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Background. The mesoderm of the amphibian embryo is formed through an inductive interaction in which vegetal cells of the
blastula-staged embryo act on overlying equatorial cells. Candidate mesoderm-inducing factors include members of the
transforming growth factor type b family such as Vg1, activin B, the nodal-related proteins and derrière. Methodology and

Principle Findings. Microarray analysis reveals different functions for activin B and the nodal-related proteins during early
Xenopus development. Inhibition of nodal-related protein function causes the down-regulation of regionally expressed genes
such as chordin, dickkopf and XSox17a/b, while genes that are mis-regulated in the absence of activin B tend to be more
widely expressed and, interestingly, include several that are involved in cell cycle regulation. Consistent with the latter
observation, cells of the involuting dorsal axial mesoderm, which normally undergo cell cycle arrest, continue to proliferate
when the function of activin B is inhibited. Conclusions/Significance. These observations reveal distinct functions for these
two classes of the TGF-b family during early Xenopus development, and in doing so identify a new role for activin B during
gastrulation.
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INTRODUCTION
The mesoderm of the amphibian embryo arises through an

inductive interaction in which cells of the vegetal hemisphere act

on overlying equatorial cells [1]. Of the several mesoderm-

inducing factors that have been discovered, most are members of

the transforming growth factor type b family. These include

activin [2–4], Vg1 [5,6], five nodal-related proteins [7–9], and

derrière [10]. Although these factors have similar abilities to

induce gene expression in isolated animal pole regions, they are

differently expressed in the embryo (see above references) and

under some experimental conditions have different abilities to

exert long-range effects [11,12]. In addition, each exerts different

effects at different concentrations [7,13]. The challenge now is to

elucidate the individual roles of these proteins within the embryo

and to ask how their actions are coordinated.

Some attempts along these lines have been made, and it proves

that although each of the factors is essential for normal

development, their roles differ. For example, ablation of the

maternal transcripts encoding Vg1 causes a reduction in anterior

and dorsal development and the down-regulation of genes such as

chordin, cerberus and noggin [6]. Of the zygotically-expressed inducing

factors, depletion of activin also causes axial defects [3,14,15],

although these are less severe than those caused by loss of Vg1,

and inhibition of derrière activity causes just posterior defects [10].

Simultaneous inhibition of the activities of all the nodal related

proteins, by expression of Cerberus-short, causes loss of mesoderm

[16,17] and the down regulation of genes such as Chordin and

Pintallavis [18]. The requirements of the individual nodal related

proteins have not been studied in detail, although injection of

antisense morpholino oligonucleotides directed against Xnr1

causes defects in left-right axis determination [19].

Here we perform microarray analyses of gene expression in

embryos in which activin or nodal-related signalling has been

inhibited. We find that activin and the nodal-related proteins

regulate distinct and almost completely non-overlapping sets of

genes, with those regulated by the nodal-related genes tending to

be expressed in a more restricted pattern than those regulated by

activin. It further proved that the nodal-related proteins often

regulate the expression of genes involved in regional specification,

while activin particularly regulates genes involved in the control of

the cell cycle. Consistent with this observation, we find that

inhibition of activin B in the early embryo causes dorsal axial

mesodermal cells to fail to exit the cell cycle: the results of others

[20–22] suggest that it is the continued proliferation of these cells

that underlies the gastrulation defects observed in such embryos.

RESULTS

Microarray results
In an effort to understand the different requirements for activin B

and the nodal-related genes during Xenopus development, we have

carried out microarray analyses of gene expression in embryos in

which signalling by the two classes of factor has been disrupted.

Activin signalling was blocked using an antisense morpholino

oligonucleotide [3], and nodal-related signalling by Cerberus-

short, a truncated form of Cerberus [17]. Our microarray slides

comprise 10,898 probes designed to recognise sequences derived

from a large scale Xenopus tropicalis EST project [23]. These arrays

also recognise X. laevis transcripts [24].

