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Background. The integral synaptic vesicle protein and putative calcium sensor, synaptotagmin 1 (STG), has also been
implicated in synaptic vesicle (SV) recovery. However, proteins with which STG interacts during SV endocytosis remain poorly
understood. We have isolated an STG-associated endocytic complex (SAE) from presynaptic nerve terminals and have used
a novel fractional recovery (FR) assay based on electrostatic dissociation to identify SAE components and map the complex
structure. The location of SAE in the presynaptic terminal was determined by high-resolution quantitative immunocytochem-
istry at the chick ciliary ganglion giant calyx-type synapse. Methodology/Principle Findings. The first step in FR analysis was
to immunoprecipitate (IP) the complex with an antibody against one protein component (the IP-protein). The immobilized
complex was then exposed to a high salt (1150 mM) stress-test that caused shedding of co-immunoprecipitated proteins (co-
IP-proteins). A Fractional Recovery ratio (FR: recovery after high salt/recovery with control salt as assayed by Western blot) was
calculated for each co-IP-protein. These FR values reflect complex structure since an easily dissociated protein, with a low FR
value, cannot be intermediary between the IP-protein and a salt-resistant protein. The structure of the complex was mapped
and a blueprint generated with a pair of FR analyses generated using two different IP-proteins. The blueprint of SAE contains
an AP180/X/STG/stonin 2/intersectin/epsin core (X is unknown and epsin is hypothesized), and an AP2 adaptor, H-/L-clathrin
coat and dynamin scission protein perimeter. Quantitative immunocytochemistry (ICA/ICQ method) at an isolated calyx-type
presynaptic terminal indicates that this complex is associated with STG at the presynaptic transmitter release face but not with
STG on intracellular synaptic vesicles. Conclusions/Significance. We hypothesize that the SAE serves as a recognition site
and also as a seed complex for clathrin-mediated synaptic vesicle recovery. The combination of FR analysis with quantitative
immunocytochemistry provides a novel and effective strategy for the identification and characterization of biologically-
relevant multi-molecular complexes.
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INTRODUCTION
Transmitter release is triggered by the influx of calcium ions

through local calcium channels[1] which bind to a calcium sensor

on the transmitter release site and gate the fusion of the docked

synaptic vesicles (SV) with the surface membrane. After discharge

of the vesicle contents, the SV is recovered by a clathrin dependent

endocytosis mechanism[2–4]. Coat formation, cargo capture,

vesicle budding and dynamin-dependent scission involve a large

number of proteins and protein interactions (see[5,6] for review).

Synaptotagmin 1 (STG) is best known as the putative calcium ion

sensor in the triggering of SV fusion. Interestingly, however, this

protein has also been implicated as a regulator of endocytosis

and interference with STG markedly slows the rate of vesicle

recovery[7–11]. Recent observations demonstrate that STG

remains clustered even after the secretory vesicle has fused,[12]

and suggests that the protein is a component of a relatively stable

molecular complex associated with endocytosis. Our objective was

to analyze this STG-endocytosis-related complex.

Our first observation was the STG co-precipitates from purified

synaptosome lysate with a number of endocytosis related proteins,

including the clathrin coat proteins, heavy and light chain clathrin

(H-clathrin; L-clathrin) and dynamin, adaptor protein such as AP2

and also linker proteins such as intersectin and AP180. We term

this entity an STG-associated endocytic (SAE) complex. In order

to test which of the SAE protein components was more closely

associated with STG we explored these linkages using a high-salt

stress test, determining Fractional Recovery (FR) values for each

protein link. This experimental strategy is simple and yet

compelling: proteins that are readily shed with high salt, (low

FR) can not serve as intermediates between the IP-protein and

proteins that remain bound (high FR). Thus, the rank order of the

FR values, the FR sequence, provides a clue to the interrelationship

between the individual members of a multi-molecular complex.

We reasoned that we could gain further insight into the sub-

structure of a multi-molecular complex by deriving the FR

sequence based on a second IP-protein from the same complex.

We then used these two FR sequences as coordinates to fix the

location of each protein in the complex.

The SAE was examined using four different FR sequence pairs

and the resulting complex structures were compared to derive

a consensus model. Some of the proteins that abut in this model

were previously described binding partners but others were not.

We hypothesized bridging proteins by a search of the literature for

proteins known to bind the two proteins on either side of each gap.
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We then carried out additional FR experiments to test putative

bridging proteins.

Our analysis generated a blueprint of a novel multi-protein

complex with an endocytosis adaptor-protein core and coat-

protein periphery. Quantitative immunocytochemistry (ICA/ICQ

method, [13]) was used to determine the sub-cellular location of

the complex within a native presynaptic terminal. The SAE was

localized the to the transmitter release face region, consistent with

a role in secretory vesicle recycling.

