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Background. As biologists increasingly rely upon computational tools, it is imperative that they be able to appropriately apply
these tools and clearly understand the methods the tools employ. Such tools must have access to all the relevant data and
knowledge and, in some sense, ‘‘understand’’ biology so that they can serve biologists’ goals appropriately and ‘‘explain’’ in
biological terms how results are computed. Methodology/Principal Findings. We describe a deduction-based approach to
biocomputation that semiautomatically combines knowledge, software, and data to satisfy goals expressed in a high-level
biological language. The approach is implemented in an open source web-based biocomputing platform called BioDeducta,
which combines SRI’s SNARK theorem prover with the BioBike interactive integrated knowledge base. The biologist/user
expresses a high-level conjecture, representing a biocomputational goal query, without indicating how this goal is to be
achieved. A subject domain theory, represented in SNARK’s logical language, transforms the terms in the conjecture into
capabilities of the available resources and the background knowledge necessary to link them together. If the subject domain
theory enables SNARK to prove the conjecture—that is, to find paths between the goal and BioBike resources—then the
resulting proofs represent solutions to the conjecture/query. Such proofs provide provenance for each result, indicating in
detail how they were computed. We demonstrate BioDeducta by showing how it can approximately replicate a previously
published analysis of genes involved in the adaptation of cyanobacteria to different light niches. Conclusions/Significance.

Through the use of automated deduction guided by a biological subject domain theory, this work is a step towards enabling
biologists to conveniently and efficiently marshal integrated knowledge, data, and computational tools toward resolving
complex biological queries.
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INTRODUCTION

Background
Biologists must increasingly conduct computational analyses across

integrated biological knowledge and data [1], but biologists who

cannot program are relegated to searching in knowledge bases and

carrying out canned computations that have been programmed by

others. To conduct novel computations—ones for which no

canned solution exists—biologists often hire programmers, but this

is either expensive or hit-and-miss (or both), and usually results in

overly specific one-off solutions. Moreover, putting non-biologist

programmers between biologists and biocomputation removes the

biologist from the details of the computation [2], which makes

biologists nervous about the correctness of the results—as well it

should. Unlike physics, there is no clear categorization within

biology of, for example, theoretical vs. experimental vs. compu-

tational biologists whose practitioners could naturally collaborate.

As a result, it is often nearly impossible for the authors of papers

(usually biologists) to accurately and completely describe the

computational methods used to solve a given biological problem.

Although this will certainly change as computational techniques

become standardized and biologists learn to program—indeed

a whole new species called ‘‘computational biologist’’ is rapidly

evolving—it would be useful if biologists had ‘‘intelligent’’ tools

that, in a sense, ‘‘understand’’ biology, could help the biologists

conduct analyses, and could explain how the analyses were

accomplished, all expressed in terms that are natural to the

biologists.

The present paper explores just such an ‘‘intelligent’’ paradigm

that we call deductive biocomputing. In our paradigm biologists/users

express queries as goals in high-level near-natural terms. Others—

usually biologists who are more computationally savvy working

with programmers—provide instructions to the platform about

how to satisfy those goals. Automatic methods then put these

together to satisfy the goals and to explicitly record how the

answers were discovered. This is analogous to the widely studied

problem of automatic program generation [3,4] in which

a specification for a program is expressed in a high-level language

and then translated into an actual program that implements the

specification. (Although fully general automatic program synthesis

is an unsolved problem, the present query resolution problem is

more tractable because we are looking for an answer to a specific

query, not a procedure that will answer an entire class of queries.

In particular, because the inputs to the query are generally known

in advance, we can evaluate tests and unwind loops at proof-time,

this avoiding having to automatically generate conditional

branches and iterative or recursive loops.)
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The deductive approach to biocomputation
Engineers approach complex knowledge-based goals in three

general ways: (a) the ‘‘procedural’’ approach, (b) the ‘‘relational’’

approach, and (c) the ‘‘deductive’’ approach. In the procedural

approach (a) one specifies each step required to reach the goal,

down to the level at which the steps are primitives in the domain

language. Such procedures often involve search in knowledge

bases, generally traversing the structures that represent complex

knowledge, transforming data, and conducting specific calcula-

tions along the way. Usually writing programs of this sort is

beyond the skill of biologists.

In the relational approach (b) queries are written such that the

complex inner loops (searching over records) are implicit; for

example: ‘‘Select genes (g1) of organism1 with the word ‘photo-

synthesis’ in their annotation field, and where there is a gene

(g2) in organism2 such that g1 and g2 are orthologous.’’ Such

queries can be directly executed by the relational database engine,

thus simplifying the programming process. Still, in order to make

use of this approach in complex analyses the biologist must know

a great deal about how the knowledge bases are structured, and

what tools are available.

In the deductive approach (c), the biologist specifies a high-level

goal, usually without knowing how it will be satisfied, and

a runtime executor (called a theorem prover for reasons that will

become clear below) does whatever work is required to satisfy the

goal. One might, for example, ask: ‘‘Find photosynthetic

orthologs between organism1 and organism2.’’ Whereas the

relational approach goes beyond the procedural approach by

leaving loop optimization to the computer, the deductive approach

goes beyond even the relational approach by avoiding the

necessity of describing an algorithm at all. No computation is

explicitly described; instead, the query is expressed in declarative,

problem-appropriate terms; it is the job of the theorem prover to

bridge the gap between the query-level concepts and the

computational ones.

