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Background. The urokinase plasminogen activator (uPA) and its receptor (uPAR/CD87) are major regulators of extracellular
matrix degradation and are involved in cell migration and invasion under physiological and pathological conditions. The uPA/
uPAR system has been of great interest in cancer research because it is involved in the development of most invasive cancer
phenotypes and is a strong predictor of poor patient survival. However, little is known about the role of uPA/uPAR in small cell
lung cancer (SCLC), the most aggressive type of lung cancer. We therefore determined whether uPA and uPAR are involved in
generation of drug resistant SCLC cell phenotype. Methods and Findings. We screened six human SCLC cell lines for surface
markers for putative stem and cancer cells. We used fluorescence-activated cell sorting (FACS), fluorescence microscopy and
clonogenic assays to demonstrate uPAR expression in a subpopulation of cells derived from primary and metastatic SCLC cell
lines. Cytotoxic assays were used to determine the sensitivity of uPAR-positive and uPAR-negative cells to chemotherapeutic
agents. The uPAR-positive cells in all SCLC lines demonstrated multi-drug resistance, high clonogenic activity and co-
expression of CD44 and MDR1, putative cancer stem cell markers. Conclusions. These data suggest that uPAR-positive cells
may define a functionally important population of cancer cells in SCLC, which are resistant to traditional chemotherapies, and
could serve as critical targets for more effective therapeutic interventions in SCLC.

Citation: Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, et al (2007) Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung
Cancer. PLoS ONE 2(2): e243. doi:10.1371/journal.pone.0000243

INTRODUCTION
Small cell lung cancer (SCLC) is the most aggressive type of lung

cancer and has a uniformly poor prognosis. Metastases develop

quickly, primarily to bone marrow and brain, and are usually

present at the time of diagnosis. In untreated patients, median

survival is two months from the onset of symptoms [1].

In several types of tumors increased levels of urokinase

plasminogen activator (uPA) and its receptor uPAR (CD87)

strongly correlate with poor prognosis and unfavorable clinical

outcome [2,3,4,5,6]. uPA and uPAR are instrumental in

controlling membrane-associated extracellular proteolysis and

transmembrane signaling, thus affecting cell migration and

invasion under physiological and pathological conditions

[2,7,8,9,10]. uPAR over-expression in malignant cells results from

activation of several oncogenic pathways, including MAPK, RTK,

ERK2 and FAK [2,7,9]. Multiple oncogenic mutations, including

p53 in cancer cells lead to uncontrolled expression of uPA/uPAR

[11]. Inhibition of uPAR in a mouse model of non-small cell lung

cancer and other tumors inhibited tumor growth, invasion,

angiogenesis and metastasis [12,13,14]. Increased levels of uPAR

are correlated with higher mortality in patients with squamous cell

and non-small cell lung cancer [15,16], however little is known

about the role of uPA/uPAR expression in SCLC.

A recent study by Alfano et al underlines the importance of

uPAR signaling in prevention of apoptosis by resistance of cancer

cells to anoikis (apoptosis induced by loss of anchorage). uPAR

expression promotes cell survival by activating anti-apoptosis

factor Bcl-xL transcription through the MEK/ERK- and PI3K/

Akt-dependent pathways [17]. Therefore, we hypothesize that

uPAR expression may be involved in development of drug-

resistant cancer phenotype in SCLC.

We report here the presence of a rare population of uPAR-

positive cells in human SCLC cell lines that demonstrate

significant drug resistance to traditional chemotherapeutic

agents such as 5-fluorouracil (5-FU), cisplatin and etoposide.

The uPAR-positive cells expressed stem- and cancer cell markers,

including CD44 and MDR1. Identification and targeting of

uPAR-positive cells in SCLC may provide valuable insight into

biology of human lung cancer and may establish novel critical

targets for more effective anticancer therapies.