RESULTS

Synaptotagmin co-precipitates with endocytotic

proteins from purified synaptosome lysate
Synaptosomes were prepared from 2–10 day rats and were

solubilized in a standard detergent-containing lysis buffer at

a physiological ionic strength of 150 mM. We used standard co-

immunoprecipitation to test for an STG endocytosis complex.

Immunoprecipitation of a range of endocytosis-related proteins,

including adaptors such as AP180, intersectin and AP2 (a-

adaptin), the coat proteins H- and L-clathrin and the scission

protein dynamin co-precipitate with STG (Fig. 1A, 2B).

However, immunoprecipitation alone gives little information with

respect to the strength of these associations or the proximity of

each IP-protein to STG, the co-IP protein. In order to obtain

more information we stressed the electrostatic interactions within

the complex by exposing it to buffers containing elevated salt. We

tested two salt concentrations, 650 and 1150 mM, and compared

these to a 150 mM control. Exposure of the immobilized complex

to 1150 mM salt for 15 minutes was selected as an effective and

experimentally repeatable (Fig. 1B–D) assay protocol that

liberated a significant fraction of the protein members (Fig. 2,
3). The 650 mM salt served as a control for non-specific or very

weakly bound components: only proteins with .40% mean

retention at this ionic strength were included in the complex.

Thus, each immunoprecipitation experiment was split into three

identical samples which were treated for 15 minutes in 150, 650

and 1150 mM salt. Proteins that remained bound to the

precipitation beads were eluted by boiling in a denaturing buffer

and were assayed by immunoblotting and densitometry (see

Supporting Information Fig. S1A, B). A fractional recovery (FR)

value was defined as the ratio of protein recovered after exposure

to the highest salt (1150 mM) concentration divided by that at

150 mM. Not counting controls, data from over 240 individual

immunoprecipitation experiments, each employing a three-salt

paradigm, were carried out in this study.

Figure 1B-D illustrates the method. STG (the IP-protein) was

immunoprecipitated from the lysate and we probed for L-clathrin

(a co-IP-protein). L-clathrin bands were detected in the Western

blot after all three salt treatments (Fig. 1B). This method was

found to be repeatable (e.g. Fig. 1C) and precipitations were

reciprocal (Figs 1B–D, Supporting Information, Figure S1)

while IgG controls were negative or very faint (Figs 1B, D).

Immunoprecipitation of H-clathrin or STG both captured a range

of endocytosis-related proteins (Fig. 2A, B; left lanes). These

findings support the presence in the lysate of a multi-protein

complex, the SAE complex, but yield little information as to its

molecular organization. However, we argue that the sequence of co-

IP-protein FR values with a given IP-protein is an indicator of the

internal structure of the complex relative to that IP-protein (see below).

FR values
We carried out a full set of salt sensitivity experiments on four

immunoprecipitated complex components: STG, H-clathrin

(Fig. 2A, B), AP180 and L-clathrin (data not shown,) together with

limited analyses with dynamin and a-adaptin. In each case we first

tested the FR value of the IP-protein itself in order to ensure that

the high salt did not simply liberate the antibody from the bead or

the IP-protein from the antibody. .75% recovery was obtained in

all four cases (Fig. 3A–D). The FR values for each of the co-IP-

Figure 1. Fractional recovery method. A. Rat brain synaptosome lysate
was immunoprecipitated with an antibody against the protein in-
dicated above the lanes (the IP-protein). The captured proteins were
eluted off the beads and were identified by standard Western blot
analysis. Synaptotagmin 1 (STG) was co-precipitated with all of the
endocytosis proteins tested. S-/L-intersectin: short/long-variant-inter-
sectin. B.–D. After immunoprecipitation as in A, the beads were washed
and split into three equal aliquots. Each aliquot was exposed to one of
three buffers with different salt concentrations before elution of the
remaining bead-attached proteins and analysis by Western blot. In each
set of three lanes the left lane was exposed to control 150 mM salt, the
center lane to 650 mM and the right lane to 1150 mM salt, as indicated
by the diagram at the top. B. Immunoprecipitation of synaptotagmin
co-immunoprecipitated L-clathrin (left three lanes) with only a small
reduction at high salt whereas IgG was negative (right three lanes). C.
The fractional recovery method was repeatable. In this panel AP180 was
co-precipitated with STG in two separate trials (left three and right
three lanes) with similar salt-resistant results. D. Figures 1B and 1C
show co-precipitation of L-clathrin with STG and AP180 with L-clathrin
and both of these are resistant to high salt treatment. Consistent with
these findings, AP180 co-precipitates with L-clathrin (right three lanes)
in a salt-resistant manner whereas IP with IgG is negative (left three
lanes). In C and D the center lane is 5% of the loading lysate used for
the immunoprecipitation.
doi:10.1371/journal.pone.0000067.g001
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proteins (Fig. 2A–D) were normalized to that for the IP-protein.

