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The artificial intervention of biological rhythms remains an exciting challenge. Here, we proposed artificial control strategies
that were developed to mediate the collective rhythms emerging in multicellular structures. Based on noisy repressilators and
by injecting a periodic control amount to the extracellular medium, we introduced two typical kinds of control models. In one,
there are information exchanges among cells, where signaling molecules receive the injected stimulus that freely diffuses
toward/from the intercellular medium. In the other, there is no information exchange among cells, but signaling molecules also
receive the stimulus that directionally diffuses into each cell from the common environment. We uncovered physical
mechanisms for how the stimulus induces, enhances or ruins collective rhythms. We found that only when the extrinsic period
is close to an integer multiplicity of the averaged intrinsic period can the collective behaviors be induced/enhanced; otherwise,
the stimulus possibly ruins the achieved collective behaviors. Such entrainment properties of these oscillators to external
signals would be exploited by realistic living cells to sense external signals. Our results not only provide a new perspective to
the understanding of the interplays between extrinsic stimuli and intrinsic physiological rhythms, but also would lead to the
development of medical therapies or devices.
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INTRODUCTION
Life is rhythmic. Diverse biological rhythms are generated by

thousands of cellular oscillators that are intrinsically diverse but

somehow manage to function in a coherent oscillatory state.

Physiological functions result from the interactions of cells not only

with each other but also with the extracellular medium to generate

rhythms essential for life. Experimental works have shown that

external stimuli play an important role in the achieving of collective

rhythms. Relevant examples include physiological rhythms induced

by regular or periodic inputs occurring in the context of medical

devices [1], synchronization of electronic genetic networks by an

external voltage [2], and diverse regular or irregular rhythms induced

by periodic stimuli of a squid giant axon [3]. Another example is that

organisms usually display a circadian rhythm in which key processes

show a 24-hour periodicity entrained to the light-dark cycle [4,5].

However, the stimulus-induced essential mechanisms by which the

collective rhythm arises remain to be understood.

Although genetic oscillators can be synchronized through

appropriate external stimuli, it is important to analyze the effort

of the stimuli on intrinsic physiological rhythms since the better

understanding of the interactions between the stimuli and

physiological rhythms would lead to the development of artificial

control strategies and medical devices. However, the wiring of

naturally occurring gene regulatory networks would be too

complex for qualitative description devoid of mathematics. This

complexity has hindered a complete understanding of natural

genetic oscillators. Synthetic genetic networks, on the other hand,

offer an alternative approach aimed at providing a relatively well

controlled test bed in which the functions of natural gene networks

can be isolated and characterized in detail [6]. In this direction,

the repressilator [7] was recently developed in Escherichia coli. Such

simple networks represent a first step towards logical cellular

control, whereby biological processes can be manipulated or

monitored at the DNA level [8]. This control could have

a significant impact on post-genomic research [9].

A natural next step in this design effort would be to include the

design of artificial control strategies that would be developed to

mediate collective rhythms emerging in multicellular structures. In

theory, however, even simple control models may show enormous

complexity that arises from the interplay between external control

amounts and internal dynamics of nonlinear systems [10–12].

Therefore, achieving a collective behavior across a population of

oscillators by injecting an external substance into the medium

must be treated in details and carefully. Here we present

theoretical mechanisms of how an external stimulus mediates the

collective response by considering two control models: The one is

based on the repressilators coupled by quorum sensing where

there is an information exchange among cells, and the other on the

independent repressilators where there is no information exchange

among cells. We show that a signaling molecule that receives

a stimulus (or signal) can induce synchronous behaviors across an

ensemble of such genetic oscillators, leading to robust collective

rhythms in these systems, but also can ruin the achieved collective

behaviors. Such a dual function of the signal molecule would be

exploited by realistic living cells to sense external signals.