METHODS

Immunostaining and Flow Cytometry Analysis
Primary (lung) small cell lung carcinoma (SCLC) cell lines (H1688,

H1417, H69AR), bone marrow (BM) metastatic SCLC (H211,

H1882) and brain metastatic SCLC (H250) cell lines were

obtained from human primary lung and metastatic tissues (

ATCC), grown in RPMI 1640 modified medium (ATCC, N: 30–

2001) supplemented with 10% Fetal Bovine Serum (FBS). The BM

metastatic cell line (H1882) was cultured in complete HITES

medium (D-MEM/F-12, N: 30–2006 supplemented with insulin

5 mg/mL, transferrin 10 mg/mL, sodium selenite 30 nM, hydro-

cortisone 10 nM, b-estradiol 10 nM, L-glutamine 2 mM, HEPES

10 mM and 5% FBS). Cells were grown for two weeks and were
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analyzed by flow cytometry using the following antibodies: CD59

(CBL467P), CD109 (CBL585P), CD62E (CBL180F) from Che-

micon, CD87 (3936CJ) from American Diagnostica, CXCR4

(FAB170F) from R&D Systems, CD24 (555427), CD90 (555596),

CD38 (347680), CD44 (555478), CD45 (555482), CD13 (555394),

CD49b (555498), CD29 (555443), CD3 (30104X) from BD

Pharmingen, ABCG2/BCRP1 (10400) from Stem Cell Technol-

ogies, CD133/2 (clone 293C3) and CD133/1 (clone AC133) from

Miltenyi Biotec, CD34 (347660) from Becton Dickinson, CD105

(326–050) from Alexis, MNF116 (F0859), Cyt18 (F7212) from

DACO, and CD166 (3FT) from RDI. For FACS analysis each cell

line was detached by trypsinization and re-suspended in staining

buffer (SB) (HBSS, Irvine Scientific, 9228) supplemented with 2%

FBS and 10 mM HEPES at a density of 56106 cells/ml. Fifty ml

(2.56104 cells) was added to each well of a 96-well v-shaped plate.

Antibodies (FITC- or PE-conjugated) were added in concentra-

tions recommended by the manufacturer (20 ml/106 cells).

Antibodies to CD133, CD34, CD44, CD87 and MDR1 have

been individually titrated. The 96-well plates were placed on ice

and cells were stained with antibodies for 30 min in dark. After

staining, 150 ml of wash buffer (HBSS, supplemented with 15%

FBS and 10 mM HEPES)/well was added and the plates were

centrifuged at 5006 g for 5 min at 4uC. The cell pellets were re-

suspended in SB, supplemented with propidium iodide (PI) (1 mg/

ml) to exclude nonviable cells, followed by flow cytometric

analysis.

Cell Staining and Sorting
SCLC cell lines (H211, H69AR, H1417) were grown in RPMI

1640 medium and 46106 cells were collected and then re-

suspended in 800 ml of SB, followed by staining with uPAR

(CD87)-FITC-conjugated antibody as described above. uPAR-

positive and uPAR-negative cells were sorted by FACS, followed

by culture in ‘‘base’’ methylcellulose media (Stem Cell Technol-

ogies, 04100) for 16 days at 37uC, 5% CO2.

Clonogenic Assay of SCLC Cell Lines
Complete RPMI 1640 was added to MethoCult H4100 medium

(40 ml) to achieve a final volume of 100 ml. uPAR-positive and

uPAR-negative cells derived from SCLC cell lines (H211, H69AR,

H1417) were plated in MethoCult medium in triplicates containing

36103, 16103, or 16102 cells/ml. Cells were cultured at 37uC, 5%

CO2 in a humidified incubator for 16 days. Colonies were counted

using an inverted brightfield microscope at 46magnification.

Cytotoxicity Assay
Cells derived from three SCLC lines were immunostained and

sorted by flow-cytometry analysis (as described above). Cell lines

(H211, H69AR, H1417) were counted and placed into 96-well

plates (46103 cells/well, in triplicates) with final concentrations of

drugs 0, 3, 10, 100, 200 mg/ml. After incubation for 72 hr, both

viable and dead cells were counted by using Guava ViaCount

assay, and only the viable cells were included in data analysis. The

Guava ViaCount assay distinguishes between viable and non-

viable cell based on the differential permeability of DNA-binding

dyes in the ViaCount reagent, and thus fluorescence of the dyes

allows quantitative assessment of both viable and non-viable cells

in suspension. Alternatively, non-sorted cells were applied to 48-

well plates (16104 cells/well) and treated with cisplatin, etoposide

and their combination in concentrations of 0, 3, 10, 100 mg/ml.