Thus, we generated sets of FR values for each IP-protein for which

we had a reliable antibody. We did not have antibodies that can

distinguish between the two S- and L- variants of intersectin,

precluding the experimental determination of their respective FR

value sets. However, FR values were reciprocal, that is the FR

value of co-IP-protein A with IP-protein B was in essence the same

as that for co-IP-protein B with IP-protein A (Fig. 1B–D;
SupportingFig. S1C). Thus, we generated FR value sets for the

two intersectin variants by compiling their respective FR values

using the other IP-proteins (Fig. 3E).

Analysis of complex organization by FR values
i. FR values reflect sequence of proteins in the complex

The diagram in Fig. 3F depicts the degree to which high salt

displaced the members of the protein complex from the IP-

protein, in this case H-clathrin. This diagram is purely descriptive,

and has only limited information with respect to the structure of

the parent complex. The FR values can, however, be used to

predict favorable linear protein series within the complex because

a co-IP-protein that dissociates readily in high salt can not also serve as the key

bridge between the IP-protein and a more salt-resistant second co-IP-protein.

Thus, in Fig. 3F since dynamin has the lowest FR value, it could

be sited attached to H-clathrin or beyond any of the other co-IP

proteins. However, its most likely location is attached to a known

binding partner such as intersectin.[14]

Since many complexes involve linear protein arrays, an

alternative and, as it turns out, more useful working model is to

arrange the co-IP-proteins in a linear sequence according to their

FR values (Fig. 3G). However, this arrangement can not

distinguish a structural model in which the IP-protein is at one

end of the complex with the co-IP-proteins arranged in a linear

series (Fig. 3Gi), from a more complex models where the IP-

protein is in the middle and the co-IP-proteins radiate in two or

more directions (e.g. Fig. 3Gii). Further, it can not detect

branches within the structure. The creation of a more useful

organizational model of the complex requires more data.

ii. Protein complex analysis using multiple IP-protein FR

sequences We rationalized that a blueprint of the complex

might be derived by a comparison of two FR sequences obtained

with two different IP-proteins. It was first necessary, however, to

ensure that these sequences reflect the same protein complex

within the tissue lysate. This assumption was supported by the

finding that the FR values were reciprocal (Supporting
Information Fig. S1C, see also discussion above). While it is

undoubtedly the case that the proteins associated with the SAE

complex are also components of other key presynaptic terminal

lysate complexes, the SAE appears to be common so that it

dominates the FR analysis. We also devised a test for complex

congruence with different IP-proteins (Supporting Information
Fig. S2). In essence, this tests if the FR value sets generated by

pairs of IP-proteins originate from the same complex. The finding

that all the protein pairs generated highly congruent FR value sets

suggests that the SAE must be the predominant endocytosis

complex in our lysate.

An example of the analysis of protein complex organization

using interacting FR series is presented in Fig. 4Ai–iii using

AP180 and STG as the IP-proteins. First, these two IP-proteins

were given a provisional location relative to each other. Generally,

if the reciprocal FR values are very different, the two IP-proteins

are probably distant within the complex, and vice versa. The co-IP-

proteins were then added one at a time, using their corresponding

FR values as coordinates. Typically, a pair of high FR values

indicates a location between the IP-proteins while one high and

one low value indicate a location distal to one or other IP-protein

(Fig. 4Ai). Thus, L-clathrin was located between AP180 and

STG. Dynamin was distal to STG as it has a high STG but a low

AP180 FR value and fell distal to intersectin. H-clathrin had low

FR values for both STG and AP180 and could be located at any of

three positions (for simplicity the third location, attached to STG,

is not shown). The a-adaptin-containing AP2 complex is highly

promiscuous and due to its low FR values could be positioned at

several attachment sites.

The above analysis results in a map of proteins within the SAE

complex. Some of these proteins (e.g. dynamin and intersectin) are

known binding partners whereas others are not (e.g. AP180 and

STG). Thus, the next step (Fig. 4Aii) was to incorporate

previously reported (abutting boxes) and unknown binding

interactions (gaps) into the model. We searched the literature and

on-line binding databases (BIND, PPID) to identify proteins that

might bridge the gaps (Fig. 4Aiii). For simplicity, we limited the

search to a single bridging protein in each case. Thus, the gap

between STG and intersectin could be bridged by stonin2.[15,16]

A possible direct link between intersectin [17] and H-clathrin[18]

is offered by epsin.[16] We were unable, however, to span the

AP180/STG/L-Cl gap (labeled ‘X’) by a single protein and

suspect a multi-protein or novel link. While AP2 was a potential

candidate, the low a-adaptin FR rules out this option.

We repeated the steps above using the FR sequences for

three more IP-protein pairs using the data in (Fig. 3A–E). The

resulting organizational models exhibited strong similarities to

that presented in Fig. 4Aiii, in particular with respect to the

complex core (defined as the proteins with more than one attached

partner).

