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Background. A promising clinical application for stem and progenitor cell transplantation is in rescue therapy for
degenerative diseases. This strategy seeks to preserve rather than restore host tissue function by taking advantage of unique
properties often displayed by these versatile cells. In studies using different neurodegenerative disease models, transplanted
human neural progenitor cells (hNPC) protected dying host neurons within both the brain and spinal cord. Based on these
reports, we explored the potential of hNPC transplantation to rescue visual function in an animal model of retinal
degeneration, the Royal College of Surgeons rat. Methodology/Principal Findings. Animals received unilateral subretinal
injections of hNPC or medium alone at an age preceding major photoreceptor loss. Principal outcomes were quantified using
electroretinography, visual acuity measurements and luminance threshold recordings from the superior colliculus. At 90–
100 days postnatal, a time point when untreated rats exhibit little or no retinal or visual function, hNPC-treated eyes retained
substantial retinal electrical activity and visual field with near-normal visual acuity. Functional efficacy was further enhanced
when hNPC were genetically engineered to secrete glial cell line-derived neurotrophic factor. Histological examination at
150 days postnatal showed hNPC had formed a nearly continuous pigmented layer between the neural retina and retinal
pigment epithelium, as well as distributed within the inner retina. A concomitant preservation of host cone photoreceptors
was also observed. Conclusions/Significance. Wild type and genetically modified human neural progenitor cells survive for
prolonged periods, migrate extensively, secrete growth factors and rescue visual functions following subretinal trans-
plantation in the Royal College of Surgeons rat. These results underscore the potential therapeutic utility of hNPC in the
treatment of retinal degenerative diseases and suggest potential mechanisms underlying their effect in vivo.
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INTRODUCTION
Retinal degenerative diseases that target photoreceptors or the

adjacent retinal pigment epithelium (RPE) affect millions of people

worldwide. Similar to many other neurodegenerative diseases, no

effective treatments are available for patients afflicted with these

blinding disorders. With advances in stem and progenitor cell

technology, however, novel cell-based therapies are being envisioned

[1–4].

In the CNS, transplanted human neural progenitor cells derived

from prenatal cortex (hNPCctx) display characteristics important for

cell-based rescue of degenerating neurons. They are highly

expandable in culture [5], demonstrate a capacity to survive,

migrate and integrate into damaged neural tissue [6–9], and can

delay cell death and/or functional loss in multiple animal models of

neurodegenerative disease [10–12]. Furthermore, they can express

transgenes encoding specific neurotrophic factors that have pro-

tective effects on neighboring host neurons [11,12]. Despite their

promise, the utility of hNPCctx to rescue vision following subretinal

transplantation in models of retinal degenerative disease has not

been examined to our knowledge. Such a treatment approach might

reduce the need for tailored gene replacement strategies for the

genetically heterogenous group of disorders collectively referred to

as retinitis pigmentosa. It may also be applicable in genetically

complex or multifactorial retinal degenerative diseases such as age-

related macular degeneration and glaucoma.

In the past, neural stem and progenitor cells from various

sources were introduced into eyes with the thought that they might

differentiate and replace photoreceptors lost in retinal disease [13–

19]. Reports showed that while neural progenitors migrated into

the retina and assumed the morphology of neurons, they failed to

express retina-specific markers, including those characteristic of

photoreceptors. However, their impact on host retinal function

was not tested. The aim of the present study was to determine

whether unmodified hNPCctx could rescue visual functions and if

engineered expression of a neurotrophic factor could enhance such

effects. Glial cell line-derived neurotrophic factor (GDNF) was
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selected based on clear evidence that it increases neuronal

sprouting, prevents cell death [20,21] and has neuroprotective

effects in the brain [11,22–24], spinal cord [12] and retina [25–

30], and because receptors for GDNF are expressed within mature

retina [26,31–34].

We transplanted unmodified and GDNF-expressing hNPCctx

(hNPCctx-GDNF) to the subretinal space of the Royal College of

Surgeons (RCS) rat. In this well-studied model of autosomal

recessive retinitis pigmentosa and secondary photoreceptor de-

generation, a MERTK mutation in the RPE compromises their

ability to phagocytose shed photoreceptor outer segments [35–37].

This defect produces a debris zone between photoreceptors and

RPE, with subsequent loss of the photoreceptors themselves. We

found that unmodified hNPCctx possess a striking ability to

preserve retinal activity and sustain a wide range of visual

functions. Some, but not all, of these effects were augmented in the

presence of GDNF-expressing cells. This report is significant for

the unique disposition of the transplanted hNPCctx and for the

subsequent levels of functional rescue achieved, which are among

the best encountered in the RCS rat [29,38–43].

METHODS

Cell culture
Human NPCctx were isolated from post mortem fetal cortical

brain tissue at 13.5 weeks gestation and designated as cell culture

M031. The method of collection conformed to the NIH guidelines

for the collection of such tissues, as well as the IRB requirements

for the University of Wisconsin. Human NPCctx were cultured as

spherical aggregates (neurospheres) in DMEM/HAMS F12 (3:1)

supplemented with B27 (1:50; Gibco, Carlsbad, CA), 20 ng/ml

EGF (Sigma-Aldrich, St. Louis, MO), 20 ng/ml FGF-2 (R&D

Systems, Minneapolis, MN) and 5 mg/ml heparin (Sigma).