The seeding densities per unit area (mm2) were the same for both

the 48- and 96-well plates (density = 125 cells/mm2). After 72 hrs

of incubation, viable cells were stained with uPAR-FITC

antibodies and evaluated by flow cytometry.

Double-labeling for Flow Cytometry
Cell lines were stained with CD44-PE and MDR1-PE, were washed

and then stained with uPAR-FITC (16105 cells/1 mg of antibody).

Iso-type matched PE- or FITC-conjugated antibodies were used as

controls. Stained cells were analyzed by flow cytometry.

Figure 1. Flow cytometric analysis of uPAR expression in SCLC-derived cell lines. (A, B, C) Lung-derived SCLC cell lines, (D, E) metastatic bone marrow
and (F) metastatic brain cell lines. All cells were cultured in RPMI 1640 medium, stained with uPAR-FITC antibody and analyzed by flow cytometry
(lower panels). Control staining was performed using FITC-conjugated, isotype-matched mouse IgG (upper panels). A small population of uPAR-
positive cells was detected in all cell lines examined, and is indicated as percent of R1-gated viable cells. Results shown are representative of three
independent experiments.
doi:10.1371/journal.pone.0000243.g001

uPAR-positive Cells in SCLC
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RESULTS

Flow Cytometry Analysis of Human SCLC Cell Lines
To identify the most invasive SCLC phenotypes, we screened six

human SCLC cell lines (H1688, H1417, H69AR derived from

primary tumor site in lung, H250 from metastases to brain, and

H211, H1882 from metastases to bone marrow) with a panel of

antibodies for surface determinants of tumor cells, including

uPAR, CD13, CD29, CD44, CXCR4, CD105, CD109, CD166,

and for stem cell markers CD34, CD90, CD133, ABCG2/

BCRP1. SCLC cell lines displayed heterogeneous phenotypes with

regard to tumor surface determinants. All six SCLC cell lines were

positive for CD29 (20–99%), CD44 (8–98%), CD105 (3–34%),

CD166 (85–98%), and negative for CD90, and CXCR4. uPAR

(CD87) was the only cell surface antigen expressed on a small sub-

population of cells (1–4%) in each of the six SCLC cell lines, when

analyzed by FACS using anti-uPAR-FITC antibody (Figure 1,

lower panels).

Control samples stained with isotype-matched IgG-FITC were

negative for uPAR expression (Figure 1, upper panels). The

consistent presence of a small uPAR-positive subpopulation of

cells in all primary (lung, Figure 1, lower panels A, B, C) and

metastatic (bone marrow; Figure 1, lower panels D, E, and brain; F)

SCLC cell lines, in contrast to other markers, which varied in

abundance, suggests that uPAR-positive cells may comprise

a functionally unique subpopulation of cells.

Chemoresistance of uPAR-positive Cells
We hypothesized that the uPAR-expressing cell population may be

resistant to chemotherapeutic agents. We performed cytotoxicity

assays on three selected cell lines using non-sorted (bulk) as well as

sorted uPAR-positive and uPAR-negative cell populations. In-

creasing concentrations of 5-fluorouracil (5-FU) (10, 100, 200 mg/

ml) were added to these cell cultures and incubated for 72 hrs,

followed by counting of both viable and killed cells. Data was

normalized to 100%, which signified the number of uPAR-positive

and uPAR-negative cells without drug added. A cell-killing effect

was detected in all three non-sorted cell lines (H211, H69AR,

H1417), where 40–80% of cells were killed by 5-FU (Figure 2A).