Leaving method determination to the computer is a significant

though difficult advance; whereas the implicit search carried out

by the relational database engine requires knowledge of how to

execute and optimize a certain class of algorithms (complex loops

over relational databases), the deductive approach requires that

the computer have additional understanding of how aspects of the

knowledge base are connected to one another, and how to use

these connections in service of high-level goals. The computer

must, in a sense, ‘‘understand’’ how the knowledge is organized,

and how it relates to high-level goals. Generally the knowledge-

base designer provides such information to the theorem prover in

what we shall call a subject domain theory. Rather than representing

one-off methods, this knowledge can be expressed modularly so

that it can be applied to a wide array of different goals. Through

this specification of a subject domain theory and application of

a general theorem prover, the end-user biologist—the person at

the top who needs the results of the computation to begin with—is

relying on the knowledge-base designers and the theorem prover

to do the heavy lifting. At the end of this paper we will see that in

addition to providing great power to the biologist-user, deductive

biocomputing affords a number of significant advantages over

either task-specific programs or relational queries, including

a coherent way of recording where results come from (called

provenance). Also, one can nearly (but not quite) get to true natural

language programming, in which the biologist can ask a question

in plain language and efficiently obtain both results and a detailed

explanation of how they were calculated. But there are also

efficiency limitations to this technique, and special requirements in

terms of the consistency of the symbols (names) used in the subject

domain theory. We will return to these points in the discussion.

The core of a deductive approach is the subject domain theory, an

ontology comprising definitions of domain concepts, descriptions of

the capabilities of available resources including data, knowledge, and

tools, and the background knowledge necessary to relate these to

high-level queries. While the word ontology is sometimes taken to

mean a description of vocabulary and taxonomy of the domain, we

mean here a formal axiomatic theory that defines domain concepts

and relates them to one another. We use the word axiom to include

what is often called a rule in the Semantic Web or Expert Systems

literature. We employ full first-order logic as the representation

language of the subject domain theory. (Readers familiar with

theorem proving technologies will correctly recoil at the un-

decidability of full first-order logic. We address this issue in some

detail in the Discussion section of the paper.)The query, or question

to be answered, is also expressed in the language of logic; specifically

it is phrased as a conjecture whose validity is to be proved by an

automatic proof in the subject domain theory (thus the term theorem

prover). The axioms of the subject domain theory allow the query

conjecture to be transformed and decomposed into subgoals, leading

eventually (one hopes) to a proof. If a proof is found, answer-

extraction techniques are applied to the proof to yield an answer

[3,4]. If more than one proof is found, more than one answer may be

extracted.

METHOD

BioDeducta = SNARK+BioBike
While the applicability of the deductive approach is independent of

any particular implementation, our prototype implementation,

called BioDeducta, is built largely from existing components. The

theorem prover is SRI’s reasoner SNARK [5]. The query and

subject domain theory are formulated in SNARK’s logical language.

SNARK has a procedural-attachment mechanism that allows one to

consult external resources while a proof is in progress, and

a mechanism for extracting answers to queries from discovered

proofs. SNARK uses a ‘‘sorted logic’’, in which each entity bears

a syntactic indication of what ‘‘sort’’, or type, of object it is.

Biology-specific data, knowledge, and software resources are

drawn from the BioBike environment [2], an integrated biological

data and knowledge repository and biology-specific programming

environment. BioBike provides integrated access to a number of

knowledge sources, including the Gene Ontology (GO) [6], Kegg

(www.genome.jp/kegg/), a BioCyc Database [7] for Cyanobac-

teria, and biological literature, as well as important biological

software tools such as Meme, BLAST, R, and Clustal. BioBike is

built on top of the KnowOS (Knowledge Operating System) [8],

which embeds the biological knowledge and data in a frame-based

programmable knowledge environment, and provides web-based

access to it, as well as the ability to call out to remote resources

over the web. The KnowOS includes SNARK as a built-in facility,

and SNARK procedural attachments link symbols of the SNARK

subject domain theory to BioBike functions. Both SNARK and

BioBike are written entirely in Common Lisp, and are offered as

open-source freeware. Moreover, there is a fully functional

BioBike demo server, including SNARK, on which the examples

in this paper can be tested, and wherein users can freely develop

new BioDeducta applications of their own design (see www.

biobike.org).

The ‘‘hli’’ problem
We here illustrate the BioDeducta approach with an extended,

realistic example. The cyanobacterium subspecies Procholorococ-
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cus is widely distributed in the world’s oceans, and plays a critical

role both in the marine ecosystem and in the global carbon cycle

[9]. A problem of interest to biologists is how these organisms are

adapted to their environmental niches. Bahya et al. [10] studied

the genomic differences among many strains of the cyanobacteria

with respect to their adaptation to niches of differing levels of light

and nutrients. Among the Procholorococci, Procholorococcus sp.

strain Med4 (aka. ProMed4 or Med4) is adapted to high light,

living in the upper part of the ocean, whereas Procholorococcus

sp. strain MIT9313 (aka. Pro9313) is adapted to lower light, living

in somewhat deeper waters (although still in the ‘‘euphotic zone’’

where there is some available sunlight). Bhaya et al. were

interested in which proteins (and their genes) are involved in this

adaptation—that is those one might call the high light adaptive genes

of ProMed4. (For simplicity in the present discussion we

interchangeably refer to genes, and the RNAs and proteins that

they code for. As we are dealing here with bacteria, this

simplification is not too problematic, and BioBike knows how to

automatically determine when translation is needed between

these.) One way to address this biological question is to ask which

proteins in ProMed4 have no ortholog—that is, no gene of similar

apparent function (based upon sequence similarity)—in Pro9313.

One can get an even finer bead on this question by examining

microarray expression results for the genes that produce those

proteins, asking which of those genes unique to ProMed4

demonstrate a significant light response (for example, are 26 up-

regulated in a light stress experiment). Unfortunately, microarrays

for the Prochlorococci have only recently been developed, so no

such experimental work exists. However, there are a number of

such studies using the related freshwater cyanobacterium:

Synechocystis sp. strain PCC6803 (aka. s6803) [11]. Going one

step further, one may focus specifically on the genes that are

annotated as photosynthesis-related according to some formaliza-

tion of gene function, such as the Gene Ontology (GO).