For each series of experiments Xenopus laevis embryos from three

different spawnings were injected with RNA encoding Cerberus-

short (150 pg into each blastomere at the four-cell stage) or with
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antisense morpholino oligonucleotide MO3 (50 ng into the one-

cell stage) (samples), or with water or antisense morpholino

oligonucleotide mMO1 (50 ng) (controls). These doses of Cerber-

us-short RNA and MO3 were based on previous work [3,16] and

were chosen so as to yield a strong phenotype in which gastrulation

was substantially or completely inhibited. In an effort to identify early

and perhaps direct targets of activin and the nodal-related proteins,

embryos were cultured to stage 10.5 for RNA isolation and some

were allowed to develop to later stages to confirm that embryos

displayed the expected phenotypes (Fig. 1A–F). Each microarray

slide was hybridised with a 1:1 mixture of sample and control

cDNAs, each labelled with a different dye. Each hybridisation was

repeated with the Cy3 and Cy5 dyes ‘swapped’, so that six

microarray slides were hybridised for each experiment.

Transcripts recognised by the oligonucleotides were considered

to be differentially expressed when (i) they showed at least a two

fold difference (sample versus control) in expression levels in at least

four out of the six microarrays and (ii) were significantly different

(q = 0; see Experimental procedures). In embryos in which activin

B signalling was inhibited, 40 oligonucleotides fulfilled these

rigorous criteria, of which 8 were down regulated, and in those in

which nodal signalling was inhibited, 20 oligonucleotides (repre-

senting 18 genes) were differentially expressed, of which 17 were

down regulated (Table 1). The up regulation of Cerberus in the

latter experiment is probably due to the introduction of Cerberus-

short mRNA into these embryos. Only Sizzled, which encodes an

inhibitor of the Tolloid Proteinase [25], was differentially

expressed in both types of embryo.

Our experiments identify fewer nodal-regulated genes than the

recent microarray study of Sinner and colleagues [26]. This

difference probably derives from the facts that Sinner and

colleagues harvested embryos at stage 11 rather than 10.5, and

defined genes as being differentially expressed if expression levels

differed by a factor of 1.4 rather than 2.0. Like Wessely and

colleagues, who used a macroarray approach [18], we note that

both Chordin and Xsox-17beta are down regulated by Cerberus-

short. We also note that some genes that are down regulated

following interference with activin signalling, such as Xbra and

goosecoid [3], were not identified in the present screen. The most

likely explanation for this apparent discrepancy is that the

expression of such genes is frequently reduced by only 50% or

thereabouts [3], and our criteria for defining genes as being

differentially expressed (see above) is so stringent that such

differences might be regarded as insignificant. RT-PCR analysis

of the RNA samples used on the microarrays confirmed previous

observations [3] that the expression of these genes is indeed

reduced in embryos in which activin signalling is inhibited (data

not shown).

Figure 1. Inhibition of activin B and nodal-related protein function causes distinct phenotypes and results in the differential regulation of
different classes of gene. (A,D) Control embryos (here injected with water; those injected with mMO1 look identical) at stage 11 (A) and 26 (D). (B,E)
Embryos injected with MO3, and which therefore lack activin B activity. (B) Stage 11; (E) stage 21. Note the delay in gastrulation and the failure to
form a proper axis. (C,F) Embryos injected with Cerberus-short RNA, and which therefore lack nodal-related activity. Note the failure to involute and
the formation of a radially symmetrical structure. (G,H). Correlation between microarray and PCR results.
doi:10.1371/journal.pone.0000213.g001
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Real-time RT-PCR validation
Our microarray results were validated by real-time RT-PCR The

X. laevis homologues of the X. tropicalis cDNAs recognised by the

oligonucleotides (http://informatics.gurdon.cam.ac.uk/cgi-bin/

public.exe) were identified by BLAST searches (Table 1), and

PCR primers were designed for the great majority of the

transcripts that were considered to be differentially expressed. In

the case of the activin B experiment, we were unable to identify X.

laevis homologues for six of the cDNAs, and two primer pairs did

not yield a product; in the case of the Cerberus-short experiment,

X. laevis homologues could not be identified for two cDNAs.

Our RT-PCR analysis used the same RNA samples that were

used for microarray experiments. Of the genes tested, 80% of

those identified in the activin B experiment were confirmed as

being differentially expressed, and all of those identified in the

Cerberus-short experiment were similarly verified. Bilateral

correlation analysis of the results obtained by microarray

hybridization and those obtained by real-time RT-PCR showed

a Pearson Correlation of 0.848 (p = 0.000) for the activin B

experiment and of 0.975 (p = 0.000) for the Cerberus-short

experiment (Fig. 1G,H). RT-PCR experiments confirmed that

genes regulated by activin signalling are not regulated by nodal-

related signalling, and vice-versa (Table 1). Together, these

experiments show that activin and the nodal-related genes regulate

distinct genes during early Xenopus development.