Figure 2. Endocytosis-related proteins co-precipitate from rat brain
synaptosomes and co-precipitated protein recovery is ionic strength-
sensitive. Proteins immunoprecipitated with H-clathrin (left panel) or
STG (right panel) from rat synaptosome lysate after exposure to the
three salt buffers. Each panel shows bands that correspond in molecular
weight to the labeled protein recovered after the three salt treatments
(see Fig. 1 legend). For example, comparing the 1150 mM salt-treated
to the control, 150 mM salt-treated, there was a high recovery of H-
clathrin, a moderate recovery of L-clathrin or S-intersectin and a low
recovery of dynamin. The asterisk denotes an intermediate intersectin
proteolytic fragment, as reported previously.[31] Other details as in
Figure 1.
doi:10.1371/journal.pone.0000067.g002
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Model prediction

The proteins that are predicted in the above analyses to span gaps

provide a demanding test for the validity of the FR method. The

very recent report of an antibody against stonin2[19] gave us

a unique opportunity to carry out such a test. We predicted that:

stonin2 co-immunoprecipitates with the entire protein set and,

a more stringent test, that its FR values would be consistent with

a location between STG and intersectin. Thus, from Fig. 4Aiii,
B–D, stonin2 should have an FR value greater than 0.81 relative

to AP180 or STG; a value between 0.88 and 0.98 relative to L-

clathrin; greater than 0.81 for S- or L-Intersectin, and between

0.86 and 0.93 for H-clathrin. Stonin2 co-immunoprecipitated with

all complex proteins tested (Fig. 5). Since immunoprecipitated

stonin2 was retained on the bead in high salt (stonin 2:

FR = 0.9460.08, N = 6) it was possible to use this antibody for

a full FR analysis. Experimentally determined FR means were:

STG, 0.9860.07 (N = 5); L-clathrin, 0.8460.16 (N = 5); AP180,

1.0060.17; L-intersectin, 1.060.04 (N = 3); S-intersectin,

0.8360.18 (N = 3); and H-clathrin, 0.7860.11 (N = 6). These

values were obtained with stonin2 as the IP-protein except for

AP180 and H-clathrin where these proteins were IP-proteins while

immunoblotting for stonin2. Our findings demonstrate that the

predicted and experimentally determined FR values were re-

markably similar and support the hypothesis that stonin2 links

STG and intersectin as in Fig. 4Aiii. B. C. and D. We can

Figure 3. FR analysis of SAE. Analysis frequency histograms. Each plot shows the fraction of a variety of co-IP-protein recovered at 1150:150 mM salt
after immunoprecipitation with antibodies to (A) H-clathrin, (B) AP180, (C) L-clathrin, and (D) STG (the IP-proteins). Each bar is the mean6SE of the
indicated number of separate IP experiments as in Fig. 1C. The vertical dotted lines indicate the 0.25, 0.50, 0.75 and 1.00 recovery fractions. E. Plot of
mean6SE FR values for IP of S- or L-intersectin compiled from co-IP values for the indicated IP-proteins (y axis; see text). F, G. Protein complex model
relative to the IP-protein. Working models of the protein complex depicted by the FR set for a single IP-protein using H-clathrin as an example. In F the
co-IP proteins are displayed with linking bars with widths proportional to their FR value (there is no significance to the distance between the proteins
in this diagram). Dynamin is depicted as either linked directly to H-clathrin or, because of its low FR value, linked via intersectin (see text). In G the
complex is depicted as a linear sequence of co-IP proteins in order of their normalized FR values (number in box) starting from the IP protein, H-
clathrin, on one end (i ) or at the centre (ii ) of the complex. FR values for S- and L-intersectin were very similar as if they can substitute for each other
in this complex. Figure abbreviations: S-Int, short-variant intersectin; STG, synaptotagmin; a-Ada, a-adaptin; L-Cl, L-clathrin; Dyn, dynamin.
doi:10.1371/journal.pone.0000067.g003
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compile these models for a consensus SAE blueprint (Fig. 6). The

lack of a suitable antibody prevented us from testing epsin as the

second putative bridge. Thus, our model of SAE has an AP180-X-

STG-stonin 2-intersectin-dynamin core with one preferred and

a second likely location for H-clathrin, and at least two possible

locations for AP2.

Localization of SAE at the presynaptic terminal
It has been shown that STG is located both with synaptic vesicles

and on the presynaptic transmitter release face membrane [20,21].