In sum, we can expand this question as follows:

Which photosynthesis-related proteins in ProMed4 have no

ortholog in Pro9313 but do have an ortholog in s6803 such

that the genes producing those proteins exhibits a light stress

response (greater than 26 ratio in microarray data), and

possibly are annotated as light-related genes?

One algorithm to find such genes might be:

For each photosynthesis-related gene/protein in ProMed4,

Find its best protein-level ortholog

in Pro9313 and S6803,

When there is no Pro9313 ortholog,

but there is a S6803 ortholog,

and the expression ratio for the genes (mRNAs) that

produce the S6803 ortholog are .26

up-regulated in the Hihara microarray dataset,

collect the ProMed4 gene/protein.

Expressed in the native BioBike language (BioLisp), this might

be written as follows:

(loop for pm4prot in (#ˆproteins promed4)

as 9313ortho = (best-ortholog pm4prot pro9313)

as 6803ortho = (best-ortholog pm4prot s6803)

when (and (photosynthesis-related pm4prot)

(null 9313ortho)

6803ortho

(.= (array-select 6803ortho Hihara1) 2.0))

collect pm4prot)

Although this solution is concise and relatively efficient, its

programming requires detailed knowledge of both the BioLisp

programming language, and of how to call upon BioBike’s

knowledge resources. Moreover, this is a one-shot solution specific

to this particular problem, not affording of significant reuse (i.e.,

methodological modularity). Nor does this approach get us any

more than the solution reported as an opaque answer that cannot

be unpacked into the method that solved it (provenance).

In contrast to this approach, the BioDeducta methodology

allows us to more conveniently express and solve this problem

while simultaneously offering methodological modularity and

solution provenance. We begin by expressing our query in high-

level terms familiar to the biologist, and then unpack each concept

into modular conceptual constituents in the subject domain

theory. It is the job of the theorem prover to figure out how to

use the guidance offered by the subject domain theory to find

a solution to the top query.

The query might be expressed as follows: What gene enables

med4 to adapt to its light environment? Or, expressed in terms of

a SNARK formal conjecture, does there exist a gene ?gene such

that:

(adaptive-gene ?gene med4 light)?

The satisfaction of this conjecture in the subject domain theory

is to be found by the theorem prover. Terms in the query preceded

by question marks (?gene) are variables that will be plugged in by

SNARK, if possible, in the process of providing a proof for the

conjecture; in proving the existence of such entities, the theorem

prover will be forced to find consistent values that fit these

variables. These descriptions of genes and organisms that satisfy

the conditions will then be extracted from the proof. The proof

thus constitutes an explanation of why the extracted entities satisfy

the desired conditions. The other terms (med4 and light) are

constants that are fixed by the theory.

Subject domain theory
The meanings of the symbols of a query, such as adaptive-gene,

are defined by axioms of the subject domain theory. The theorem

prover transforms the query in accordance with these axioms.

Unlike a logic-programming system such as Prolog, the theorem

prover is not constrained to process the query in the order given;

rather it follows its own strategic controls.

The subject domain theory has three parts: (1) modular

definitions that enable SNARK to translate the high-level query

into a search procedure through subgoals that finally ground out in

terms of ground knowledge and BioBike procedures, (2) simple

ground knowledge that requires no internal (subgoal) computa-

tions, and (3) procedural attachments into the BioBike knowledge

base that access computed knowledge and which may perform

internal ‘‘hidden’’ computations. As we proceed with this

exposition, it is important to keep in mind that these various

resources are independent of the particular adaptive-gene query

in the present example; rather, they are conceptually self-

contained and modular in that they could be used in any number

of queries regarding the properties of genes and proteins. (The

subject domain theory will generally have been previously

provided by either the knowledge base designers or by other

biologists. Here, of course, we have written it for this problem, so it

exhibits somewhat less generality. Elsewhere we could engage in

a productive debate about how each axiom should properly be

cast for maximum generality.)

In this presentation we begin from the goal, and work our way

conceptually downward. Recall that we seek a proof of the

theorem that establishes the existence of a gene (?gene) such that:

(adaptive-gene ?gene med4 light)

Deductive Biocomputing
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(More precisely we seek a refutation of the negation of this

assertion. This process, called ‘‘proof by refutation’’, is explained

in detail in Russell and Norvig [12] ch. III.9.)

Here is the definition of what it means for a gene to be

adaptive—that is, for it to be related to the way in which an

organism adapts to its environment:

(adaptive-gene ?gene1 ?organism1 ?dim)

u [i.e., if and only if]

(and

(gene-in-organism ?gene1 ?organism1)

(gene-semantics ?gene1 ?dim)

(differentiating-gene ?gene1 ?organism1 ?dim)

(differentially-regulated ?gene1 ?dim))

That asserts that a gene is related to the way in which an

organism adapts to its environment along a particular environ-

mental dimension (i.e., light, in the present example) if and only if

four conditions are met: First, the gene must be a gene of the given

organism. Second, the gene’s putative function (per its explicit

annotation, provided by the database) must be conceptually

related to the relevant dimension. Third, the gene must

(genomically) differentiate between organisms that live in environ-

ments that differ along the relevant dimension (here: light). And

fourth, the gene must be differentially regulated in an experiment

that explores the relevant dimension (again: light).

Importantly, none of the specifics of the query are explicit in this

formulation of what it means to be an adaptive gene; this axiom is

general to this sort of problem, and uses internal formulae, which

are likewise general (and which we explain below). One could

argue about whether this is precisely what one intends by the

biological concept of ‘‘adaptive gene’’, but it is easy to adjust this

definition if one desires.