Classification of genes regulated by activin and

nodal-related genes
The expression pattern of each differentially expressed gene was

determined from the literature, where possible, or by carrying out

in situ hybridisations using Xenopus tropicalis embryos with probes

generated by the polymerase chain reaction (PCR). Consistent

with the different expression patterns of activin B and of the nodal-

related genes [3,7–9,27], the expression patterns of the genes

regulated by the two types of signalling molecules differed (see

Table 1). Thus, of the 15 different genes regulated by nodal-

related signalling whose expression patterns we know, all are

expressed in a restricted fashion (for example, see Fig. 2A,B), and of

the 31 genes regulated by activin B, 28 are expressed ubiquitously

(for example, see Fig. 2C–F) and three in a restricted fashion.

Genes were then manually classified according to the annota-

tion of their human homologues (NCBI databases, http://www.

ncbi.nih.gov/). Interestingly, this analysis also revealed differences

between embryos lacking activin B and those in which nodal

Figure 2. Expression patterns of genes regulated by activin and nodal-related proteins. (A,B) Expression pattern of Chordin, a gene that is mis-
regulated following inhibition of Xnr signalling. Note that Chordin transcripts are restricted to the dorsal marginal zone. (C–F) Expression pattern of
DNMT1, a gene that is mis-regulated following inhibition of activin signalling. (C) and (D) show embryos hybridised using a sense probe; (E) and (F)
show embryos hybridised using an antisense probe. Note that DNMT1 is expressed ubiquitously.
doi:10.1371/journal.pone.0000213.g002

Xnrs and Activin in Xenopus

PLoS ONE | www.plosone.org 5 February 2007 | Issue 2 | e213



related signalling is inhibited (Fig. 2G). In particular, while several

of the genes regulated by the nodal-related genes are involved in

signal transduction or the regulation of transcription, several of the

genes whose expression is affected by lack of activin B activity are

involved in cell cycle regulation; this is not the case for embryos in

which nodal signalling is inhibited.

Activin regulates cell division in the involuting

mesoderm
Both our microarray experiments and our real-time RT-PCR

analyses show that down-regulation of activin B, but not loss of

nodal-related activity, causes the mis-regulation of genes involved

in cell cycle control. One of the effects of the loss of activin B

function is a disruption of gastrulation [3], and in this connection

we note that the mitotic index of involuting dorsal mesoderm is

significantly decreased during gastrulation [28] and that arrest of

the cell cycle is required for both bottle cell formation [20] and for

convergent extension movements [21,22]. We therefore asked

whether loss of activin B affects cell division during early

embryogenesis.

Embryos injected with control oligonucleotide mMO1 or

specific antisense oligonucleotide MO3 were fixed at the mid

gastrula stage and stained using an antibody recognising

phosphorylated histone H3, which marks mitotic chromosomes

[28]. Inspection of such embryos revealed that the down-

regulation of the cell cycle that normally takes place in dorsal

axial mesoderm does not occur (Fig. 3). In three control embryos

stained as sections the mean mitotic index in dorsal axial

mesoderm was 0%; in six embryos injected with MO3 the mitotic

index was 12.762.7% (mean6standard deviation). Similarly, in

a control embryo stained as a whole-mount and then sectioned,

the mitotic index was 0%; in an embryo injected with MO3 it was

20%. This failure of the dorsal axial mesoderm to undergo cell

cycle arrest is consistent with the observed mis-regulation of cell

cycle genes, and it may explain why embryos lacking activin

function fail to gastrulate properly [see refs 20–22].

