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Reliable and comprehensive maps of molecular pathways are indispensable for guiding complex biomedical experiments. Such
maps are typically assembled from myriads of disparate research reports and are replete with inconsistencies due to variations
in experimental conditions and/or errors. It is often an intractable task to manually verify internal consistency over a large
collection of experimental statements. To automate large-scale reconciliation efforts, we propose a random-arcs-and-nodes
model where both nodes (tissue-specific states of biological molecules) and arcs (interactions between them) are represented
with random variables. We show how to obtain a non-contradictory model of a molecular network by computing the joint
distribution for arc and node variables, and then apply our methodology to a realistic network, generating a set of
experimentally testable hypotheses. This network, derived from an automated analysis of over 3,000 full-text research articles,
includes genes that have been hypothetically linked to four neurological disorders: Alzheimer’s disease, autism, bipolar
disorder, and schizophrenia. We estimated that approximately 10% of the published molecular interactions are logically
incompatible. Our approach can be directly applied to an array of diverse problems including those encountered in molecular
biology, ecology, economics, politics, and sociology.
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INTRODUCTION
Scientific innovation often proceeds through a painstaking search

for a logically consistent model that best explains a large collection

of weakly supported and contradictory facts. We can think of the

generation of good models from noisy observations as what John

von Neumann called a ‘‘synthesis of reliable organisms from

unreliable components’’ [1]. Although scientists are superbly

skilled at reasoning over numerous statements of various degree of

certainty, this manual reasoning rarely scales up to sets of

thousands or millions of statements. This human limitation has

become even more obvious during the last decade, due to the

emergence of high-throughput techniques that facilitate nearly

instant generation of enormous collections of biomedical facts.

The main focus of the present study is automatic verification of the

consistency of statements about molecular interactions that have

been generated by an army of uncoordinated researchers.

To understand the problem at hand, imagine that we need to

reconcile data that have been observed by three research

laboratories, each of which is unaware of the other’s progress.

Laboratory 1 ran a series of experiments which strongly suggest that

the product of gene HBP1 is abundant in neurons in the amygdala (a

region of the human brain). Laboratory 2 demonstrated that gene

WNT1 is also expressed in the neurons of the amygdala. Laboratory

3 reported experimental evidence that HBP1, whenever expressed in

a cell, completely inhibits the activity of WNT1.

When published in three separate articles and journals, each of

these three statements appears reasonable and well-supported;

when we combine them, however, we can see clearly that either

[1] one of them must be erroneous (for example, the activity of the

genes changes over time so that WNT1 and HBP1 are never

expressed concurrently in the same cell), or [2] we are unaware of

an additional fact that can resolve the paradox (such as the

existence of a regulator protein that mediates signaling between

HBP1 and WNT1).

To make the example slightly more complex (and interesting),

imagine that we obtain data from two additional research groups.

Laboratory 4’s data indicate that the protein EMX2 is almost

certainly expressed in the neurons of the human amygdala;

laboratory 5’s experimental results show unequivocally that the

product of EMX2 inhibits WNT1. Suddenly, we can see that the data

that indicate that gene WNT1 is active in the human amygdala are at

odds with the data from the other four laboratories. Thus, laboratory

2’s results are the first candidates for reexamination.

Now let us further modify the problem to align it more closely with

real world complexity. Imagine that the experimental facts are

unequally supported with some showing evidence that is stronger

than that of others. Furthermore, instead of having a toy data set that

contains just three molecules and only two interactions, we have to

deal with facts about presence or absence of hundreds or thousands

of molecules that can interact in any number of ways.

RESULTS AND DISCUSSION

Random arcs-and-nodes model
To address formally the problem that we just outlined, we suggest

a random arcs-and-nodes graph model—a modified version of

a Bayesian network.
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The classical Bayesian network formalism was invented to

address tasks that resemble that of making an automated medical

diagnosis [2–7]. A typical Bayesian network had a random

variable associated with each node, while the directed arcs of the

graph depicted the conditional dependencies between the nodes.

For each pair of nodes connected by a directed arc, the node with

the outgoing arc was called a parent of the node with the incoming

arc. The state of each node was assumed to be conditionally

dependent on the states of that node’s parents, and conditionally

independent (given the states of parental nodes) from the

remainder of the graph nodes. By design, in these models, the

not yet observed states of nodes (unknown disease state that causes

the observed symptoms) were of the predominant interest. The

arcs—the probabilistic relations between the node variables—were

assumed known and immutable [8,9].