Continuing to unpack the meaning of terms: A differentiating

gene (more precisely: a genomically differentiating gene) is one

that exists in one organism and not in another that lives in

a different niche, and where the niches differ along the relevant

dimension:

(differentiating-gene ?gene1 ?organism1 ?dim)

u

(and

(exists

((?organism2 :sort species))

(and

(differentially-ecotyped ?organism1 ?organism2 ?dim)

(gene-in-organism ?gene1 ?organism1)

(not (exists

((?gene2 :sort gene))

(gene-has-ortholog-in-organism

?gene1 ?gene2 ?organism2)

))))

Note that this axiom asserts the existence of a second organism,

unspecified in the formula that calls upon this axiom. When

SNARK encounters the not exists clause it will attempt to find

a gene (?gene2) that is an ortholog of the given gene (?gene1) in

the second organism (?organism2). If there is such a gene, this

branch of the search will fail, causing the specific gene ?gene1 to

be rejected as a differentiating gene, in which case SNARK will try

another. On the other hand, if there is no such gene, ?gene2, this

branch of search will succeed, and the proof will continue.

(Theorem-proving aficionados will note that this is true negation,

not negation-as-failure; we need to know that no ortholog exists,

not that we have merely failed to find one. There is a closed-world

assumption applied to the procedural attachment: If the

attachment finds no ortholog, we assert that no ortholog exists.)

We define the concept of being differentially ecotyped as

follows: There is another organism (presumably in the same group

as our target organism) that lives in a different environment

regarding the specified dimension (light, in the present case). Here

we very roughly approximate the qualities of light as low vs. high.

(differentially-ecotyped ?organism1 ?organism2 ?dim)

u

(or

(and

(organism ?organism :environment ?dim

:quality high)

(organism ?organism2 :environment ?dim

:quality low))

(and

(organism ?organism :environment ?dim :quality low)

(organism ?organism2 :environment ?dim

:quality high)))

Note that this must be expressed in both directions (across the

or) to handle the case in which ?organism1 is high and ?organism2

low, and vice versa. (Also, this will only work if the terms ‘‘High’’

and ‘‘Low’’ are both used by the author of the query and by the

author of the subject domain theory. Any project of this sort will

confront such terminological issues. We have chosen these

particular terms because biologists refer to med4 as a the high

light strain and mit9313 as a low light strain [10], so there is more

likely to be agreement in this case.)

Finally, to determine differential regulation we use BioBike’s

knowledge of microarray experimental results on the given (light)

dimension (i.e., from the Hihara et al. [11] data) to find a gene on

a microarray in a relevant orthologous organism on which

a relevant experiment has been conducted, and then to test for

up-regulation of the ortholog:

(differentially-regulated ?gene ?dim)

u

(exists

((?experiment :sort experiment)

(?organism3 :sort species)

(?gene3 :sort gene))

(and

(experiment ?experiment :dimension ?dim

:organism ?organism3)

(gene-has-ortholog-in-organism ?gene

?gene3 ?organism3)

(. (regulation-ratio ?gene3 ?experiment) 2.0)

))

Here regulation-ratio is a procedural attachment that returns

a value from a given experiment for a given gene, and the whole

(. ...) clause ensures that the gene under consideration has

a significant (26 up-regulated) response in that experiment. (One

may well wonder, after adding all these axioms, whether the

subject domain theory is consistent. Asking SNARK to prove

‘‘false’’ will (eventually) root out inconsistencies. Unfortunately the

time that this takes is unpredictable so one must decide when to

stop it and accept that the theory is consistent.)

Simple ground knowledge
In addition to the axiomatization above, and extensive knowledge

of genes, organisms, ontologies, and microarray data built into

BioBike and accessed by SNARK via procedural attachments (as

described in the next section), we must provide knowledge that is

specific to the present problem. Since the query is expressed in

terms of the word ‘‘light’’, most of this relates that term to various

organisms and experiments.
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PLoS ONE | www.plosone.org 4 April 2007 | Issue 4 | e339



These first three assertions tell SNARK that light varies along

three qualitative dimensions, low, medium, and high, and that the

light environments of the three organisms, mit9133, s6803, and

promed4, are those niches respectively:

(organism mit9313 :environment light :quality low)

(organism s6803 :environment light :quality medium)

(organism med4 :environment light :quality high)

These assertions are to be read as: The organism ‘‘mit9313’’ on

the environmental dimension ‘‘light’’ has the quality value ‘‘low’’,

and so on. We must also relate the Hihara et al. [11] experiment to

the light dimension, and indicate that this experiment was

conducted on the Synechococcus sp. strain PCC6803 (s6803)

organism:

(experiment hihara :dimension light :organism s6803)

If desired, an arbitrary amount of additional irrelevant

knowledge could be added to make this example more realistic,

but because theorem proving as used here is formally monotonic

such additional knowledge would not change the results of the

example, although it might slow down the proof process as false

leads and dead ends are explored and rejected by the theorem

prover.

Procedural attachments
Finally, we provide concepts that are implemented by procedural

attachment in the BioBike system:

N (gene-in-organism ?gene ?organism)—This relation asserts

that ?gene is a gene of the given ?organism. Procedural

attachments to this relation compute either the organism

containing a given gene, or, inversely, all the genes contained in

a given organism.

N (ortholog ?gene1 ?gene2)—BioBike has a built-in concept of

two-way orthology between given genes (more precisely,

between the proteins produced by given genes). A procedural

attachment to this ortholog relation computes the (protein-

based, two-way) gene orthologous to a given gene.

N (gene-has-ortholog-in-organism ?gene ?gene1 ?organism)

Given the concepts of gene-in-organism and ortholog, as

above, it is easy to introduce an axiom that conceptually defines

gene-has-ortholog-in-organism as follows:

(gene-has-ortholog-in-organism ?gene1 ?gene2 ?organism)

u
(and

(ortholog ?gene1 ?gene2)

(gene-in-organism ?gene2 ?organism))

That is, a given gene has an ortholog in a specific given

organism if and only if there is a gene (?gene2) in the target

organism and that gene is orthologous (as defined above) to our

given gene.