DISCUSSION
Our experiments show that activin B and the nodal-related

proteins regulate distinct sets of genes in the early Xenopus embryo.

In the future it will be interesting to investigate the molecular basis

of this difference. One difference between activin and the nodal-

related proteins is that their expression patterns differ, with activin

B being expressed ubiquitously [3,27] and the nodal-related

proteins being restricted to the vegetal and equatorial regions of

the embryo [7–9]. Consistent with these observations, we note that

nodal-regulated genes tend to be expressed in more restricted

patterns than do activin-regulated genes (Fig. 2A–F). Another

difference is that signalling by the nodal-related proteins, but not

activin, requires responding cells to express EGF-CFC family

members such as XCR1, 2 and 3 [29–32]. This difference between

activin and the nodal-related proteins may underlie the ability of

activin to activate Smad2 earlier than does Xnr1 or derrière [33].

We note that other studies have also noted differences between

activin and nodal signalling; for example, continuous treatment of

P19 cells with activin causes only transient activation of Smad2

while treatment with nodal causes sustained activation [32].

Of the genes that are exclusively regulated by activin, several

have been implicated in cell cycle regulation (Fig. 2G), and

embryos that lack activin B function fail to arrest the cell cycle in

dorsal axial mesoderm (Fig. 3). These observations indicate that

the role of activin B differs from that of the nodal-related proteins

in the early Xenopus embryo, and that one of its functions is to

control the cell cycle during this critical phase of early Xenopus

development. This is of importance because axial mesodermal

cells arrest the cell cycle after involution [28], and if they are

forced to proliferate, this results in a severe disruption of

gastrulation [20–22]. Interestingly, we note that the ability of

activin to inhibit cell division is not restricted to the early Xenopus

embryos; activin also causes cell growth arrest in human breast

cancer cells and in human hepatocytes [34,35].

We note no effect of the loss of activin on the cell cycle

elsewhere in the Xenopus embryo; there is no acceleration of cell

division in the animal hemisphere, for example, in embryos

injected with MO3. It is likely that the cell cycle in the dorsal

marginal zone is regulated through locally-acting mRNAs or

proteins that require activin signalling for their expression or

appropriate post-translation modification.

Finally, what do our results say about the role of activin in

mesodermal patterning? Although we emphasise here the role of

activin in controlling the expression of genes involved in the

regulation of the cell cycle, our previous data, confirmed in the

course of the present work (data not shown), indicates that in the

absence of activin the expression of genes such as goosecoid,

chordin and Xbra is reduced by 20–80%, depending on stage and

dose of antisense morpholino oligonucleotide [3]. These observa-

tions suggest that activin and the nodal-related proteins (together

Figure 3. Inhibition of activin B function prevents dorsal axial mesoderm from exiting the cell cycle. (A) Diagram illustrating from which part of
the embryo sections in (B–E) are derived. (B,C) Composite images of 10 serial sagittal sections of representative embryos stained with an antibody
recognising phosphorylated histone H3 as whole mounts and then sectioned at 12 mm. (B) Control embryo injected with mMO1. Note absence of
mitotic cells in involuting mesoderm. (C) Embryo injected with specific antisense oligonucleotide MO3. Involution is perturbed and mitotic cells are
visible in dorsal tissue. (D,E) Frozen sections of embryos stained with an antibody recognising phosphorylated histone H3. (D) Control embryo
injected with mMO1. Note absence of mitotic cells in involuting mesoderm. (E) Embryo injected with specific antisense oligonucleotide MO3.
Involution is perturbed and mitotic cells are visible in dorsal tissue.
doi:10.1371/journal.pone.0000213.g003
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Table 2. RT-PCR primers used in this study.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Qiagen Xt oligo name Forward primer Reverse primer