Importantly, uPAR-positive sorted cells from these three cell lines

displayed significantly increased resistance to 5-FU, with only 40–

50% of cells being killed in the case of H211 and H1417

(Figure 2B). Although the H69AR cell line also showed differential

killing of uPAR-positive and uPAR-negative cells (e.g., 10 mg/ml

5-FU killed 30% of uPAR-positve cells versus 85% of uPAR-

Figure 2. Cytotoxic effect of 5-FU on non-sorted and sorted (uPAR-positive and uPAR-negative populations) derived from SCLC cell lines. (A) 16104

cells (H211, H69AR, H1417) were placed in wells of a 48-well plate in triplicates and incubated for 72 hr in the presence of varying concentrations of 5-
FU. (B) SCLC cell lines were FACS sorted after staining with anti-uPAR antibodies and were plated at the same seeding density (46103/well of 96-well
plate) and treated with 5-FU at 0, 10, 100, 200 mg/ml for 72 hr. Cell survival was evaluated after adding Guava ViaCount reagent and counting viable
and dead cells. Only viable cells were included in data analysis, and 100% viability was defined as number of viable cells cultured in absence of 5-FU.
Statistical analysis (2-way ANOVA) of uPAR(+) and uPAR(2) data sets revealed significant differences among viability of uPAR(+) and uPAR(2) cells
(P = 0.0002, 0.0027, 0.0008 for H211, H69AR, H1417 cells, respectively). The data points represent averages6SD of three independent experiments.
doi:10.1371/journal.pone.0000243.g002
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negative cells), at high concentration of 5-FU (200 mg/ml), the

killing effect for both populations (H69AR) was the same

(,100%). Statistical analysis (2-way ANOVA) of uPAR(+) and

uPAR(2) data sets revealed significant differences in survival of

uPAR(+) and uPAR(2) cells after treatment with 5-FU

(P = 0.0002, 0.0027, 0.0008 for H211, H69AR, H1417 cells,

respectively) (Figure 2B).

We similarly investigated the cytotoxic effect of cisplatin and

etoposide, drugs currently used for treatment of patients with

SCLC. The non-sorted SCLC cell lines (H211, H69AR, H1417)

were used in cytotoxic assays with cisplatin and etoposide in in vitro

studies (3, 10, 100 mg/ml) (Figure 3A). 60–80% of cells were killed

by cisplatin and etoposide (used separately or in combination) in

non-sorted lines (Figure 3A). Again, the uPAR-positive sorted cells

from these three cell lines displayed significantly increased

resistance to cisplatin and etoposide, with only 30–50% of cells

being killed, compared to 60–80% killing of the uPAR-negative

sorted cells (data not shown). These data suggest that the uPAR-

positive cell subpopulation in SCLC may be responsible for

chemoresistance to 5-FU and other traditional chemotherapeutic

drugs such as cisplatin and etoposide.

In order to confirm that uPAR expression confers tumor

resistance to cisplatin and etoposide, we performed cytotoxicity

assays on the same non-sorted SCLC cell lines and looked for

enrichment of uPAR-positive cells in the surviving cell population.

Indeed, we detected a significant enrichment of uPAR-positive

cells (40–70%) among surviving cells, compared to only 1–5% of

uPAR-positive cells in control cultures grown in the absence of

these drugs (Figure 3B). These data support the hypothesis that

uPAR expression confers chemoresistance in SCLC, and that the

uPAR-positive cells should be considered as a novel target for

more effective therapies.

Clonogenic Activity of uPAR-positive Cells
To show that uPAR-positive cells possess high clonogenic and self-

renewal potential, we sorted primary lung (H1417, H69AR),

metastatic bone marrow (H211) cell lines by FACS using anti-

uPAR-FITC-conjugated monoclonal antibodies. After sorting

(97% purity), uPAR-positive and uPAR-negative cells were plated

in methylcellulose media at densities of 3000, 1000, 100 cells/well

(6-well plate). uPAR-positive cells from these primary and

metastatic SCLC lines formed multiple distinct colonies

Figure 3. Cytotoxic effect of cisplatin and etoposide on non-sorted cells derived from SCLC cell lines. (A) SCLC cell lines (non-sorted) treated with
cisplatin, etoposide at concentrations 0, 3, 10, 100 mg/ml or their combinations (cisplatin and etoposide at final concentrations of 10 mg/ml, 100 mg/
ml) for 72 hr. Cell survival was evaluated after addition of Guava ViaCount reagent and counting of both surviving and dead cells using Guava
ViaCount software. Data were normalized as 100% viability of cells cultured in absence of drugs. Error bars indicate standard deviation of triplicate
cultures (results of three independent experiments). (B) After treatment cisplatin and etoposide, viable adherent cells were detached by trypsin
treatment and were stained with anti-uPAR-FITC antibodies and percentage of uPAR-positive cells was determined by FACS analysis. Sample with
mouse IgG isotype control antibody was used to set the value of the FACS gate, which was applied to all samples stained with uPAR-FITC.
doi:10.1371/journal.pone.0000243.g003