Neurospheres were passaged by chopping as described previously

[5] and half the medium was exchanged every four days. After

four weeks in culture, the FGF-2, heparin and B27 were removed

and N2 (1:100; Invitrogen) was added. After ten weeks in culture,

10 ng/ml leukemia inhibitory factor (Chemicon, Temecula, CA)

was also added.

Lentiviral infection
A self-inactivating lentiviral construct containing a mouse phos-

phoglycerate kinase-1 internal promoter driving the human gene

encoding GDNF [44] was used to generate GDNF-secreting

hNPCctx. Prior to infection, high-titer lentiviral stocks were

obtained by ultracentrifugation and the particle content of

individual batches was determined by p24 antigen ELISA and

RT-qPCR quantification of viral RNA [45]. Human NPCctx

neurospheres were incubated with Accutase (Chemicon; one ml

per estimate of 10 million cells) for 10 minutes, followed by a five

minute incubation with an equal volume of 0.2% trypsin inhibitor.

After removal of the trypsin inhibitor, the spheres were washed

three times with 10 ml of medium. Cells were dissociated by

trituration, counted on a hemocytometer and resuspended in

conditioned medium at 1000 cells/ml. 300,000 cells were plated

per well of a 24-well plate (minimum 10 wells) and mixed with

virus (80 ng p24/106 cells) diluted in 100 ml of fresh medium. Cells

re-associated in the presence of virus and formed spheres within

three days, whereupon they were collected and seeded in flasks at

a density of approximately 500,000 cells/ml. After one month,

expanded cultures of transgenic (hNPCctx-GDNF) and unmodified

(hNPCctx) neurospheres from the same original culture were

cryoprotected and banked in liquid nitrogen for later use. For the

transplantation experiments performed in this study, hNPCctx-

GDNF and hNPCctx neurosphere cultures were thawed and

further expanded to passage 24 (equivalent to approximately 39

population doublings), a point at which they exhibit steady-state

growth and cell fate potential in vitro [46].

Preparation of cells for transplantation
One hour before surgery, hNPCctx-GDNF or hNPCctx neurospheres

were dissociated for 10 minutes in Accutase (1 ml/10 million cells)

followed by inactivation with an equal volume of 0.2% trypsin

inhibitor. Neurospheres were washed twice with 10 ml of medium,

gently triturated, and counted on a hemocytometer. Cell suspensions

were diluted to a final concentration of 104 cells/ml in DMEM/F12

(3:1) and kept on ice until transplantation. Trypan blue dye exclusion

was performed on cell suspensions prior to and immediately

following each transplantation session, which showed greater than

90% and 75% cell survival, respectively.

Growth factor ELISAs and GDNF

immunocytochemistry
Neurospheres containing either hNPCctx or hNPCctx-GDNF were

dissociated with Accutase, washed and resuspended in plating

medium (DMEM/F12 (3:1) with 2% B27) at a density of 1000

cells/ml. Cells were plated either on glass coverslips (40,000 cells/

coverslip) coated with poly-L lysine and laminin or six-well plates

(106 cells/well) coated with laminin alone. Cells were then

maintained for three weeks by exchanging half the media with

fresh plating media every three to four days. After three weeks, all

medium from the six-well cultures was removed, followed by

a single media wash and replacement with fresh medium for

24 hours. Conditioned medium was collected and protein levels of

GDNF, IGF-1, and FGF-2 were quantified by ELISA (R&D

Systems) according to the manufacturer’s protocols. The plated

cells were then dissociated and counted using a hemocytometer in

order to express results as picograms or nanograms of growth

factor produced per day per million cells. Coverslips plated with

acutely dissociated hNPCctx-GDNF or hNPCctx were fixed with

4% paraformaldehyde, washed with PBS, blocked in 5% normal

donkey serum and 0.1% Triton X-100, and incubated with goat

anti-GDNF (1:100; R&D Systems) primary antibody followed by

donkey anti-goat Cy3-conjugated secondary antibody (1:1000;

Jackson IR). Nuclei were counterstained with Hoechst 33258

(1:10,000; Sigma) and coverslips were mounted in GelTol

Aqueous mounting media (Immunotech). At least five fields from

each of three coverslips were photographed with a Nikon E600

equipped with epifluorescence, using SPOTcam and SPOT

advanced software (Diagnostic Instruments, Inc.). Fluorescence

was quantified using Metamorph software and data was expressed

as mean6SEM.