Xt_10000076 CCAGACATTTGTTGCCCTCT GTTGTGTTGCTGCTGTGCTT

Xt_10000180 TTATGGTGTGGGCAAAGGAC CTCTTCCCTCTTCATCCTCTTC

Xt_10000182 CCACAGAGTGAAGCACCTGA AAAACTCAAAAAGAGCCACACTT

Xt_10000293 TGTACCATCGATTTCCAGCA TCACATGCCAGGCTCTCTG

Xt_10000346 TAAGAAGGCAGTTGCTGCAC CCTTCTCTAGCCCTTTGTTCA

Xt_10000401 GCGAGAGACAGGTCAAAACC TTCAATGTCCACCTCCTGGT

Xt_10000572 AGGTGTCCACCTGGTTTGCT TCAGTGTCTGGGTCATCCAA

Xt_10000615 GCCCCAGAACCACTAAGTAAC CCTGGACCACCATCTCTGAA

Xt_10000635 AATGGCTTCACGGGTAGATG AAGCTTTGTCCAGTGCCTTG

Xt_10000757 AGCCCTTCAGATCCACTTCA GCATCCTCATTTGGATTCGT

Xt_10000971 CCTGAACTGGGAAAAATCCA AATTCCCATTCCCATGTCAG

Xt_10001337 TCCCTTATATGGGGGTGTGA GGAACTCATCCTTTGCCTTG

Xt_10002006 GAATGGAGCCCCACAGAATA TTGCTGATTTGGAACATGGA

Xt_10002067 CTGGACCTGTGGAACTGCTC CAACAAGCCACGGAAAAACT

Xt_10002154 TCGGATTCCTTATCCAGCAC GCCTGCATAGCCGTAATCAT

Xt_10002938 GAGATATCCACGGTCAGGTTG AGCAGAGTAAGGCTGGCAAT

Xt_10003855 AACTGCCAGGACTGGATGGT GGCAGGATTTAGAGTTGCTTC

Xt_10004020 TCGTCTTGATGGCTGTGTTC GTGGAGACCTGCATTTCGTT

Xt_10004044 CCTACCCAAGGACAAGGTCA TGAAAGGCAAACCCACTTTT

Xt_10004134 AGAGTTCCAAACAAACTTGGTG CTGGCACAGATAGCTGCTCA

Xt_10004273 AAGCCCAAGCTCGTAGAACA CGGCTGAGCCTTGAATTTAG

Xt_10005146 GATACCGGCATCTCTTCCAA ATGGTGGAGCGCTTGTTGTA

Xt_10005344 ATGTGGATGTTCCCATCGTT GTCTGGGCTCATCTCACTGG

Xt_10005362 AACAAGGTCTGCTCCTTCCA ATGGTGTCTCCACCTCCTTG

Xt_10005487 ACAGATGAGTGTGGGGCAGA GCTCCACATCAAAGGTCAGG

Xt_10005756 GTGGGCTTCTTCTTCAATGC GAGTGAGTGCCCAGGATGAT

Xt_10005916 GCTTAAAACTCTCGCCACAGA TGCTTTAAGCTAAGACCAGGTTG

Xt_10006059 CTTTACATCTGTCCTGCCTCA TAGTCAGCACCCCTCATCAT

Xt_10006733 GGTGCCCAGCATCAAATCTA GAACATGCTGCCAATGAACA

Xt_10008086 CACACCAAGTCAAGCAAGGA TCCTTGCCCACCAACTACAG

Xt_10008633 AGTTCTGCAGGTGGTTTTGG GCAAGACGGTCATTGAGGTT

Xt_10008637 AAGTTCTGTTATCCCCTGTGC TTTCTATTGCCACCCAGTCC

Xt_10008667 CGACATGATCCTGTTGGATG TCTGTGCCCAGATCGATACA

Xt_10008956 CAGAAACTGCTGGTCTGTGC ATCCCGCTCCTCTATCTTGA

Xt_10008957 GGACTCAATGTGGCTCTTGT GCCCAACTGTCTCTGAAACC

Xt_10008973 TTTGGAGAGGGATCAGGATG AGGTATCCTTCCTCAGACAGTTC

Xt_10009006 GTCAAGTCGGAATCCAGCTC TTCTGCCCCAGGTAGGTACA

Xt_10009228 ATCCGCTCCAATGTTGACTC GTGAGCAAGGCTTCAATGGT

Xt_10009377 CCTTTCTGACTTTTGCACAGC GGCAAAGTCTGTTGGATGGT

Xt_10009394 GGTTACAGTTTGCCCACTCC GTAGGGCATCATCTGGCACT

Xt_10009473 GGCAGAGAACATGGCAAGAG AGGCCGAATGCATAGATGTC

Xt_10009545 CCAGTCGATGGGCTGTATTT TTTGTCACCGACAACCTGAA

Xt_10009727 TGGGTCTCCTTCCAGGTGTT AGGTGGGTGATGGTCCAG

Xt_10009950 CACGGGCTAGAGATTTTCCA GGCCTCGCTTAGTGTCTTTG

Xt_10010347 AGACAATGCCTGGTGGGTAG GTTGCCTGGATGGTCTGAAT

Xt_10010647 GAATGGCAAAACCTGACCAT GCGAGTAACTGCAGGGTGAT

Xt_10010739 CCCCTTATACCCCAAAGAGC ATGTTGGTCTCCCGTAACAC

doi:10.1371/journal.pone.0000213.t002..
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with Vg1 and derrière) cooperate to specify mesodermal pattern in

the embryo, although the results described in this paper argue that

the role of activin in this process is less significant than is the role of

the Xnrs.

MATERIALS AND METHODS