Previous works have indicated that some mechanisms of

intercell coupling (e.g., quorum-sensing apparatus [13,14]) would

globally enhance the collective response of a population of genetic

oscillators [15–17]. However, coupling among oscillators is not, in
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general, sufficient to achieve synchronization, and many ensem-

bles of coupled oscillators exhibit phase dispersion rather than

a synchronized state either because the oscillators actively resist

synchronizing [18] or because coupling is too weak or even

nonexistent [19]. Using computational modelling, we show that

even in the case that the spontaneous synchrony of the individual

oscillators cannot be achieved due to the inefficiency of coupling,

an appropriate stimulus can compensate such an inefficiency,

effectively achieving a collective response.

A recent experimental study [20] has shown that the interplay of

gene regulatory networks with population dynamics can lead to

the diversity of cell activity that in turn affects (possibly enhances)

global behaviors of the entire system due to the effect of noise.

Another related study [7] has indicated that extracellular noises

arising from changes in cellular environment possibly prevent the

observation of macroscopic rhythms in an ensemble of synthetic

gene oscillators. Our results indicate that the constrains that local

cell oscillators have to face to be noise-resistant could be relaxed in

the presence of injecting substances, because a stimulus itself can

counteract or suppress noise resistance.

ANALYSIS

Case 1: No Information Exchanges Between Cells
Model Accordingly, the ‘‘repressilator’’ network architecture is

cyclic [7], in which the protein LacI represses the promotor for

the tetR gene, the TetR protein represses the promotor for the cI

gene, and the CI protein represses the promotor for the lacI gene.

To introduce the external perturbation to each cell, a promoter

Placlux01 that is enhanced by a small molecule AI, is also inserted

on the repressilator to control another gene lacI (Fig. 1).

To model the dynamics of gene expression in the cell

population, one must keep track of the temporal evolution of all

mRNA and protein concentrations from every cell in the network.

To describe the behavior of the system, we formulate differential

equations in the standard way by ignoring variants in cell density

(caused by cell growth and division, for example). The mRNA

dynamics are governed by

dxj

dt
~{xjz

a

1zZn
j

z
kA

1zA

dyj

dt
~{yjz

a

1zX n
j

dzj

dt
~{zjz

a

1zY n
j

ð1Þ

where xj, yj and zj (here index j represents the jth cell. Below is the

same) are the concentrations in cell j of mRNA transcribed from

lacI, tetR and cI, respectively, and the concentrations of the

corresponding proteins are represented by Xj, Yj and Zj (note that

the two lacI transcripts are assumed to be identical). The

concentration of AI in the extracellular environment is denoted

by A. A certain amount of cooperativity is assumed in the

repression mechanism by the Hill coefficient n, where the AI
activation is chosen to follow a standard Michaelis-Menten

kinetics. The model is rendered dimensionless by measuring time

in units of the mRNA lifetime (assumed equal for all the three

genes) and the protein levels in units of their Michaelis constant,

i.e., the concentration at which the transcription rate is half its

maximal value (also assumed to be equal between all the three

genes). The AI concentration A is also scaled by its Michaelis

constant. a is the dimensionless transcription rate in the absence of

repressor, and k is the maximal contribution to lacI transcription of

saturating amounts of AI.

The dynamics of the three proteins are described by the

following differential equations:

dXj

dt
~b xj{Xj

� �

dYj

dt
~b yj{Yj

� �

dZj

dt
~b zj{Zj

� �

ð2Þ

where the parameter b is the ratio between the mRNA and protein

lifetimes, and the mRNA concentrations have been rescaled by

their translation efficiently (proteins produced per mRNA, assumed

equal for the three genes).

Finally, the dynamical evolution of the extracellular AI
concentration is governed by

dA

dt
~l{kAAzG(t) ð3Þ

where l and kA ares the basal rate of the production and the

degradation rate of AI, respectively, and G(t) represents an

extracellular stimulus. We will consider the following two types

of stimuli:

N Periodic impulsive stimulus: G(t)~s
X?

k~1

d t{tkð Þ with tk = kt,

where t represents the period of impulse. In this case, we

assume l = 0 through this paper;

N Sinusoidal periodic stimulus: G(t) =ssin(vt).