When SNARK encounters expressions with procedural attach-

ments, such as:

(gene-in-organism ?gene med4)

a data source is invoked that yields all the genes in the given

organism (Procholorococcus sp. strain Med4). In different

branches of the search space, the variable ?gene will be

systematically replaced by each of these genes, respectively. The

procedural-attachment mechanism allows the theorem prover to

behave as if the axioms of the theory express the complete list of

the genes of promed4, while in reality that knowledge is imported

from the external data source only when it is needed.

Two somewhat more problem-specific primitives are needed in

order to work with microarray data, and to examine gene

annotations:

N (regulation-ratio ?gene3 ?experiment)—This function re-

turns a number representing the mean up-or-down regulation

ratio of a given gene in a given microarray experiment. The

experiment name and gene object must both be given. In the

present example the data from the experiment of Hihara et al.

[11] is available and has been massaged as described in

Appendix S1 to provide a mean regulation ratio for each gene.

N (photosynthesis-related ?gene)—Finally, among the primi-

tives that we take as built in via BioBike procedural attachments

is a test for a gene object being photosynthetically related. This

test could work in any number of ways, ranging from reading

the annotation field for the gene, to reading information from

a functional ontology regarding the given gene, to asking the

biologist’s opinion. How this is implemented is not relevant to

the present discussion so we have simply implemented it to

search the gene’s Cyanobase (www.kazusa.or.jp/cyano/)

annotations (which are built into the BioBike knowledge base)

for the string ‘‘light’’ or ‘‘photo’’. This is not a highly certain

way of finding photosynthetically related genes (esp. given the

concerns raised by Shrager [13]), but it will do for the present

example.

We also add assertions that tell us that when we ask about the

light semantics along the light dimension, SNARK should make

use of this built-in photosynthesis-related predicate to determine

whether or not this is the case for a given gene:

(gene-semantics ?gene light)

u

(photosynthesis-related ?gene)

We will return in the discussion to consider other interesting

ways in which this axiom could be expressed.

RESULTS
We provided BioDeducta all of the above and asked it to find

a gene (and other related terms) that satisfy our query:

(adaptive-gene ?gene med4 light)

Once the proof is complete, the theorem prover extracts an

answer to the query by examining what term replaces the variables

?gene: PMED4.PMM0817. This is the only answer for this specific

query, and it is correct. This proof takes about a minute to find this

answer (on a dual Athlon Linux processor with 1G memory). By

examining the proof (provided in the online supplementary

materials) we find that in order to obtain this answer, SNARK

discovered these auxiliary answers, which can be understood by

finding their locations in the axioms of the subject domain theory,

above (and Appendix S2):

?gene: #$PMED4.PMM0817

?organism2: #$prochlorococcus_marinus_mit9313

?experiment: HIHARA

?organism3: #$synechocystis_pcc6803

?gene3: #$S6803.ssr2595

In other words, a low-light organism that has no ortholog to

?gene is prochlorococcus_marinus_mit9313 (pro9313). Experi-

ments were performed by Hihara on the organism synechocys-

tis_pcc6803 (s6803), and a high regulation ratio was discovered

in those experiments on gene S6803.ssr2595, which is an ortholog

of PMM0817. The annotation for PMM0817 reads: ‘‘possible

high-light inducible protein’’. Indeed, the high-light inducible (hli)

proteins (genes) have been previously identified as being possibly

involved in the adaptation of the Procholorococci to different

environmental niches by Bhaya et al. [10], who identified

members of the hli gene family in seven cyanobacterial genomes,

including those of Prochlorococcus sp. strain Med4 nad Pro-
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chlorococcus sp. strain MIT9313. PMM0817 is called ‘‘hli17’’ in

Bhaya et al [10].

We conducted a number of additional experiments, demon-

strating that BioDeducta’s results mirror the results computed by

the equivalent BioLisp programs run in the same BioBike

database. For example, as was mentioned above, one may quibble

with the specifics of our choice of definitions, but it is easy to

change the meanings of terms, or to add alternative formulations

that modularly work together with existing axioms. For example,

one might wish to change the definition of adaptive-gene as

follows:

(adaptive-gene ?gene1 ?organism1 ?dim)

u

(and

(gene-in-organism ?gene1 ?organism1)

(differentiating-gene ?gene1 ?organism1

?organism2 ?dim))

Note that the gene-semantics and differentially-regulated

clauses are deleted. Re-executing the proof with this axiom

produces 340 results (for ?organism2 = pro9313). These (and

other variations of this example) were checked by equivalent

BioLisp code.

Having demonstrated how a combination of axiomatic reasoning,

answer extraction, and procedural attachment may offer biologists

access to powerful biocomputing analyses, we next turn to discussion

of some closely related work, followed by discussion of some of the

issues and opportunities raised by our work.

DISCUSSION

Closely related work
A bevy of activity in biocomputing is concerned with the formal

representation and reasoning about biological pathways. An

excellent example of this is the Pathway Logic work based on

the Maude rewriting logic paradigm [14,15]. Although based

upon somewhat different technology (rewriting systems vs. first-

order theorem proving), we share the methodology of expressing

a formal subject-domain theory, and then reasoning from it to

transform a conjecture into a form that affords various sorts of

analyses, such as model checking.

The fact that Pathway Logic operates in the domain of

biological signaling pathways, whereas the examples in this paper

are in the domain of genomic conjectures, is an incidental

difference resulting from our respective choices of problems.

