori, we examined their occurrence by direct

enumeration of conditional probabilities of forming pairs of

conformations. Apparent cooperativities of forming pairs of native

interactions were calculated by using Ppair = P (i+j|i ; j), the

probability of forming both interactions i and j under the condition

that either i or j is formed.

In order to discover configurations that involve more than four-

body interactions described above, we applied non-linear graph

manifold learning techniques. Conventionally, study of high

dimensional data such as atomic protein folding trajectories has

been done using linear methods such as principal component

analysis (PCA). PCA works by computing linear projections of

greatest variance from the top eigenvectors of the data covariance

matrix, thereby preserving the covariance structure of the data.

However, because the global structure of high dimensional data is

not necessarily linear, low dimensional linear principal compo-

nents fail to capture this structure adequately (Fig. 6) [57].

Recently, graph based methods, including locally linear embed-

ding (LLE), have been developed to preserve data neighbor

relationships without enforcing global linearity [58]. Simply put,

such methods provide compact representations of complex data

without imposing artificial constraints.

Our LLE input data set was dimensioned using the Cartesian

coordinates of heavy atoms of TC5b (154 atoms 6 3 (x,y,z) = 462

dimensions), and included 2,355 configurations sampled from the

363 K replica to model the unfolded state ensemble, or from the

310 K replica to model the folding ensemble. All coordinates were

centered and oriented with respect to the NMR structure of TC5b

(PDB model 1, see Methods) in order to simplify the calculated

manifolds, though this procedure is not required, in contrast to

PCA [59,60]. LLE was carried out by calculating Euclidean

distances between individual configurations, as defined by the

Cartesian coordinates of their heavy atoms, and constructing

nearest neighbor graphs using k-means clustering to define nodes

of k-nearest neighbors. For the results shown below, we used k of

18. Varying k between 12 and 20 produced no qualitative

differences in resulting manifolds (data not shown). The con-

structed graphs contained edges that specified nearest neighbor

relations, as based on geometric similarity of Cartesian coordinates

of heavy atoms, with edge weights computed by reconstructing

each input configuration xi from its k-nearest neighbors and

minimizing the reconstruction error eW = Si (xi2Sj Wijxj)
2. The

low dimensional manifold that preserved these locally linear

neighbor relations was constructed by minimizing ey = Si (yi2Sj

Wijyj)
2, where yi is the low dimensional embedding of the high

dimensional configuration xi. Such a manifold preserves distance

relationships of the data, subject to the constraints of the nearest-

neighbor graph and the locally (but not globally) linear embed-

dings that describe it.

Our approach is related to other graph-based studies of

molecular ensembles [61–63], but instead of analyzing kinetic or
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energetic relations among states with respect to each other, we

examine their geometric (dis)similarities with respect to the overall

organization of the ensemble. In this way, projections of the high

dimensional configurations xi, as sampled from their molecular

ensembles, onto the low dimensional manifold yi reveal groups of

geometric mesostates and their ensemble coordinates.
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