Here s represents the strength of stimulus in both cases.

In what follows, we will analyze the effect of the external

stimulus G(t) on the collective behavior in Eqs. 1–3 by fixing

parameters throughout this paper: a = 216, kA = 1.0 and n = 2.

Results In the hypothetical case of infinite cell dilution (i.e.,

kR0), the system consists of the independent repressilators. Each

cell can be approximated as one oscillator with the intrinsic

frequency v0<0.54 for b = 2. On the other hand, in the presence

of external stimulus, a new degree of freedom is added to the

original six-dimensional phase space to represent dynamics of the

signaling molecule governed by Eq. 3. The resulting system can

exhibit synchronized oscillations (Figs. 2 and 3).

The oscillator population will likely contain substantial

differences from cell to cell (e.g., extrinsic noise [20]), giving rising

to a relatively broad distribution in the periods of the individual

oscillators at any given time. In the case of Eqs. 1–3, the

Figure 1. Scheme of a synthetic gene regulatory network in the case of
uncoupling.
doi:10.1371/journal.pone.0000231.g001
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parameter that affects most markedly the oscillation period is the

lifetime ratio b. Accordingly, we model the diversity of a popula-

tion of cells by considering that b is nonuniformly distributed

among the repressilators following a Gaussian law with standard

deviation Db. The corresponding period distribution of 103

independent cells for Db/b = 0.025 is shown in Fig. 2a. With an

appropriate periodic impulsive stimulus, perfect locking phase and

synchronized oscillation are observed (Fig. 2b). To quantify the

degree of synchronization of states of the N oscillators, we

introduce an ‘‘order parameter’’ R in the standard way [19]:

R~
1

N

XN

k~1

eiqk(t)

�����

����� ð4Þ

by using phase qk of each oscillator, where i~
ffiffiffiffiffiffiffiffi
{1
p

. Then, R = 1

corresponds to phase synchronization, whereas R = 0 to non-

synchronization in the sense of phase. We emphasize that

synchronization mentioned in this paper means phase synchroni-

zation unless the confusion arises. The dependence relationship

between R and t is shown in Fig. 2c, indicating that within a given

time, the synchronization effect is optimal only in the case that the

external period is close to the intrinsic period (the average of

periods of these individual oscillators is called the intrinsic period

of the entire system throughout this paper). In addition, we

observe that a population of the oscillators can be entrained to the

external periodic driving, forming Arnold tongues similar to those

appearing in the case of single oscillator driven by a periodic

forcing, as shown in Fig. 3. Refer the detailed explanation and

interpretation in the case of coupled noisy oscillators in the next

section.

On the other hand, in the case of sinusoidal stimulus, the

condition under which the external stimulus induces a collective

behavior is basically similar to that in the case of periodic

impulsive stimulus, that is, only when the extrinsic period is close

to an integer multiplicity of the intrinsic period, can the synchroni-

zation be achieved. Moreover, the synchronization effect is

optimal only in the case that the extrinsic period is equal to the

intrinsic period. Fig. 4 shows that an appropriate external stimulus

Figure 2. Period histogram (a and b) and dependence of R on t (c) for 103 cells. (a) k = 0.0, (b and c) k = 2.0. For (b), s= 10, and for (c), T0 = 12.2
(representing the intrinsic period). The lifetime ratio b in the different cells is chosen to obey the Gaussian distribution of mean ,b. = 2 and standard
deviation Db = 0.05.
doi:10.1371/journal.pone.0000231.g002

Figure 3. Arnold tongues in the case of periodic impulsive stimulus.
doi:10.1371/journal.pone.0000231.g003
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can induce the collective rhythm across an ensemble of cells (see

stage II). However, as the external stimulus is removed, the

achieved synchronization will be lost (stage III).

Case 2: Information Exchanges Between Cells
Model Unlike the model considered in Case 1, the following

model is based on the repressilators coupled to a quorum-sensing

apparatus. The scheme for gene regulatory networks is shown in

Fig. 5. In this case, except for Eqs. 1–2, we also need to give the

dynamical equations for AI inside the cells and in the extracellular

medium.