uPAR-positive Cells in SCLC
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(Figure 4A). We estimated that approximately ,10% of the

uPAR-positive cells (lung, H1417; bone marrow, H211) formed

colonies (Figure 4B). Conversely, the uPAR-negative cells from the

primary lung (H1417) cells did not form colonies, and from

metastatic bone marrow (H211) and lung (H69AR) formed only

few colonies (Figure 4B). After uPAR-positive cells were allowed to

form colonies for 16 days in methylcellulose culture, 20 colonies

were isolated and analyzed for uPAR expression by flow

cytometry. We found both uPAR-positive and uPAR-negative

cells in each colony analyzed (H1417), with 30–50% of cells

displaying uPAR positivity within each colony, following 18 days

of incubation (Figure 4C). This suggests that uPAR-positive cells

can give rise to both uPAR-positive and uPAR-negative cells.

uPAR expression was also analyzed in the colonies derived

from H211 and H69AR cell lines. In all colonies derived from

sorted uPAR-positive cells we detected both uPAR-positive and

uPAR-negative cells (,50% each after 16 days in methylcellulose

culture) (data not shown). Analysis of colonies derived from uPAR-

negative cells (e.g., H211 cell line) revealed a small proportion of

uPAR-positive cells in those colonies (,1%). The reason for this

might be possible contamination during sorting. Alternatively,

uPAR-negative cancer cells may acquire uPAR expression under

certain culture conditions. Several uPAR-positive colonies have

been picked and grown further for 2 weeks in RPMI culture

medium, followed by FACS sorting and clonogenic assay.

Interestingly, we detected a similar proportion of uPAR-positive

and uPAR-negative cells (1–5% and 95–99%, respectively) in

these cultures, suggesting that uPAR-positive colonies can re-

capitulate the parental cell phenotype. In cultures derived from

uPAR-negative colonies on the other hand, we detected lower

levels (0.1–0.8%) of uPAR-positive cells, and poor overall growth

(data not shown).

Co-expression of uPAR with CD44 and MDR1
We further hypothesized that if uPAR-positive cells represent

drug-resistant and clonogenic population in SCLC, they may

express CD44 and MDR1 (ABCB1) genes, which are involved in

development of cancer stem cell phenotype and multi-drug

resistance. To further characterize the uPAR-positive population,

we performed double-labeling experiments with uPAR-FITC, and

CD44-PE as well as MDR1-PE on H211, H69AR, H1417 cell

lines. uPAR-positive cells derived from SCLC cell lines (H211,

H69AR, H1417) expressed CD44 on 50–80%, whereas MDR1 on

10–40% of cells (Figure 5A). Expression of the above markers was

also confirmed using fluorescent microscopy (Figure 5B). The

uPAR-negative cells also expressed CD44 (,70% for H211 and

H69AR cells; ,10% for H1417) and MDR1 (1–10% for all cell

lines) (Fig. 5A). These data suggest an enrichment of CD44

expression on H1417 cells, whereas MDR-1 showed increased

expression on uPAR-positive cells derived from all three cell lines

compared to uPAR-negative cells (Fig. 5A).

DISCUSSION
The main finding of this study is identification of a rare

subpopulation of uPAR-positive cells in SCLC cell lines derived

from lung and metastasis to bone marrow and brain. It is well

documented that uPAR over-expression in various malignant

tumors is strongly correlated with most invasive cancer phenotypes

and poor prognosis [2,4,15,18].