Animals
Twenty-one day old pigmented dystrophic RCS rats (rdy+, p+)

received unilateral subretinal injections of hNPCctx (26104/2 ml/

eye) (n = 21), hNPCctx-GDNF (n = 11), or carrier medium only

(n = 4) (sham surgery). Further sham-operated RCS rats from

separate, concurrent studies [42,43] were available for comparison

and yielded similar results (these animals were not included in the

present study). For each animal included in this study, fellow eyes

served as untreated, internal controls. All animals were maintained

on cyclosporine A (Novartis), administered in the drinking water

(210 mg/l; resulting blood concentration of around 300 mg/liter

[40]), from one day prior to transplantation until they were

sacrificed. All animals also received daily dexamethasone injec-

tions (1.6 mg/kg, i.p.) for 2 weeks, starting from the day of
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transplantation. The studies were conducted with approval and

under the supervision of the Institutional Animal Care Committee

at the University of Utah; all animals were treated in accordance

with the Policies on the Use of Animals and Humans in

Neuroscience Research, approved by the Society for Neuroscience

in January 1995.

Transplantation
In order to study rescue effects following surgery, donor cells were

introduced at P21, an age preceding major onset of photoreceptor

loss. Separate transplantation sessions were performed using

different batches of cells in order to ensure that results were

repeatable. Suspensions of hNPCctx or hNPCctx-GDNF containing

about 26104 cells were delivered into the subretinal space of one

eye through a small scleral incision as a suspension in 2 ml of

DMEM/F12 medium (Invitrogen) using a fine glass pipette

(internal diameter 75–150 mm) attached by tubing to a 10 ml

Hamilton syringe. The cornea was punctured to reduce in-

traocular pressure and limit the efflux of cells. A sham-operated

group was treated in an identical manner, except carrier medium

alone was injected. Immediately after injection, the fundus was

examined for retinal damage or signs of vascular distress. Any

animal showing such problems was removed from the study and

not included in the final animal counts.

Electroretinogram (ERG)
Dark adapted full field ERG responses were recorded at

approximately P100 as in previous studies [38]. Cone responses

were isolated by employing a double flash protocol in which

a conditioning flash was followed by a probe flash one second

later. The conditioning flash served to transiently saturate rods so

that they were rendered unresponsive to the probe flash. The

intensity of the conditioning flash for complete rod bleaching was

set to 1.4 log cds/m2 for all tests. A composite b-wave was

obtained by presenting the probe flash alone, i.e., without being

preceded by a conditioning flash. The response to the probe flash

(1.4 log cds/m2), preceded by the conditioning flash, was taken as

reflecting cone-driven activity, and allowed the rod contribution to

be derived by subtraction of the cone response from the composite

response. Special care was taken to maintain the electrode

placement in a consistent position in all animals. Averages of 3–

5 traces (set 2 minutes apart to ensure recovery of rod

responsiveness) were obtained.

Visual acuity records obtained by measuring

optomotor responses
Animals were tested for spatial visual acuity at approximately P100

using an Optomotry testing apparatus [47]. This device consists of

a rotating cylinder covered with a vertical sine wave grating

presented in virtual three-dimensional (3-D) space on four computer

monitors arranged in a square. Unrestrained rats were placed on

a platform in the center of the square, where they tracked the

grating with reflexive head movements. The spatial frequency of the

grating was clamped at the viewing position by repeatedly re-

centering the ‘cylinder’ on the head of the test subject. Acuity was

quantified by increasing the spatial frequency of the grating using

a psychophysics staircase progression until the optokinetic reflex was

lost, thereby obtaining a maximum threshold.

Luminance threshold responses
To measure luminance threshold, single and multiunit activity was

recorded in the superior colliculus (SC) at approximately P100

using a modification of a previously described procedure [48].

Recordings were made from the superficial layers of the SC to

a depth of 100–300 mm using glass-coated tungsten electrodes

(resistance: 0.5 MV; bandpass 500 Hz–5 KHz). Brightness of a 5u
spot was varied with neutral density filters (minimum steps of 0.1

log) until a response was obtained that was double the background

activity, yielding the threshold level for that point on the visual

field. A total of 15–20 positions were recorded from each side of

the SC, which provided a map of light sensitivity across the SC.

Data was expressed in table form as mean percentage of SC area

possessing a luminance threshold below a particular level.

Histology
At the end of testing at P100 or P150, rats were euthanized with

sodium pentobarbital (Sigma) overdose and perfused with

phosphate buffered saline (PBS). The superior pole of each eye

was marked with a suture to maintain orientation. The eyes were

then removed, immersed in 2% paraformaldehyde for one hour,

infiltrated with sucrose, embedded in OCT and cut into 10 mm

horizontal sections on a cryostat. Four sections (50 mm apart) were

collected per slide as 5 series. One series was stained with cresyl

violet (CV) for assessing the injection site and retinal lamination.

The remaining slides were used for antibody staining, following

previous protocols [49]. The antibodies used in this study are listed

in Table 1. Retinal sections were examined by regular and confocal

microscopy. Some blocks were embedded in plastic and semi-thin

sections were collected for examination at higher resolution.

Data Analysis
Statistical analyses were performed using GraphPad Prism version

3.02 for Windows (GraphPad Software, San Diego California

USA). Data are presented as mean6standard error of the mean

(SEM). Statistical analyses were made using either Student’s two-

tailed unpaired t test or analysis of variance (ANOVA) as specified

in the figure legends, and Newman-Keuls procedure was used for

multiple comparison analysis. Differences were considered to be

significant at p,0.05.