The dynamical evolution of the intracellular AI concentration is

affected by degradation, synthesis by LuxI, and diffusion through

the cell membranes toward/from the intercellular medium.

Assume that the TetR and LuxI have equal lifetimes, implying

that their dynamics are identical, and hence we may use the same

variable to describe these two protein concentrations. Thus, the AI
rate equation is governed by

dAj

dt
~{ks0Ajzks1Yj{g Aj{Ae

� �
ð5Þ

where g measures the diffusion rate of AI across the cell

membrane. The parameters ks0, ks1 and g have been made

dimensionless by the time rescaling. Ae represents the extracellular

concentration of AI, the dynamics of which is given by

dAe

dt
~{kseAezge

XN

j~1

Aj{Ae

� �
zG(t) ð6Þ

where ge stands for the diffusion rate, kse represents the decay rate

of AI in the environment, and G(t) is assumed to be an external

stimulus (see Case 1). In what follows, we fix parameters: ks0 = 1.0,

ks1 = 1.0 and kse = 1.0, and assume g = ge. Similar to case 1, we

model the diversity of a cell population by considering that b obeys

Gaussian distribution with mean ,b. = 2 and standard deviation

Db = 0.05.

Results

1. External stimuli can affect the internal oscillations

Although there are many interesting properties associated with

how an external periodic drive affects a single oscillator (see Ref.

[8] and references therein), here we investigate the case of coupled

Figure 4. The effect of external sinusoidal stimulus on collective behaviors, where 103 cells are simulated: For k = 0, synchronization cannot be
achieved (stages I and III); For k = 2.0, an appropriate external stimulus can induce phase synchronization (stage II). The protein TetR concentrations of
10 cells are plotted. Other parameters are the same as those described in Fig. 2. The initial values of variables in each latter stage take their final values
in the right former stage.
doi:10.1371/journal.pone.0000231.g004

Figure 5. Scheme of the respressilator network coupled to a quorum-
sensing mechanism.
doi:10.1371/journal.pone.0000231.g005
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noisy oscillators, focusing on the conditions whereby the periodic

impulsive stimulus can cause the dynamics to shift the period and

entrain to the external stimulus period (note that the results in the

case of sinusoidal stimuli are similar). The boundaries of some

major resonance regions that form the so-called Arnold tongues

are depicted in the parameter-space plot of Fig. 6a. These regions

display a slightly increasing range of the locking period as the

strength of stimulus is increased. Without external stimulus (i.e.,

k = 0), the average period of the autonomous oscillations is T0. In

the presence of a stimulus, however, the average of intrinsic

periods of the individual oscillators depends on parameter k, and

moreover the larger the k, the smaller the average period (Fig. 6c).

As one might expect, the dominant Arnold tongue (i.e., the first

region labeled by II for k = 8 that is near region I) is found around

this averaged intrinsic period. Within this resonance region, the

period of the oscillations is entrained, and equals the external

period. The second largest region of phase locking occurs for

periods of stimulus that are an integer multiplicity of the intrinsic

period. Inside this Arnold tongue regions (also labeled by region II

for k = 8), the synchronization can arise from an arbitrary initial

state (Fig. 6b). As a result of the periodic driving, we also observe

2:1 and 3:1 lockings, etc, but with the increase of the external

driving period, the resonance regions become more and more

narrow. Of especial interest is region I labeled in Fig. 6a, where

external stimuli can induce rich dynamics, such as oscillation death

and synchronization with dampened oscillation [21,22]. The

former is shown in Fig. 7 whereas the latter shown in subsection 3.