Xenopus embryo manipulations and microinjection
Embryos of Xenopus laevis were obtained by artificial fertilisation,

maintained in 10% normal amphibian medium [36], and staged

as described [37]. For inhibition of nodal-related protein function,

embryos were injected at the one cell stage with 600 pg Cerberus-

short RNA [17] or, as a control, water. For inhibition of activin B,

embryos were injected with 50 ng antisense morpholino oligonu-

cleotide MO3 [3] or, as a control, mMO1 [3]. Embryos were

harvested at stage 10.5 for microarray analysis or stage 12 for

immunocytochemistry.

Microarray construction, RNA isolation, labelling

and microarray hybridisation
These were performed as described [24].

Microarray data analysis
Microarray results were imported into Acuity (Axon) and

normalised using Lowess normalisation. Data files were created

for points which satisfied the following filter: (Sum of Medians)

$500 AND (Flags) $0 AND (%.B532+1SD)$55 OR

(%.B635+1SD)$55. This filter eliminates data points flagged as

bad by GenePix, or that had the sum of media less than 500, or

which had fewer than 55% of pixels above background. Points

passing these criteria for at least four out of the six microarrays

were used for further analysis. Oligonucleotides were considered to

be differentially expressed when they showed at least a two fold

difference in expression levels in four out of the six microarrays

and had a q value of 0 as assessed by the Significance Analysis of

Microarrays software [38]. The microarray datasets were de-

posited in the GEO data repository (http://www.ncbi.nlm.nih.

gov/projects/geo/index.cgi) (accession numbers GSE4771 and

GSE4777).

Real time RT-PCR
Differential expression was validated by real-time RT-PCR using

the Roche LightCycler 480. Primers specific for ornithine

decarboxylase (ODC) were as described [3]; others are listed in

Table 2.

In situ hybridisation
This was carried out on embryos of Xenopus tropicalis, essentially as

described [39,40]. Probes were made by use of T7 RNA

polymerase; substrates were PCR products obtained using T7

and SP6 primers applied to cDNA clones derived from a large

scale Xenopus tropicalis EST project [23].

Immunocytochemistry and Image Acquisition
Embryos to be subjected to frozen sectioning were fixed in 3.7%

formaldehyde, 10% DMSO, 100 mM MOPS pH7.4, 2 mM

EGTA, 1mM EDTA for 2 hr at room temperature and embedded

in 25% sucrose, 15% cold water fish gelatin (Sigma) at room

temperature for 24 hr. Sections (14 mm) were cut at 217uC and

stored at 280uC. They were incubated overnight at 4uC with anti-

phosphohistone H3 antibody (Upstate Biotechnology, 1:1000) and

then with anti rabbit IgG antibody coupled to Alexa 568

(Molecular Probes, A11011, 1:200). Nuclei were counterstained

with DAPI.

Whole-mount immunostaining using anti-phosphohistone H3

antibody was performed as described [28].
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