RESULTS

Human neural progenitors have an innate capacity

to secrete specific growth factors and can be

genetically modified to release GDNF
Prior to transplantation, we analyzed the in vitro production of

specific growth factors by unmodified hNPCctx and by hNPCctx

transduced with a lentiviral gene construct designed to constitutively

express GDNF (hNPCctx-GDNF) [11,44]. This provided an a priori

indication of their potential to influence host cells in a paracrine

manner, a mechanism postulated to underlie protective effects

observed in previous cell transplant studies [29,39,42,43].

ELISA was used to quantify the release of three molecules with

potential neuroprotective activity in the brain or retina: IGF-1

[50–52], FGF-2 [26,53,54] and GDNF [11,22–30]. Human

NPCctx or NPCctx-GDNF were grown as neurospheres for

approximately 39 population doublings (Figure 1A), at which

time they were dissociated and analyzed for growth factor release.

IGF-1 and FGF-2 were secreted into hNPCctx conditioned

medium at a rate of 280690 and 12.063.0 picograms/106

cells/day, respectively (Figure 1B). Unmodified hNPCctx did not

secrete GDNF at levels above background. In contrast, transgenic

hNPCctx-GDNF cultures released GDNF at a rate of 102.5629.9

nanograms/106 cells/day (Figure 1B). Immunocytochemical

analysis revealed that 75.9611.8% of the hNPCctx–GDNF
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population stably expressed the lentiviral gene construct. Thus,

hNPCctx have the capacity to secrete endogenous growth factors of

known importance for the maintenance and survival of retinal

neurons, as well as the ability to constitutively express transgenes

encoding selected neurotrophins.

Subretinal injection of human neural progenitors

preserves retinal and visual functions
RCS rats received unilateral subretinal injections of hNPCctx,

hNPCctx-GDNF or medium alone (sham) at P21. Fellow,

untreated eyes served as internal controls for each animal. The

first test performed was ERG, which provides a gross measure of

retinal function and an indication of relative rod and cone efficacy.

In the scotopic-adapted RCS rat, the ERG a-wave (indicative

mainly of rod activity) disappears by P60, while the composite b-

wave (comprising rod and cone activity) is largely lost around P100

[39]. At approximately P100, eyes receiving either hNPCctx

(n = 21) or hNPCctx-GDNF (n = 9) injections retained robust ERG

responses (Figure 2). In contrast, sham-treated eyes (n = 3) had no

measurable ERG responses at this age. Further comparison of eyes

injected with hNPCctx-GDNF or hNPCctx revealed significantly

greater a-wave and cone b-wave amplitudes in the GDNF-secreting

group (a-wave: 164.3663.7 mv vs. 35.266.2 mv (p,0.05); cone b-

wave: 195.4638.1 mv vs. 77.7610.6 mv (p,0.01), respectively). For

perspective, non-dystrophic rats yielded a-wave and cone b-wave

responses of 2796172 mv and 3576183 mv, respectively. Thus, eyes

grafted with hNPCctx-GDNF retained ERG activity at approxi-

mately 58.8% (a-wave) and 54.6% (cone b-wave) of the level of

normal, non-dystrophic animals. Composite b-wave and rod b-wave

amplitudes were also well-preserved in the cell-injected eyes, but no

significant difference was observed between the hNPCctx-GDNF and

hNPCctx groups (composite b-wave: 244.9645.3 mv vs. 156.46

18.7 mv (p = 0.12); rod b-wave: 57.6634.5 mv vs. 78.7610.5 mv

(p = 0.84), respectively).

We next asked whether spatial visual acuity was affected by the

transplants using the optomotor, or head tracking, test [47,55]. At

approximately P100, eyes receiving hNPCctx (n = 21) injections

performed significantly better than sham-operated (n = 4) or

untreated (n = 29) control eyes (0.5060.01 c/d vs. 0.2260.03 c/

d (p,0.001) or 0.1460.02 c/d (p,0.001), respectively) (Figure 3).

Eyes injected with hNPCctx-GDNF (n = 11) possessed an average

visual acuity similar to hNPCctx recipients (0.5160.02 c/d vs.

0.5060.01 c/d, p = 0.90), with some animals in both groups

retaining acuities within the normal, non-dystrophic range (0.56–

0.62 c/d). Sham-operated eyes also retained significantly better

Table 1. Sources and Working Dilutions of Antibodies for Immunohistochemistry.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Antigen Antiserum Working dilution Source

Human nestin Mouse anti-nestin 1:200 Chemicon International

Human nuclei Mouse anti-human nuclei 1:300 Chemicon International

Human PCNA Mouse anti-PCNA 1:3000 Sigma

Cone arrestin Rabbit anti-LUMIJ 1:500 Drs. Zhu and Craft, U. So. California

PKCa Rabbit anti-PKCa 1:1000 Sigma

Rhodopsin Mouse anti-rhodopsin 1:1000 Dr. Molday, U British Columbia

Calbindin Rabbit anti-calbindin 1:1000 Swant, Switzerland

Parvalbumin Rabbit anti-parvalbumin 1:3000 Swant, Switzerland

Bestrophin Mouse anti-bestrophin 1:100 Chemicon International

RPE65 Mouse anti-RPE65 1:300 Chemicon International

doi:10.1371/journal.pone.0000338.t001..
..