2. Compensating the inefficiency of coupling by external stimuli

Fig. 8 shows the dependence relationship between the stimulus

strength (s) and the diffusion rate (g) of AI for two different k

values, indicating that the synchronization region is enlarged with

the increase of k. In particular, within the region in between two

curves (the one is labelled by red and the other by blue), the

spontaneous synchronization cannot be achieved due to the

coupling inefficiency for the fixed k = 3.0 (in this case, even though

there are possibly some extra stimuli). On the other hand, for

a fixed k, e.g., k = 4.0, the smaller the g, the larger the required s
may be and vice versus, implying that the external stimuli can

compensate the inefficiency of such a coupling.

3. Ruining synchronization by external stimuli

Except for inducing synchronization, the external stimuli have also

the effect of ruining the achieved synchronization. Fig. 9 shows the

process of such a ruin, where four stages are plotted in a way that the

initial values of variables in each latter stage take their final values in

the right former stage. During stage I (from t = 0 to t = 150 minutes),

without the external stimulus, the 103 repressilators achieve

synchronization due to coupling; As time t changes from 150 to

350 minutes (stage II), the synchronization is ruined due to the

injection of a periodic impulsive stimulus with strength s= 2; As

time is further evolved (see stage III) with the strength of external

stimulus s= 20, the amplitude of oscillations is quickly reduced but

synchronization is still observed; Finally, when the external stimulus

is removed, the original synchronous behavior is quickly recovered.

Figure 6. Impulse-induced dynamics in the coupled system governed by Eqs. 1, 2, 4 and 5: 103 cells are simulated. (a) Resonance regions (forming
Arnold tongues), where two cases corresponding to k = 2 (labeled by red boundaries) and k = 8 (labeled by blue boundaries), respectively, are
displayed; (b) The time evolution of TetRs of 10 cells in resonance region II. g = ge = 0.1 (a and b), k = 8, s= 10, and t = T0 (b); (c) The effect of
parameter k on the mean intrinsic period and amplitude. Other parameters are a = 216 and n = 2, The lifetime ratio b in the different cells is chosen to
obey the Gaussian distribution of mean ,b. = 2 and standard deviation Db = 0.05.
doi:10.1371/journal.pone.0000231.g006
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4. A new type of synchronization induced by external stimuli

We have previously shown that the external stimuli can enhance/

ruin the global behavior. Here we present an interesting

synchronization phenomenon induced by the external stimuli,

shown in Fig. 10. Different from the usual phase synchrony, it does

not appear synchronous within some intervals of time but displays

a global synchronous behavior. Such a synchronization looks more

a transitional phenomenon appearing in Ref. [23,24]. Here we call

it periodic intermittent synchronization. Furthermore, we present

some reasons resulting from the synchronization as follows. When

G(t) = l+ssinvt approaches its maximum, i.e., G(t) = l+s at some

ts, the external stimulus induces phase synchronization. It persists

until G(t) approaches its minimum. However, there is a period of

time from synchronization to unsynchronization or from un-

synchronization to synchronization, i.e., synchronization or

unsynchronization has ‘‘inertia’’ (see Fig. 2b and d of Ref. [15]

and Fig. 5A and B of Ref. [25]), leading that although G(t)<0 at

some ts, the synchronization is still achieved. With the evolution of

time, it will be lost due to the weak external stimulus. The situation

is periodically repeated, forming so-called periodic intermittent

synchronization.

DISCUSSION
In this paper, we have proposed two artificial control strategies

that are developed to mediate the collective rhythms across an

Figure 7. Oscillation death appearing in region I of Fig. 6, where the
maximum and minimum of concentration of protein TetR are plotted.
(a) s= 100; (b) t = 2. Other parameters are the same as those in Fig. 6.
doi:10.1371/journal.pone.0000231.g007

Figure 8. The synchronization region in the s-g parametric plane,
where the impulse period t is fixed (t = T0). Other parameters are the
same as those described for Fig. 6.
doi:10.1371/journal.pone.0000231.g008

Figure 9. The effect of impulsive stimulus on synchronization of 103

repressilators: Achieving synchronization due to coupling (see stages I
and IV); Ruining the achieved synchronization by some external
impulses with moderate strength (stage II), and recovering synchroni-
zation with the suppressed oscillation amplitude by some strong
enough impulses (stage III). The protein TetR concentrations of 10 cells
are plotted. k = 20, g = ge = 3 and t = 6,T0. Other parameters are the
same as those described for Fig. 6.
doi:10.1371/journal.pone.0000231.g009