We used the giant calyx-type synapse of the chick ciliary ganglion

to carry out quantitative, high-resolution immunocytochemistry in

order to localize the SAE complex. This synapse is ideal for such

an analysis since we have previously demonstrated that it can be

isolated intact on a cover-slip, and can be imaged at near light-

limited optical resolution [13,22–24]. Further, the large size of the

presynaptic terminal permits a ready distinction of transmitter

release face and intracellular regions of interest (ROIs). We first

tested the hypothesis that the SAE complex is associated with SVs

using the integral vesicular protein SV2 as a marker [13]. As

expected, STG co-localized with the SVs in the intracellular

region (Fig. 7A), a finding confirmed by ICA analysis with

Figure 4. FR protein complex analysis. A. Each figure is a model of the
protein complex with each protein indicated by a box together with
their respective IP-protein FR values (see Fig 3A). Thus, in Ai–iii AP180 is
one IP-protein and the upper numbers for each co-IP-protein reflect its
FR values. Similarly, STG is the second IP-protein and the lower numbers
in each box are its FR values. The FR value for the IP-protein itself is
always 1.0. Proteins are mapped to a single locus (solid line box), two or
three loci (dashed line box) or to multiple loci (dotted line) with only
a few possible positions shown. Hypothetical proteins are indicated in
italics. Ai–iii. Analysis method (see text). B–D. Complex structure as
predicted by three additional IP-protein pairs: STG/L-Cl (B); STG/S-Int (C)
and AP180/H-Cl (D). Note all four bait pairs generate models with
similar cores while most of the variations occur in the extremities. STG,
synaptotagmin; L-Cl, L-clathrin; H-Cl, H-clathrin; stonin, stonin2; X
unknown protein or protein complex. Abbreviations are as in Fig. 2.
doi:10.1371/journal.pone.0000067.g004

Figure 5. FR test of stonin2 as a complex component. Effect of high
salt on recovery of proteins co-precipitated with stonin2. Legend as in
Figure 1C.
doi:10.1371/journal.pone.0000067.g005

Figure 6. Consensus model for SAE. Model based on Fig. 3 Aiii, B, C
and D with stonin2. H-Clathrin is most likely located abutting eprin but
could also be attached to L-Clathrin. Note that L-intersectin was very
similar to S-intersectin throughout. We assume that a-adaptin is marker
of the entire AP2 adaptor complex. Abbreviations and notations as in
Fig. 3 but without FR values.
doi:10.1371/journal.pone.0000067.g006
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a positive mean ICQ value (0.1260.02, N = 8; p = 0,0.001).

However, cytoplasmic SV2 staining did not covary with two other

SAE members: stonin2 (data not shown, ICQ 0.0260.01, N = 0;

p = 0.0.2) and AP180 (data not shown, ICQ 0.0560.02, N = 8;

p = 0.0.05), arguing against an association of the complete SAE

with SVs. At the transmitter release face STG covaried strongly

with stonin2 (Fig. 7B; ICQ 0.14360.030, N = 6; p = 0,0.001),

a key SAE component. Release face stonin2 also covaried with

three other SAE components: AP180 (Fig. 7C; ICQ 0.1860.02;

N = 7; p = 0,0.0001); S-/L-intersectin (data not shown, ICQ

Figure 7. Localization of the SAE complex at the transmitter release face. Isolated chick ciliary ganglion calyx synapses were immunostained with
antibodies against protein pairs. We used ICA plots to test for staining covariance (plot of normalized pixel intensity for each immunostain against the
(A-a)(B-b) function, where A and B are the normalized pixel intensities for stain A and B and a and b are their respective means) in which a left skew
indicates segregated staining, a symmetrical plot random staining and a right skew staining intensities that covary (see Methods). A. Calyx stained for
secretory vesicle marker SV2 (green, left panel) and STG 1 (STG; red, left panel) with ICA plots as labeled. The presynaptic calyx and postsynaptic
neuron are indicated. The left panel is an overlay of the two black/white images. The ICA plots are for SV2 versus STG (left panel) and STG versus SV2
(right panel). B. As in A but staining for STG (red, left panel, left ICA plot) and the SAE component, stonin2 (green, left panel, right ICA plot). C. As
in A but staining for Stonin2 (green, left panel, left ICA plot) and AP180 (red, left panel, right ICA plot).
doi:10.1371/journal.pone.0000067.g007
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0.14360.020, N = 4; p = 0,0.01) and H-clathrin (data not shown,

ICQ 0.1060.02; N = 5; p = 0,0.01). These results localize SAE to

the presynaptic transmitter release face STG pool but not to that

with the synaptic vesicles.

DISCUSSION
We present a biochemical/immunocytochemical experimental

method to derive a blueprint of an STG-containing multi-protein

complex. Further, we demonstrate that this complex is associated

with STG at the presynaptic transmitter release face.

This study reports a new strategy for the characterization of

a multi-molecular protein complex based on a combination of co-

immunoprecipitation, FR analysis and quantitative immunocyto-

chemistry. Co-immunoprecipitation has been widely used to

identify protein binding partners within a native biological tissue.

As a stand-alone method it has, however, significant limitations.

The method does not distinguish between moderately and strongly

bound partners, false-positive rogue proteins can attach during

antibody incubation and, with respect to larger protein complexes,

little or no information is gained with respect to the binding

relationship between a particular co-IP protein and the IP-protein.