..
..

..
..

..
..

..
..

..
..

..
..
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Figure 1. Unmodified and transgenic human neural progenitor cells
secrete neuroprotective factors in vitro. (A) Light microscopic appearance
of neurospheres cultured from human prenatal cortical progenitor cells
(hNPCctx). Transgenic neurospheres formed following infection of
dissociated hNPCctx with a lentiviral vector encoding GDNF had an
identical appearance in culture. (B) ELISA results quantifying the release
of GDNF, IGF-1 and FGF-2 into conditioned media from hNPCctx and
hNPCctx–GDNF cultures. IGF-1 and FGF-2 were secreted by hNPCctx,
while GDNF was only detectable in transgenic hNPCctx-GDNF cultures.
Data are expressed as mean6SEM from n = 3–6 independent samples.
(ND: not detectable).
doi:10.1371/journal.pone.0000338.g001
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spatial visual acuity than untreated eyes (0.2260.03 c/d vs.

0.1460.02 c/d, p,0.05), as shown previously. However, cell-

grafted animals tested at P150 continued to perform as high as

0.49 c/d (data not shown), whereas no measurable response was

observed in any of the sham-operated or untreated retinas at this

late time point. Of note, the sham responses obtained in these

experiments were essentially identical to those obtained in other

studies using the RCS rat [43].

Luminance threshold recordings from the SC measure

functional sensitivity across the visual field, which in turn provides

a geographic indication of the magnitude and area of photore-

ceptor rescue across the retina [56]. In dystrophic RCS rats,

threshold levels at P100 are greater than 3.0 log units above the

background level of 0.02 log candela/m2. This is in comparison to

non-dystrophic rats, which possess threshold levels less than 0.6 log

units above background [48]. For the present study, recordings

were made in a combined set of cell-injected animals who received

either hNPCctx or hNPCctx-GDNF. Eyes were specifically chosen

from either group based on their superior performance on optomotor

testing; therefore, comparisons between the hNPCctx and hNPCctx-

GDNF groups are not appropriate. Overall, cell-injected eyes (n = 10)

performed significantly better than untreated eyes (n = 5) or those

receiving sham injections (n = 3) (Figure 4 and Table 2). Specifically,

8.065.8% of the SC area of cell-injected eyes produced thresholds

less than 0.8 log units, 22.068.5% produced thresholds less than 1.5

log units and 67.7610.0% yielded thresholds less than 2.1 log units,

with best test points falling within the normal, non-dystrophic range.

These results are in contrast to sham-injected eyes, where only

14.868.3% of the SC area yielded thresholds below 2.1 log units.

In summary, eyes receiving human neural progenitor cells

retained dramatically better retinal and visual functions compared

to control eyes at P100. Furthermore, some components of the

ERG were augmented when hNPCctx were engineered to release

GDNF.

Figure 2. The capacity of human neural progenitors to preserve retinal
function is augmented by GDNF expression. ERG response amplitudes to
full field light stimulation were recorded at approximately P100 in RCS
rats injected with hNPCctx–GDNF (n = 9), hNPCctx (n = 21) or medium
alone (n = 3) into the subretinal space. Individual components of the
ERG waveform (a-wave, composite b-wave, cone b-wave and rod b-
wave) reveal relative contributions of different retinal cells to the overall
functional activity of the retina. Cone b-waves were delineated by
a double flash protocol and the rod-attributable b-wave was derived by
subtraction from the composite level. Eyes injected with hNPCctx–GDNF
demonstrated significantly greater a-wave and cone b-wave amplitudes
than those receiving hNPCctx (*p,0.05; **p,0.01; Student’s unpaired t-
test). In contrast, the composite b-wave and rod b-wave amplitudes
were not statistically different between the two groups. Control eyes
injected with medium alone (sham-operated eyes) had no recordable
ERG waves and are not included in the graph. Data are expressed as
mean 6 SEM.
doi:10.1371/journal.pone.0000338.g002

Figure 3. Spatial visual acuity is preserved in eyes receiving human neural
progenitor cell grafts. Rapid, non-invasive measurements of spatial visual
acuity thresholds were obtained using the OptoMotry head tracking
apparatus. At approximately P100, eyes receiving subretinal hNPCctx-
GDNF (n = 11) or hNPCctx (n = 21) demonstrated superior spatial visual
acuity compared to sham-injected eyes (n = 4; ***p,0.001), with best-
grafted animals yielding near-normal responses (0.6 c/d). Spatial visual
acuity was also significantly better in sham-treated vs. untreated (n = 29;
*p,0.05) eyes, reflecting the known ‘‘sham effect.’’ Statistical signifi-
cance was determined via one-way ANOVA with the Newman-Keuls
procedure for multiple comparison analysis.
doi:10.1371/journal.pone.0000338.g003