Figure 10. Periodic intermittent synchronization induced by sinusoidal
stimulus. The protein TetR concentrations of 10 cells for 103 cells are
plotted, where the inset shows a locally enlarged oscillation with period
T0 and declining amplitudes for one TetR. k = 20, g = ge = 0.1, l = 2.5,
s= 2.5 and v = 2p/200. Other parameters are the same as those
described for Fig. 6.
doi:10.1371/journal.pone.0000231.g010
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ensemble of genetic oscillators in Escherichia coli, and have shown

through modelling that can some periodic input substances induce

or globally enhance collective rhythms only when the periods of

the external stimuli are close to an integer multiplicity of the

intrinsic period of the individual oscillators. Such mechanisms of

achieving collective rhythms could be exploited by realistic

organisms to sense external signals. Our control strategies would

also provide guidelines for biological experiments. In particular,

the amount and period of a periodic stimulus are independent of

state variables of the considered system, so when the stimulus is

used to increase the effectiveness of synchronization, we need not

measure the state variables at a control instant, thus making the

proposed control schemes biologically plausible, and easily being

implemented in biological experiments and even by medical uses.

Previous experimental implementations of the repressilator have

shown that there is not only substantial variability between cells in

the growing population but also a noticeable irregularity in the

oscillatory behavior of each individual cell [7]. This irregularity

may be caused by noise intrinsic or extrinsic to gene expression

[20,26,27], plasmid copy-number variability [28], or other unclear

external effects. Such a large degree of variability possibly prevents

the observation of macroscopic rhythms in a population of

synthetic genetic oscillators [7]. Our results have indicated that

appropriate external stimuli can counteract the effect of these

noises, effectively transforming an ensemble of ‘‘sloppy’’ oscillators

into a very reliable collective oscillator.

McMillen et al [16] and Garcia-Ojalvo et al [15] have shown

that intercell signals would globally enhance the collective

behaviors across an ensemble of genetic oscillators through

a coupling. Our results have demonstrated that appropriate

external stimuli can compensate the inefficiency of coupling,

effectively achieving a collective response by adjusting the period

or amplitude of the periodic stimuli. It would be of interest to

investigate the relationship between the strength or period of

external stimulus and the strength of coupling, carrying out

quantitative curves which predict when a synchronization behav-

ior is achieved.

There are a number of potential applications for the artificial

control strategies proposed here. Existing gene therapy approaches

typically handle transfected genes that are fixed in either an ‘‘on’’

or ‘‘off’’ state. As our ability to implement cellular control

improves, more sophisticated medical interventions may require

particular proteins to be expressed on a periodic schedule, and in

such ways we would want all cells in a given tissue to operate in

a synchronized oscillatory behavior. Furthermore, in probing

complex natural networks to deduce their network connectivity,

injecting an artificial control amount into the natural system of

interest would provide an input whose induced response could

provide valuable information about internal cellular processes

inside the system, and keeping oscillations synchronous across

a population would prevent the introduction of drift in the input

signal from cell to cell.
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2353–2361.

25. Gonze D, Bernard S, Waltermann C, Kramer A, Herzel H (2005) Spontaneous

synchronization of coupled circadian oscillators. Biophys. J. 89: 120–129.

26. Elowitz MB, Levine AJ, Siggia RD, Swain PS (2002) Stochastic gene expression

in a single cell. Science 297: 1183–1186.

27. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002)

Regulation of noise in the expression of a single gene. Nat. Genet. 31: 69–73.

28. Paulsson J, Ehrenberg M (2001) Noise in a minimal regulatory network: plasmid

copy number control. Quart. Rev. Biophys. 34: 1–59.

Control of Biological Rhythm

PLoS ONE | www.plosone.org 7 February 2007 | Issue 2 | e231