Figure 4. Colony-forming activity of uPAR-positive and uPAR-negative cells derived from SCLC cell lines. (A) H1417- derived, uPAR-positive sorted
cells formed multiple colonies in methylcellulose media, while uPAR-negative cells from the same sorts displayed little or no clonogenic activity. (B)
Graphical representation of colony-forming ability of uPAR-positive and uPAR-negative cells at different plating densities 3000, 1000, 100 cells/6-well
plate (H1417, H69AR, H211). (C) Distribution of uPAR-positive cells in the colonies derived from sorted uPAR-positive cells grown in methylcellulose
media. A total of 20 cell colonies from the H1417 cell line were analyzed.
doi:10.1371/journal.pone.0000243.g004

uPAR-positive Cells in SCLC
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Several studies suggest the presence of a rare population of cells in

solid tumors and leukemia that possess the capability to regenerate

and propagate the tumor [19,20,21,22,23]. These cells may also be

responsible for maintaining the tumor’s malignant potential and

serve as the underlying cause of tumor recurrence [24,25]. Current

treatment strategies may fail to target the drug-resistant sub-

population, and could explain the initial therapeutic response of the

majority of tumor cells, which is followed by a later recurrence.

We found that uPAR-positive cells were more resistant to

treatment with the cytotoxic agent 5-FU, while uPAR-negative

cells were killed much more efficiently. The cytotoxic effect of 5-

FU has been ascribed to misincorporation of fluoronucleotides

into RNA and DNA and to inhibition of the nucleotide synthetic

enzyme thymidylate synthase, which mainly targets the fast

dividing cells [26]. We also investigated cisplatin and etoposide,

chemotherapeutic drugs currently used in treatment of SCLC

patients. Importantly, culturing of SCLC cells in the presence of

cisplatin and etoposide resulted in selective killing of uPAR-

negative cells with concomitant enrichment of the uPAR-positive

cell population.

uPAR-positive cells isolated from three SCLC lines were able to

proliferate and form multiple colonies in methylcellulose media,

while uPAR-negative cells displayed little or no clonogenic potential.

We also showed co-expression of uPAR with CD44 and MDR1,

which may explain the association between advanced malignancy

and drug resistance. Several studies have investigated individually

the role of uPAR, CD44 and MDR1 in various malignancies

[5,13,14,17,19,24,27,28,29,30,31,32], however, to our knowledge

this is the first study that provides evidence for expression of CD44

and MDR1 on uPAR-positive cells in SCLC. We also detected

CD44 and MDR1 expression on uPAR-negative cells, the

functional implications of which remains to be determined.

ATP-binding cassette (ABC) drug transporters have been shown

to protect cancer stem cells from chemotherapeutic agents [33]. A

major transporter of the ABC family is P-glycoprotein, the product

of the MDR1 gene, which is produced by hematopoetic stem cells

(HSC) [32]. The MDR1 gene becomes down-regulated on HSC

upon cell differentiation [32]. P-glycoprotein and CD44 have been

characterized and are known to be determinants of multi-drug

resistance on cancer cells, which is mediated by physical and

genetic interactions between CD44 and MDR1 [30]. Activation of

CD44 occurs through heterodimerization of CD44 with growth

factor receptors (e.g., EGFR, FGFR, HGFR, VEGFR, TGF-bR),

which leads to activation of MAP kinase and PI3K-AKT signaling

pathways [34]. CD44 stimulation by its ligand hyaluronan up-

regulates the expression of uPA and uPAR mRNA, through

activation of MAPK-Ras pathway, while PI3K activation

stimulates MDR1 expression and function [34]. PI3K also acts

as a positive feedback loop to stimulate hyaluronan production,

which activates CD44 [35,36]. The CD44-MAPK-PI3K signaling

leads to uncontrolled expression of uPA/uPAR and MDR1, which

promotes invasive and multi-drug resistant cancer cell phenotype.

In addition to the CD44-MAPK-PI3K signaling, uPAR over-

expression can induce cell survival by activating the anti-apoptosis

factor Bcl-xL transcription [17].

Future studies in animal models will address whether the uPAR-

positive cells are responsible for primary tumor growth and

formation of distant metastases in SCLC. In summary, we have

identified the uPAR-positive subpopulation of SCLC cells that

possess high multi-drug resistance and clonogenic activity, while the

uPAR-negative cells are sensitive to chemotherapeutic drugs and

display little or no clonogenic activity. We also provide evidence of

association of uPAR, CD44 and MDR1 expression on SCLC cells.

Further investigation is warranted to determine if targeting of this

cell population will be critical for therapeutic success.
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