Figure 4. Visual field is preserved in eyes receiving human neural
progenitor cell grafts. Luminance threshold responses were recorded at
approximately P100 from multiple points within the superior colliculus
(SC) contralateral to the eye being tested. This method quantifies
functional sensitivity to light across the visual field of an eye. The
topographical map depicts the luminance threshold responses
(measured in log units relative to background illumination of 0.02 cd/
m2) at 15 points within the SC opposite the cell-injected eye of a best-
performing animal at P104 (right side of figure). SC recordings (16
points) opposite the fellow, untreated eye (left side of figure) served as
an internal control. Both hNPCctx–GDNF and hNPCctx transplant
recipients were included in the cell-injected group, which consisted
of a select population of eyes that displayed superior performance on
spatial visual acuity testing. Recordings falling at or below a threshold
of 2.0 log units are indicated with unfilled ovals, while recordings above
2.0 are demarcated with filled ovals.
doi:10.1371/journal.pone.0000338.g004
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Transplanted human neural progenitors survive,

integrate, and form a new pigmented subretinal cell

layer that protects photoreceptors from

degeneration
An antibody recognizing human-specific nuclear antigen was used

to identify surviving hNPCctx and hNPCctx-GDNF at P100 and

P150. Both unmodified and genetically modified groups were

found to have cells that migrated and survived in two distinct

locations: (i) as a separate, nearly continuous, subretinal layer lying

between the host RPE and photoreceptors, and (ii) as individual

cells distributed throughout the neurosensory retina, especially

within the inner retinal layers (Figure 5A).

Donor cells comprising the semi-continuous subretinal layer

possessed intracellular pigment granules (confirmed on semi-thin

sections) similar to host RPE cells, unlike those that migrated

within the neurosensory retina, which remained unpigmented

(Figure 5B). The pigmented subretinal donor cells failed to express

two characteristic RPE markers, RPE65 [57] and bestrophin [58],

arguing against the possibility that they had undergone full

transdifferentiation. However, the photoreceptor outer segment

debris zone normally found in the subretinal space of the RCS rat

was nearly absent. A small number of donor cells in both the

intraretinal and subretinal locations were immunopositive for

proliferating cell nuclear antigen (PCNA) (Figure 5C and D), even

in the oldest rats examined (P150). Despite this potential indication

of continued cell division, there was no evidence of uncontrolled

growth or tumor formation at any time, suggesting that donor cell

proliferation might be regulated or balanced by cell death.

Qualitative examination of the host anatomical response to the

presence of hNPCctx or hNPCctx-GDNF revealed substantial

preservation of the photoreceptor outer nuclear layer (ONL)

overlying all subretinal donor cells (Figure 5E and F), with

photoreceptor rescue gradually declining outside the distribution

of the transplanted cells (Figure 5E and G). Distant from the

subretinal grafts, the ONL was reduced to a single layer at P100

and discontinuous, scattered cells at P150 (Figure 5G), similar to

untreated and sham-treated dystrophic retinas. Of interest, no

ONL was seen in areas where donor cells were present exclusively

in the inner retina, whereas a prominent ONL was present in

areas where donor cells existed solely in the subretinal space. This

observation suggests that subretinal localization of hNPCctx is

necessary and sufficient to promote anatomic rescue of the ONL

in this model.

Donor cells (hNPCctx or hNPCctx-GDNF) that migrated within

the neurosensory retina did not express the retinal markers

recoverin (Figure 6A), PKCa (Figure 6B), rhodopsin, parvalbumin

or calbindin (latter markers not shown). However, the morphology

of the host inner retinal cells was well-preserved in the area of

donor cell migration, as evident from the PKCa antibody staining,

which labeled normal-appearing rod bipolar cell dendrites

(upward arrows in Figure 6B). Both the intraretinal and subretinal

donor cell populations were immunopositive for nestin, a neural

stem and progenitor cell marker, using a human-specific antibody.

In addition, confocal microscopy showed a small portion of the

transplanted hNPCctx remained GFAP-positive (not shown).

Confocal microscopy further demonstrated an extensive network

of nestin-positive cellular processes emanating from the trans-

planted cells present within the neurosensory retina (Figure 6C),

which was not observed in the subretinal hNPCctx population.

While preservation of the ONL is evidence for a neuroprotective

role for hNPCctx and GDNF within the retina, maintenance of

visual function at the level observed in this study suggests at least

partial retention of photoreceptor structure necessary for visual

processing, particularly that associated with cones. To examine

host cone photoreceptors, we performed antibody staining for

cone arrestin antigen. In the area of best rescue, clearly identifiable

cones were present at a density of 40–46 cells/mm across two-

thirds of the histological section, even at 150 days of age (130 days

after transplantation). This cone density is within the range seen in

normal rat retinae, although cone processes in the rescued regions

were clearly shorter than normal and poorly organized (Figure 6D

and E). In contrast, cone photoreceptors were essentially absent in

sham-operated or untreated eyes at the same time point

(Figure 6F). This finding correlates with the partial preservation

of cone ERG activity, visual acuity and visual field observed in

cell-transplanted eyes.