Strategies that are commonly used to improve the method include

increasing the stringency of the co-precipitation conditions and

biochemical cross-linking prior to tissue solubilization. The

problem with the former is that while this will highlight proteins

bound at high affinity this is not a guarantee of specificity and also,

lower-affinity binding proteins may yet reflect important, if less

stable, biological interactions. The cross-linking strategy can help

with selectivity but the artificial strong binding precludes further

analysis of complex internal organization. Our strategy was first, to

use low-stringency conditions to co-precipitate a large population

of IP-protein direct or indirect binding partners; second, use the

ionic strength challenge to both provide an index of binding

‘strength’ and as a clue to multi-molecular complex organization;

and third, ICA/ICQ analysis was used to test whether the putative

protein partners covary in situ, as expected for two proteins that are

parts of the same molecular complex.

The FR analysis method can generate an architectural blueprint

of a multi-protein complex. The method is applicable to a group

of proteins that co-precipitate and, hence, exhibit a high binding

affinity relative to transient interactions such as with enzymes. It

involves a number of simplifying assumptions and limitations

which may significantly affect the accuracy of the ensuing

blueprint. The method only distinguishes proteins that are

susceptible to high-salt dissociation. Protein subsets that form

highly stable structures within the complex, by, for example,

covalent binding, would be expected to act as a single protein with

a common FR value. We expect, however, that the method will

work for complexes where the proteins are linked to several

binding partners. Since protein shedding will only occur when the

highest (electrostatic) affinity link is cleaved, the other binding links

should simply not be detected and the resulting map will always

reflect the strongest associations within the complex. It also

assumes that the complex contains one example of each protein:

more than one could generate a mixed FR value with an unclear

interpretation. However, the method can be developed further by

the use of a larger range of ionic strengths or salt treatment

durations, permitting the identification of different binding

relations. In addition, other methods could also be used to

dissociate the complex such as pH, enzymatic cleavage or

temperature.

One of the most interesting aspects of the FR analysis method is

the ability to predict additional protein complex components. An

opportunity to test this occurred when an antibody against stonin2

became available after the completion of most of this project (the

models in Figure 4 predate the stonin2 immunoprecipitation

analysis). Not only did stonin2 co-precipitate with all complex

members tested (Fig. 5), its measured FR values relative to STG,

AP180, L-intersectin, S-intersectin and L-clathrin were remark-

ably consistent with values predicted from its putative location.

Thus, our findings were consistent with the hypothesis that stonin2

bridges STG and intersectin in this complex. In addition, this

experiment confirmed the predictive capability of the method. We

anticipate that miniaturization and automation of these methods

will allow the rapid generation of detailed blueprints for small to

mid-sized protein complexes.

The blueprint for the SAE describes an AP180/X/STG/stonin

2/intersectin/epsin core (where X is unknown and epsin is

hypothesized), together with peripheral AP2 adaptor, H-/L-

clathrin coat and dynamin scission proteins (Fig. 6). We can be

more confident about the locations of the core proteins than the

peripheral ones as the FR coordinates are less reliable when both

values are low. Smaller fragments of a similar complex have been

reported previously: one of the more interesting members of the

complex, the binding of stonin2 to STG has been recently noted

[25] and these proteins also associate with AP2 [19]. In a separate

study (Khanna et al., unpublished) we have noted a different

endocytotic protein complex that is associated with transmitter

release sites, as identified by the calcium channel. However, that

entity and the SAE differ most notably by the absence of AP2 from

the former. The SAE is consistent with previous reports on

Table 1. (Methods). Antibodies used in this study.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Antibody Source Dilutions

IP WB

AP180 (m) BD Biosciences (Rockville, MD) 1:500 1:750

a-adaptin (m) Abcam Inc. (Cambridge, MA) 1:500 1:500

Clathrin-heavy chain (m) Abcam Inc. 1:150 1:150

Clathrin-light chain (m) Santa Cruz Biotechnology (Santa Cruz, CA) 1:1000 1:250

Dynamin (m) Abcam Inc. 1:50 1:250

Intersectin/ESE-1 (m) BD Biosciences 1:250 1:500

Stonin (p) Volker Haucke Freie Univ., Berlin 1:500 1:1000

Synaptotagmin (m) Abcam Inc. 1:500 1:500

aAbbreviations used: IF, immunofluorescence; IP, immunoprecipitation; WB, Western blot; -, not tested; (m), monoclonal; (p), polyclonal. See text for other abbreviations.
doi:10.1371/journal.pone.0000067.t001..
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endocytotic protein binding [5,16,19,25–35] and may reflect the

parent complex explored in those reports.

The presence of STG in the SAE suggested that this complex

was associated with SVs. However, an alternative location is

implicated by the involvement of STG in SV recovery [19,36,37].