Because we both use explicit models, we can in principle do one

another’s problems by representing one another’s subject domain

theories. That is, given a subject domain theory containing axioms

that define temporally related biological events, BioDeducta will

do exactly the same work as Pathway Logic. Indeed, in the BioBike

Live Tutorials that come with the BioBike system we develop

several other examples, including one that analyzes protein

regulation models (see the Software Availability section, below).

The subject domain theory for that example includes axioms such

as:

(and (controls ?protein1 ?protein2)

(controls ?protein2 ?protein3))

) [i.e., implies]

(controls ?protein1 ?protein3))

One can consider Maude as a sub-logic of SNARK, specialized

to certain forms of rewriting-based reasoning. Although far less

general than SNARK, Maude is very efficient for certain kinds of

problems, such as reachability (e.g., Can a certain molecule be

generated from given precursors?) What is ultimately needed is an

integration of SNARK with Maude (and other tools) so that

queries that are solvable in principle in first-order logic can be

solved efficiently with specialized logically sound algorithms such

as the model-checking techniques available in Maude. (We thank

Mark-Oliver Stehr for this insightful discussion.)

Some other systems, such as HyBrow [16], try to decide the

validity of a declarative conjecture from biological knowledge

and/or data. The user of HyBrow expresses fully grounded

hypotheses (i.e., conjectures without variables) as sets of temporally

related biological events. HyBrow evaluates these hypotheses

against genomic and microarray data and may offer alternative

‘‘neighboring’’ hypotheses with improved fit to the data. Although

hypotheses in HyBrow are fully grounded, whereas the BioDe-

ducta example given in the present paper contains variables, this is

an illusory difference; we could just as well have grounded the

adaptive-gene conjecture with specific genes, in which case the

BioDeducta methodology looks very similar to HyBrow’s. Indeed,

grounding the conjecture in specific genes (and other abstracted

variables) is precisely how SNARK goes about proving it.

Moreover, HyBrow’s ability to propose ‘‘improved’’ hypotheses

is orthogonal to its conjecture validation mechanism, and is

a property of many other systems (e.g., [17]). Moreover, the

HyBrow concept of ‘‘neighboring’’ hypotheses is ad hoc and

dependent upon the specific representation of conjectures, which is

(as described above) built into HyBrow’s code and is not explicit.

Thus, although BioDeducta’s ability to replace variables seems to

be narrower than HyBrow’s neighboring hypothesis concept, this

is illusory because of the choice of representation in the present

examples. If we had used an example that looked like a HyBrow

temporal model, and provided an axiomatization for it, the

BioDeducta representation could afford the same representational

‘‘hinges’’ that HyBrow uses to compute neighboring hypotheses.

Moreover, because of the declarative axiomatization of the subject

domain theory in BioDeducta, these representational hinges could

be manipulated much more directly than is the case in HyBrow,

which is a ‘‘black box’’ program. In these ways BioDeducta is

more general than HyBrow.

Furthermore, as with Pathway Logic, the apparent difference in

domain between Hybrow and BioDeducta is merely a happen-

stance of the examples we have chosen. Axioms such as:

(precedes ?event1 ?event2)

%

(exists ((?time1b :sort time)

...etc...)

(and

(event-begins-at ?event1 ?time1b)

(event-ends-at ?event1 ?time1e)

(event-begins-at ?event2 ?time2b)

(event-ends-at ?event1 ?time2e)

(non-overlapping-ranges ?time1b ?time1e

?time1b ?time1e)))

could serve the purpose in BioDeducta of computing the same

sorts of analyses as HyBrow. Indeed, SNARK has as a built-in

version of the Allen temporal calculus [18] for reasoning about

time points and intervals in just this manner, so building this logic

would not be difficult.

The central difference between BioDeducta (or Pathway Logic)

and HyBrow is that BioDeducta is an inference engine armed with

an explicit axiomatization of its subject domain theory, whereas

HyBrow is an ad hoc program in which the equivalent of the

subject domain theory is built into special-purpose code.

Therefore, HyBrow cannot carry out inference and so HyBrow

users cannot use high-level descriptions that are grounded by

a subject domain theory in a principled way. Furthermore,

HyBrow cannot give explanations that involve such transforma-
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tions (even if they were carried out in the ad hoc HyBrow code). In

these important ways, BioDeducta goes well beyond HyBrow and

HyBrow-like systems.

Issue: Efficiency and the undecidability of full

first-order logic
Being very general, SNARK’s proof process will usually be slower

than specially written BioLisp programs because the latter may

take advantage of specific properties of the problem to speed up

search. Our solution to the light acclimation query is slower than

a cleverly crafted program, but faster than a naive one. It does,

however, require theory-specific domain engineering and strategic

work to achieve good performance. This may be chalked up to the

price one pays for the flexibility afforded by using a full first-order

theorem prover with an explicit subject domain theory.

Full first-order logic is undecideable in general, meaning that

there is no hope of developing a fast general-purpose reasoning

capability for it. However, within a particular subject-domain

theory it is often possible to develop strategic controls that allow

the theorem prover to exhibit performance rivaling that of special-

purpose systems. Moreover, where the objects involved are finite,

as is the case here for genomes, etc., it is likely that most theories

are naturally decidable (although one can certainly go out of one’s

way to build an undecideable theory if one wishes to do so).

Through the use of weights and clause ordering, the designer of

the subject domain theory can force certain sub-formulae to be

treated before others. In the present example, for instance, some

symbols have procedural attachments while others do not. Some

procedural attachments, such as gene-in-organism, can be very

expensive, since an organism may have thousands of genes,

whereas others, such as gene-has-ortholog-in-organism, are

relatively cheap because a gene usually has only a small number of

orthologs in a given organism. We can weight symbols in

proportion to the expected number of solutions offered by the

corresponding attached procedure.