DISCUSSION
Results from this study show that neural progenitor cells derived

from developing human cortex promote long-term preservation of

vision after subretinal transplantation in the RCS rat. Using three

independent tests performed at P90-100, hNPCctx- and hNPCctx-

GDNF-transplanted eyes demonstrated retention of visual func-

tions at levels among the best documented in the RCS rat model

[29,38,40–43,56,59,60]. These results correlated with survival of

photoreceptors, including cone cells, which are required for

optimal daylight vision. In contrast, sham injections of medium

alone failed to achieve significant sustained functional rescue,

consistent with previous studies. It has also been shown that

fibroblasts [43,60] and placenta-derived progenitor cells [43] are

unable to maintain visual functions long-term, further indicating

that the rescue effects seen in the RCS rat model are not the result

of a non-specific event. Of note, while vision rescue requires

preservation of some functional photoreceptors, the mere presence

of photoreceptor cells in the ONL of transplanted RCS rats does

not assure function [61]. Thus, we chose to emphasize quantitative

functional responses to hNPCctx transplantation and support these

findings with a more qualitative investigation of the host

anatomical impact.

Histological examination reveals that hNPCctx survive, migrate

and assume two substantially different appearances and distribu-

tions following transplantation into the subretinal space of RCS

rats. These findings were seen regardless of whether the cells were

Table 2. Summary of Visual Threshold Measurements from the Superior Colliculus in Different Groups of Animals.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Group n Mean area 6 SEM of superior colliculus (in %) with log thresholds at level less than:

0.2 0.8 1.5 2.1 2.8 3.4 4.1 4.7

Cell-injected 10 0 8.065.8 22.068.5 67.7610 83.869.6 96.763.3 98.361.7 99.260.8

Sham 3 0 0 0 14.868.3 66.366.4 97.662.4 100 100

Untreated 5 0 0 0 0 0 40.9613.8 92.962.4 98.360.9

doi:10.1371/journal.pone.0000338.t002..
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..
..

..
..

..
..
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..
..

..
..
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Figure 5. Human neural progenitors survive as two distinct populations within the retina and promote photoreceptor rescue. (A) Retinal section obtained
from a P150 eye immunostained with human-specific nuclear marker. There is a pigmented RPE-like (RPE-L) layer of donor cells above the host RPE
layer, whereas donor cells in the inner retina do not have pigment granules (right-pointing arrows). (B) High power image showing pigment granule-
containing donor cells in the RPE-L region that are positive for human nuclear marker (arrows). Photoreceptor inner segments (IS) are visible above
the pigmented donor cell layer, demonstrating partial preservation of photoreceptor structure. (C) Retinal section from the same eye used in panel A
stained with proliferating cell nuclear antigen (PCNA) revealing occasional dividing cells in the RPE-L layer and inner retina at P150 (arrows). (D) High
power image showing PCNA-positive cells in the RPE-L layer (arrows). (E) Low power view of a retina section obtained from the same eye used in
panel A showing extensive rescue of photoreceptors within the outer nuclear layer (ONL) after subretinal injection of hNPCctx–GDNF. The boxes
labeled f and g correspond to the high power images depicted in panels F and G, respectively. (F) High power view of box f from panel E showing
rescued ONL and the underlying, semi-continuous layer of donor cells between the photoreceptors and RPE (arrow). (G) High power view of box g
from panel E showing non-rescued ONL distant from surviving subretinal donor cells. INL: inner nuclear layer; IS: inner segments; ONL: outer nuclear
layer; RGC: retinal ganglion cell layer; RPE-L: RPE-like layer.
doi:10.1371/journal.pone.0000338.g005
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Figure 6. Transplanted human neural progenitors express nestin in vivo and partially preserve host cone structure. Confocal images of P150 dystrophic
retina transplanted with hNPCctx–GDNF and double stained with antibodies against human nuclear antigen (red) and either (A) recoverin,
a photoreceptor and cone bipolar cell marker (green), or (B) protein kinase Ca (PKCa), a bipolar cell marker (green). Down arrows point to subretinal
donor cell nuclei in panel B, while up arrows point to preserved dendrites of host rod bipolar cells. Note the location of donor cell nuclei in both the
inner retina and subretinal space. (C) Confocal image of P150 dystrophic inner retina transplanted with hNPCctx–GDNF and double stained with
antibodies against nestin, a neural stem and progenitor cell marker (green) and human nuclear antigen (red). (D) Confocal image of non-dystrophic,
control retina stained with cone arrestin antibody (red) showing a normal cone photoreceptor profile (IS: inner segments; ax: axon; arrows point to
cone pedicles). (E) P150 dystrophic retina transplanted with hNPCctx–GDNF and stained with cone arrestin antibody showing morphology of rescued
cone photoreceptors (arrows point to cone pedicles). (F) Sham-operated retina at P150 stained with cone arrestin antibody (arrows point to rare
remaining cone cell bodies). Results at P150 from retina transplanted with hNPCctx were similar to those receiving hNPCctx–GDNF. IPL: inner plexiform
layer; ONL: outer nuclear layer; RGC: retinal ganglion cell layer; RPE-L: RPE-like layer.
doi:10.1371/journal.pone.0000338.g006
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previously transduced with a GDNF-expressing construct. One

population is non-pigmented and diffusely distributed within the

inner retina, while the other is a pigment granule-containing,

RPE-like layer located between the host neurosensory retina and

RPE. In previous studies using other donor cell types, significant

intraretinal migration was not seen [39,41], nor were pigment

granules found in donor cells not originally derived from RPE

[39]. However, similar to other reports introducing forebrain–

derived stem cells into the retina [13–17], donor cells used in this

study did not express markers typical of host retinal cells. Our

observations imply that donor cell location within host tissue can

influence their apparent phenotype, even though they lack critical

markers of the cells they come to resemble.