Our observation that the SAE complex members do not co-

localize with SV markers within the terminal together with

previous biochemical analyses that failed to identify clathrin coat

proteins with purified SVs [38] argue against an association with

SVs. Recent studies have identified a significant pool of STG in

the presynaptic surface membrane that exchanges with the SV

pool during exocytosis [20,21]. Our immunostaining analysis

suggests that the SAE is associated with this pool. Very recent

findings by Diril et al. [19] suggest that stonin2 acts together with

AP2 as a sorting adaptor for STG in clathrin-dependent

internalization. The SAE complex described here supports and

expands on this hypothesis by confirming a close association

between stonin2, STG and AP2 while describing a specific multi-

molecular complex that includes other adaptor proteins in

addition to clathrin coat proteins. Since this complex must be

abundant in the presynaptic terminals, we speculate that it may act

not only as a sorting adaptor, but also as a seed entity to initiate

clathrin coat formation. If, as suggested, STG serves as the Ca

sensor and also plays a key role in exocytosis, using this protein as

the key endocytosis adaptor would ensure that it is always included

in the newly formed SV.

METHODS

Antibodies
Dilutions and source of antibodies are shown in Table 1. All

antibodies were tested for specificity by Western blot (data not

shown).

Synaptosome preparation
Synaptosomes were prepared as described [22]. Briefly, brains

from neonatal (2–10 days old) Sprague Dawley rats were dissected

into 10 volumes of ice-cold homogenization buffer (0.32 M

sucrose, 10 mM HEPES pH 7.4, 2 mM EDTA, supplemented

with protease inhibitors) and homogenized using 10–15 strokes of

a glass Teflon hand-held homogenizer. The homogenate was then

spun for 15 minutes at 10006 g 4uC and the supernatant was

spun for 45 minutes at 200,0006 g 4uC. The res-suspended pellet

was spun at 200,0006 g for 45 minutes. This second pellet (P2)

was re-suspended in HEPES lysis buffer (50mM HEPES pH 7.4,

2 mM EDTA plus protease inhibitors), layered onto 4 ml of 1.2M

sucrose and centrifuged at 230,0006 g (4uC) for 30 minutes. The

gradient interphase was diluted in 7–8 mls of ice-cold HEPES-

buffered sucrose (0.32 M sucrose, 4 mM HEPES, pH 7.4) and

layered onto 4 ml of 0.8 M sucrose and re-centrifuged at

230,0006 g for 15 minutes (4uC). The pellet was re-homogenized

in modified RIPA buffer; filtered through a 0.22 mm syringe filter

and stored at 280uC.

Immunoprecipitation and Western blotting [22]
Synaptosomes were pre-cleared by a 1 hr incubation with 20 ml of

a 50% slurry of protein A beads (Pierce, Rockford, IL) and

incubated overnight with primary or control antibodies. Antibody-

captured complexes were recovered with fresh protein A or

protein A/G (for rabbit or mouse antibodies, respectively) agarose

beads (20 ml original bead slurry) by incubation with lysate-

antibody mixture at 4uC for 2 hr and were then washed 3 times.

Protein samples were boiled in Laemmli sample buffer for

5 minutes prior to fractionation on 5%, 7.5%, 10% or 4–15%

separating gels with 4% stacking gels. Proteins were transferred to

PVDF membranes (Invitrogen) for immunoblotting or stained

with Amido black (BioRad) to monitor transfer efficiency. Western

blots were performed using standard procedures (Khanna et al.,

2006). The membranes were blocked for 1 hr in 5% skim milk

powder in TBST (25 mM Tris-Cl, pH 8.0, 125 mM NaCl, 0.1%

Polyoxyethylene Sorbitan Monolaurate (Tween-20)) at room

temperature. Primary antibody incubations were for 2 hr at room

temperature or overnight at 4uC. After secondary antibody treat-

ment (goat anti-rabbit or anti-mouse IgG horseradish peroxidase,

Stressgen; 1:5000), blots were washed extensively in TBST and

probed with Enhanced Chemiluminescence reagent (NEN Life

Science) before exposure to photographic film. Films were exposed

for varying periods to ensure a non-saturated example suitable for

quantitative analysis. Control gels with titrated protein concentra-

tions demonstrated the near-linear range of the film (Supporting
Fig. S1A, B). Protein bands were scanned (Canoscan LiDE 30,

Canon, Mississauga, Ontario) at an image quality of 600 dpi,

digitized and quantified using Un-Scan-It gel V6.1 scanning

software (Silk Scientific Inc., Orem, UT).

High salt treatment of immunoprecipitates
Immunoprecipitation was carried out as above. After the triple

wash step the beads were split into three equal aliquots and were

incubated for 15 min on ice in RIPA buffer with 150, 650 or

1150 mM total salt, respectively, vortexing once. The immuno-

precipitate-carrying beads were spun briefly and the supernatant

discarded. The beads were boiled in Laemmle sample buffer for

5 minutes and liberated proteins were analyzed by electrophoresis

and Western blot, as above. Each trial consisted of three samples,

two at high salt (650 and 1150 mM) and a matched 150 mM salt

control.