Useful properties may also be stated for relations, such as

symmetry or reflexivity. For example, ortholog can be declared to

be commutative (i.e., symmetric) but in some cases this gives

poorer running time. One can also state a reflexivity axiom:

(ortholog ?gene ?gene), which may will allow some clauses to be

dropped by subsumption and improve the search efficiency. Not

only is the present theory decidable, but by judicious use of these

mechanisms it is also efficient.

Regardless of all these manipulations, given that s6803 has 3722

genes, promed4 has 1760, and pro9313 has 2328, even if it takes

several minutes for SNARK to compute a solution, this is far less

time than it would take a biologist to do the same work manually

or using spreadsheets.

Issue: The complexity of domain theory formulation
Even aside from these tuning details, the mere construction of

a subject domain theory is a complex and error-prone task.

Fortunately, in theory it need be done only once for each subject

domain. Furthermore, we do not need to begin from scratch but

can import appropriate sections of subject domain theory from

such standards as Cycorp’s OpenCyc [19] and Teknowledge’s

SUMO [20,21] and more specific ontologies for the selected

subject domain such as the axiomatization of molecular biology

included in the Library of Ontologies of the Laboratory for

Applied Ontology [http://www.loa-cnr.it/], which has been

under development for many years. Other ontologies that are

being developed for biology include the Ontolingua Molecular

Biology Theory (www.loa-cnr.it/medicine/molecular-biology) and

the Open Biological Ontologies project (obo.sourceforge.net/

main.html); see also [22].

One can also build a subject domain theory by composing

simpler theories. One should think of the subject domain theory as

a sort of dictionary of biological concepts; it modularly describes

how concepts are cached out in terms of other (simpler) concepts,

eventually reaching ground facts or underlying computations. The

development of any dictionary is not trivial, but because of the

generality of the theorem prover, the in-principle modularity of

the subject domain theory is essentially guaranteed (although not

necessarily its efficiency, unless steps such as those described above

are taken as well).

Of course, merging subject domain theory components may not

be straightforward; different theories may use different symbols for

describing the same concept, or may use the same symbol with

different meanings. The notions of theory morphism and colimit,

obtained from the mathematical theory of categories [23], has

been found to be valuable for this purpose [24,25]. A theory

morphism is a meaning-preserving mapping that identifies symbols

in one theory with other symbols in a different theory; the colimit

then allows us to compose the theories, taking these identifications

into account. In this way, one can combine theories even if

component theories use different vocabulary for the same concept,

or the same vocabulary for different concepts. Specware [26] is

a category-theory-based framework that implements essential

theory-manipulation operations, including theory morphism and

colimit, required for the composition of multiple ontologies and

theories. It provides an interface that allows us to access and

generate SNARK theories and proofs.

Regardless of the specific approaches to mitigating issues of

efficiency and of the completeness and correctness of the subject

domain theory (not to mention ambiguity and arguments about

definitions!), problems are bound to arise in any project of the sort

we have described. As with any such project, only the long-term

efforts of a dedicated community can work these out. We offer

technology that is powerful enough to afford correct, complete,

efficient, and explicit solutions—the biocomputation community

will, over time, work out the details. BioBike is a collaborative

platform within which such a community can engage in efforts of

this sort.

Opportunities: Quasi-natural language and query

elicitation
We opened this paper with the biologist in increasing need of the

ability to conduct novel computational analyses without pro-

gramming, and offered BioDeducta as an approach to this.

Whereas BioDeducta may provide significant opportunities in

terms of methodological modularity and provenance, it may still

be difficult to imagine biologists expressing queries in SNARK’s

logical notation (or, similarly, writing SNARK axioms). One

approach to this problem is to provide graphical support for query

formulation, such as was done in NASA’s Amphion system [27,28]

which automatically produces software for planetary astronomers.

Amphion accepts user queries formulated with the help of

a graphical query-formulation guide, producing a diagrammatic

representation of the query. The diagram is then translated into

a logical conjecture, which is passed to SNARK for proof.

Another approach to simplifying the query (or theory)

formulation task is to use quasi-natural-language. Whereas true

natural language programming (or at least querying) has been

a holy grail of AI since time immemorial, we do not imagine that

this is possible in the near term, even in narrow domains such as

biocomputing. However, the fact that the BioDeducta subject
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domain theory is explicitly formulated makes certain sorts of quasi-

natural language a real possibility. SRI’s GeoLogica and QUARK

[29] are both experimental systems that use deductive methods

very similar to the way this is done in BioDeducta to compose

heterogeneous data and software components: A logical form is

presented as a conjecture to SNARK, and an answer to the query

is extracted from the proof. While GeoLogica responds to queries

posed by an Earth systems scientist, QUARK serves as an assistant

to intelligence analysts. Both systems accept queries in English

which are translated into logical form by a natural-language

parser.

We have conducted preliminary experiments with natural

language in BioDeducta, using the same method as described for

the GeoLogica system [29]. Briefly, a query is parsed by Gemini,

a general parser, and translated into a logical form, phrased as

a conjecture, and submitted to SNARK. As above, the proof

produces a set of bindings for free variables in the logical form

produced by Gemini. These bindings constitute answers to the

question.

For example, the query

‘‘Find a gene that pertains to Promed4 and that does not have

an ortholog in Pro9313.’’

translates to a logical form that is thence translated by

a language subject domain theory into a BioDeducta conjecture,

which is thence proved, just as was done in the hli example, above.

In the end, the proof produces the answer

#$PMED4.PMM0030

Examining alternative proofs to the theorem produces multiple

answers:

#$PMED4.PMM0038

#$PMED4.PMM0051

This example required 5 seconds to produce the first answer,

and additional answers were almost instantaneous.

Many other sorts of queries can be addressed by BioDeducta

using this approach. Examples include

‘‘Does pmm0226 not have an ortholog in mit9313?’’