The mechanism by which human neural progenitor cells exert

their effects within the retina is not wholly clear, but is likely due in

part to growth factor production [39] and possibly also to the

manifestation of some RPE-like properties. With respect to factor

production, we have detailed at least two factors, IGF-1 and FGF-

2, that hNPCctx produce in vitro that could be effective in

promoting vision and photoreceptor preservation. A more

comprehensive survey may identify others. Thus, transplanted

hNPCctx have the potential to release multiple growth factors,

which may act synergistically to slow photoreceptor degeneration

[62,63]. The superior performance of hNPCctx-GDNF is consis-

tent with both the known role of GDNF as a neuroprotective

molecule within the retina [25–30] and the established ability of

hNPCctx to function as a cell-based drug delivery vector in diverse

CNS tissues [11,12]. The additional capacity of hNPCctx to

migrate extensively within the subretinal space and inner retina

allows them to deliver molecules of therapeutic interest not only

for outer retinal disease (e.g., retinitis pigmentosa and age-related

macular degeneration), but inner retinal disorders as well (e.g.,

glaucoma). Panretinal donor cell migration also affords better

access to Müller glia, which bind and mediate host responses to

some neurotrophic factors, including GDNF [26].

The additional question of whether hNPCctx might mimic some

of the functions of RPE is an intriguing one. A population of these

cells forms a layer deep to the photoreceptors, where they contain

intracellular pigment granules and appear superficially like an

extra RPE layer, even though they do not express at least two

characteristic RPE proteins. The presence of intracellular pigment

granules along with the absence of a subretinal cellular debris zone

raise the possibility that these donor cells have (or acquire) the

capacity to phagocytose surrounding waste material. As this is one

function of healthy RPE [64], such activity may contribute to the

cell transplant-mediated rescue observed, a possibility that is being

explored further.

The fact that donor cells continue to divide until P150 is

a matter of both concern and optimism. Previous work has shown

that ES-derived RPE cells can develop teratomas [65], although

not in all cases [42]. However, in the present study there is no

evidence of untoward donor cell proliferation or tumor formation

up to at least 130 days post-transplantation, suggesting that cell

division is a regulated or balanced event. Indeed, persistent cell

division may contribute to the sustained high performance of

hNPCctx transplant recipients over time. Even so, later time points

are needed to ensure that tumors never form within the retina after

transplantation of hNPCctx.

In summary, transplanted hNPCctx display a novel profile of

properties that produce profound rescue of visual functions in the

RCS rat, an animal model of photoreceptor loss secondary to RPE

dysfunction. The potential for native or modified hNPCctx to

deliver neurotrophins and rescue cones and photopic vision in

primary rod degeneration models also needs to be assessed.

However, current results point to a possible role for hNPCctx in the

treatment of at least some forms of human retinal degenerative

diseases and highlight the versatility and efficacy of these cells as

therapeutic tools in a broad range of neurodegenerative disorders

[10–12,66]. A current clinical trial investigating the use of

transplanted human neural stem cells in Batten disease [67] will

address questions concerning the safety of this cell type and

provide important background for contemplating their clinical

application in retinal disease.
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41. Lund RD, Adamson P, Sauvé Y, Keegan DJ, Girman SV, et al. (2001)
Subretinal transplantation of genetically modified human cell lines attenuates

loss of visual function in dystrophic rats. Proc Natl Acad Sci USA 98:
9942–9947.

42. Lund RD, Wang S, Klimanskaya I, Holmes T, Ramos-Kelsey R (2006) Human

embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats.
Cloning Stem Cells 8: 189–199.

43. Lund RD, Wang S, Lu B, Girman S, Holmes T, et al. (2006) Cells isolated from

umbilical cord tissue rescue photoreceptors and visual functions in a rodent
model of retinal disease. Stem Cells 25: 602–611.

44. Deglon N, Tseng JL, Bensadoun JC, Zurn AD, Arsenijevic Y, et al. (2000) Self-
inactivating lentiviral vectors with enhanced transgene expression as potential

gene transfer system in Parkinson’s disease. Hum Gene Ther 11: 179–190.

45. Capowski EE, Schneider BL, Ebert AD, Seehus CR, Szulc J, et al. (In press)
Lentiviral vector-mediated genetic modification of human neural progenitor

cells for ex vivo gene therapy. J Neurosci Methods.
46. Wright LS, Prowse KR, Wallace K, Linskens MH, Svendsen CN (2006) Human

progenitor cells isolated from the developing cortex undergo decreased
neurogenesis and eventual senescence following expansion in vitro. Exp Cell

Res 312: 2107–2120.

47. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of
adult and developing mouse spatial vision using a virtual optomotor system.

Invest Ophthalmol Vis Sci 45: 4611–4616.
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