Database mining
On-line database (Biomolecular Interaction Network Database

(BIND; http://www.bind.ca) and Protein Protein Interaction

Database (PPID; H. Husi; http://www.anc.ed.ac.uk/mscs/

PPID/) were used to screen but we relied on cited literature.

Chick ciliary ganglion calyx synapse preparation
This has been described in detail [13,23,39,40]. After trituration of

the ganglia the cells/terminal preparation was plated at 37uC in

a standard cell incubator for 45 minutes prior to fixation and

staining.

Immunostaining, Microscopy and Iterative

deconvolution deblurring
This has been described in detail [13,23]. Microscopy techniques

were as described [13]. Regions of interest (ROIs) were identified

by eye from the sampled and neighboring optical sections.

Intensity Correlation Analysis (ICA)/Intensity

Correlation Quotient (ICQ)
This analysis has been described in detail [13]. Basically, for the

ICA we calculated the function (Ai–a)(Bi–b), where a and b are the

means of each pixel staining pair intensity values Ai and Bi. Ai or Bi

was graphed in separate scatter plots against their respective

(Ai–a)(Bi–b) value. Distributions that skew to the right reflect

dependent staining patterns (where the two pixel staining intensity

values vary in synchrony), ones that are symmetrical about the

0 axis indicate random staining, while those that skew to the left

reflect independent staining patterns, where the pixel staining

A Synaptotagmin-1 Complex

PLoS ONE | www.plosone.org 8 December 2006 | Issue 1 | e67



intensity values vary inversely. Note that the analysis can be

carried out for each stain separately so that a dependence of stain

A on B but a lack of dependence of B on A can be identified and,

further, that the plots permit detection of complex or mixed

staining relations. The intensity correlation quotient (ICQ) reflects

the ratio of the number of positive (Ai–a)(Bi–b) values to the total

number of pixels in the ROI, corrected to a 20.5 (independent

staining) to +0.5 (dependent staining) range by subtracting 0.5.

The ICQ provides a single value indication that can be used for

statistical comparison. Typically, with N.6 ROIs, a mean ICQ

value of 2.05 to +.05 indicates random staining, +.05 to +.10,

indicates a moderate covariance and ..1 a strong covariance. The

mean ICQ was tested for equaling zero (p = 0) using a standard

Students t-test. ICA/ICQ analysis was carried out by means of an

automated graphic plugin ([22], Image Correlation Analysis for

the public domain image analysis software ImageJ (Wayne

Rasband; Research Services Branch, National Institutes of Health,

Bethesda MD using the package and plugin available at the

Wright Cellular Imaging Facility, Toronto Western Research

Institute, UHN.

Image presentation
Images were cut, background was subtracted (using an area

outside the cell), overlays were created and brightness/contrast

was adjusted with ImageJ and PowerPoint software. No non-linear

or partial-image adjustments were made.

SUPPORTING INFORMATION

Figure S1 Calibration of protein recovery and reciprocity of

immunoprecipitations. (A) Western blot analysis of a gel loaded

with various amounts of rat brain synaptosomes at concentration

between 1.25 and 30 mg and immunoblotted for synaptotagmin

(STG). (B) Plot of band intensity against amount of protein loaded.

Following exposure to film and scanning, bands were quantified

using Un-SCAN-IT gel 6.1. The data were fit by a straight line.

Detection of proteins bands was linear with respect to the amount

of protein. (C) Comparison of fractional recovery (FR) values for

protein pairs using one or other as the immunoprecipitated (IP)-

protein (as indicated on y-axis). The rows show the FR for the

same protein pair, immunoprecipitating protein A and probing for

protein B or vice versa (as labeled, Fig. S1C). Note the similar FR

values in either direction, as would be expected if these reflect the

same molecular interactions.

Found at: doi:10.1371/journal.pone.0000067.s001 (0.08 MB TIF)

Figure S2 Fractional recovery (FR) series congruence analysis.

Each plot compares two FR sequences for congruence and, hence,

origin from the same protein complex. The filled symbols show the

set of mean6SE FR sequence for a test IP-protein (replotted from

Fig. 2A-E). The open symbols show the FR sequence for a second

IP-protein adjusted for the differences in the FR values of the two

IP-proteins. Note that most of the transformed IP-protein pre-

dictions are within 2SE of the test protein, supporting their origin

from the same protein complex. The test IP-protein/transformed

IP-protein pairs are: A. AP180/H-clathrin, B. AP180/synapto-

tagmin, C. L-clathrin/synaptotagmin, and D. S-intersectin/

synaptotagmin.

Found at: doi:10.1371/journal.pone.0000067.s002 (0.07 MB TIF)
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