‘‘What is the Hihara mean regulation ratio of pmm0226?’’

Moreover, various semantically equivalent forms are acceptable.

For example, one can ask about the ‘‘hihara ratio’’ or the ‘‘hihara

regulation ratio’’, which are taken to be synonymous.

Much as this is encouraging, we do not pretend to have solved

the natural language problem for biocomputing. To express such

queries (in any language, natural or otherwise) users must know

a great deal about the system’s capabilities. Natural language

provides the illusion that the system can understand everything

whereas it is difficult for a system to engage the user in a natural

language dialogue to indicate what it does and does not

understand.

While naı̈ve users may not be able to formulate the appropriate

logical query, we may be able to guide such users to formulate

logical queries even if they are ignorant of logical notation or the

vocabulary of the subject domain theory. This approach depends

upon the use of a sorted theory, one in which each constant is

assigned a sort, that is an indicator of a class to which it belongs;

thus, promed4 may be declared to be of sort organism (or sort

bacterium, a subsort of organism). Similarly, each function symbol

is given a declaration of the sorts of arguments it requires and the

sort of value it produces, and each relation has a declaration of the

sorts of arguments it expects. Such declarations are valuable for

a theorem prover in that they restrict search, admit shorter proofs,

allow some error detection, and permit more concise axioms and

queries. But a sorted theory is of special value in that it allows

query elicitation. Let us imagine that a user was trying to

formulate the complex query discussed above. The user might

select the term promed4 from a menu of known organisms. Since

promed4 is of sort organism, the system would offer a menu of

relations and functions that accept terms of sort organism as

arguments including, for example, adaptive-gene and gene-in-

organism. An English paraphrase of the meanings of these

relations could be provided. Alternatively, the user could type an

approximation to the desired operator, and the system might offer

near matches that accept terms of appropriate sort as arguments.

As expression formation proceeds, the types of functions and

relations constrain the types of arguments, and vice versa until the

query is as complete as the user can make it, at which point it is

turned over to SNARK. This same mechanism might be used to

introduce new content or axioms into the system, thus enabling

a subject domain expert who is ignorant of the language of logic or

of the vocabulary of the existing subject-domain theory to be

guided to add new axioms to the theory.

Conclusions: On proof and provenance
The goal of BioDeducta is to put biological computation directly

into the hands of biologists themselves—to enable them to

manipulate biological knowledge and data in an interactive

computational environment, and to produce results that are

backed up by explicit explanations (the proofs). But biocomputa-

tion is not a simple art, often requiring one to program complex

navigations within and between complex knowledge bases.

Although BioBike offers the full power of a mature programming

language, it puts the burden of figuring out how to navigate the

knowledge bases entirely upon the biologist/users themselves.

BioDeducta can in principle assist the user by taking advantage of

the guidance of an explicit subject domain theory to find its way

through the knowledge base to answer complex queries. Of course,

the more meta-knowledge is available to describe knowledge bases

and their relationships, the more complete is BioDeducta’s ability

to offer assistance in this regard.

In concluding, we wish to emphasize an aspect of the present

approach that helps address a critical problem in computational

biology: the problem of provenance—that is, tracking how results

are calculated, especially as it applies in the annotation of

biological function.

The concept of gene function is highly problematic for a number

of reasons, not the least of which being that the way in which

function is determined by the annotator is not generally made

explicit in the annotation. As more and more genomes come

online faster and faster, functional annotation is more and more

being done through computational methods rather than by

experiment. Because the provenance—the data behind such

annotations—is not stored, there is the potential—in fact, the

near certainty!—of propagating errors and, complementarily,

failing to propagate corrections [13]. One approach to this is to

record such provenance, but often there is nothing worthy of

recoding because the annotation results from an opaque program

such as HyBrow [16]. The general BioDeducta method offers an

approach to this problem, as follows.

Recall that the explicit subject domain theory is not so much

a theory of biology as a description of the way to expand high-level

biological concepts in terms of more primitive concepts, finally

reaching ‘‘ground’’ terms and functions in the knowledge base or

BioBike functions. By virtue of this, the proof constructed by

SNARK in the process of proving a given conjecture forms an

explicit trace or ‘‘explanation’’, including the specific axioms used,

and the ways in which the variables were bound in the axioms that

lead to a given result; the more explicit the subject domain theory,

the more detailed the explanation. By virtue of this fact,

BioDeducta proofs represent precisely the sort of explicit
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provenance whose absence is endangering the very underpinnings

of molecular biology, and by recoding the proofs along with the

results that underpinning could be, at least in part, restored!

Software and example availability
BioDeducta is SNARK+BioBike. SNARK is built-in to the

BioBike demo server, accessible through www.biobike.org, email:

, and is usable without having to register. Because of a time limit

on computations taking place in the demo server only simple

BioDeducta proofs can be accomplished on that server. Users

wishing to seriously experiment with BioDeducta should either ask

Jeff Shrager (jshrager@stanford.edu), url: for an account on

a nondemo BioBike server, or should install BioBike and SNARK

themselves. Both of these are Common Lisp programs and are

open source freeware for research applications. The BioBike

installation instructions (also at www.biobike.org) explain how to

download and install SNARK as well.

The examples in this paper are available as BioBike Live

Tutorials, also at www.biobike.org. The BioBike Live Tutorial

system walks students through the entire process of developing and

running the examples, and includes explanation of some of the

more important SNARK parameters.

SUPPORTING INFORMATION

Appendix S1 Preparation of the Hihara et al. (2001) Data

Found at: doi:10.1371/journal.pone.0000339.s001 (0.03 MB

DOC)

Appendix S2 Complete Refutation Proof for the adaptive gene

conjecture resulting in PMM0817

Found at: doi:10.1371/journal.pone.0000339.s002 (0.06 MB

DOC)
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