Returning to the problem that we outlined in the introduction,

we can see that, when we are dealing with a large collection of

statements generated by a diverse set of sources of unequal quality,

internal conflicts between the states of numerous arcs and nodes

are inescapable. Therefore, it might be useful to allow the arcs

themselves to be associated with random variables, and to quantify

arc and node-associated uncertainty simultaneously. These new

arc-related random variables can represent the strength of the

experimental support for individual molecular interactions. We

can then update both arc and node distributions, following

standard probability calculus, to improve the overall consistency of

the model.

Here we suggest a model, a simple generalization of a Bayesian

network, where both arcs and nodes represent random variables.

As in the classical Bayesian network applied to molecular-biology

data, the allowed values for node variables can be defined as active/

present and inactive/absent—which describe the possible states of

a molecule in a cell or a tissue. (Alternatively, instead of having

only two admissible values per node, we could assume three

values: active, inactive, and absent. For the sake of simplicity, we have

chosen to treat the states inactive and absent as indistinguishable.)

Deviating from the classical Bayesian network formalism, we

define arc variables, each with allowed values inhibit, activate, and

no effect. The intuition behind this formulation is to provide

a mechanism for the arc variables to change their values

depending on states of the surrounding nodes, in addition to the

traditional probabilistic dependencies between the parent- and

child-node variables. (If we assume that the arc variables are

conditionally independent of each other and of the node variables,

our model reverts to the classical Bayesian network model.) Our

goal here is to estimate both the joint and the reconciled

marginal distributions over nodes and arcs, given partial prior

marginal probabilities on the nodes and arcs and a partial set of

conditional probabilities. (To satisfy classic probability calculus,

P (AU,V = 21)+P (AU,V = 0)+P (AU,V = 1) = 1, where inhibit, no effect,

and activate are encoded with integers 21, 0 and 1, respectively,

and P (V = 1)+P (V = 0) = 1, where we write V = 1 and V = 0 for

active/present and inactive/absent values of V, respectively.) We can

view the reconciled marginal distributions of arcs and nodes in our

model as experimentally testable hypotheses.

Random variables associated with arcs can be particularly useful

to express general knowledge about molecular events—when it is

known that an interaction between two substances is possible, but

no precise specification of the condition is given. Node-specific

random variables can be useful to express experimental conditions

for a specific cell, cell state, tissue, or organ. The initial information

about data in our model is expressed as marginal prior

probabilities over nodes and arcs. We also define conditional

probabilities of nodes given arcs, and of arcs given nodes (see

Mathematical Box). We use an analog of the stochastic-integration

procedure to compute the joint probability over all random

variables. As is common in applications of Bayesian networks to

real data, we assume that our molecular-interaction model has no

directed cycles.

As will become clear from analysis of examples later in the

paper, disparities between prior probabilities and reconciled

marginal probabilities emerge when there are substantial conflicts

among the prior probabilities for the variables.

General idea of computation
To make our model applicable to real data, we need a mechanism

for estimating a joint distribution of all variables given partial prior

and conditional distributions. A good spatial analogy for our

proposed computational approach is the problem of inference of

a three-dimensional shape (which corresponds to the joint

distribution of arc and node variables) of an object, starting with

its orthogonal projections (which correspond to the conditional

distributions of arcs given nodes and nodes given arcs).

It would be computationally intractable to enumerate explicitly

the joint probabilities for all states of all variables in a large

random-arcs-and-nodes model due to the enormous size of the

state space. However, we can easily define conditional distribu-

tions P(arcs| nodes are fixed) and P(nodes| arcs are fixed) and the

prior distributions for all variables. We can then estimate the joint

distribution of values for both arcs and nodes by using a Markov

chain Monte Carlo technique, which is a computation-efficient

version of a stochastic integration [10,11]. More precisely, we

suggest using a Gibbs sampler version of Markov chain Monte

Carlo, by sampling values for arcs and nodes from the appropriate

conditional distributions, as described in the Mathematical Box

and in the Supporting Information.

Toy and not-so-toy examples
To support our contention that application of our model can lead

to intuitive and potentially useful results, we clarify the relevant

concepts with three toy examples. From these toy examples it is

easy to see that the reconciled marginal distributions correspond to

internally consistent pathway graphs. Furthermore, a large change

in entropy (loss or gain of information) between the prior and

reconciled marginal distributions of random variables is directly

attributable to conflicts and agreements among statements in the

model. After describing the toy examples we step through a larger,

realistic pathway.

For our toy example we have chosen an X-shaped directed

graph shown in Figure 1. We look at three different prior variable

distributions for the same-topology. Figure 1 (A) has logically

consistent prior distributions over the variables. The most likely

states of nodes G, B, and C are active/present; consistent with that, G

and B both, most probably, activate C. Similarly, node C (most

probably) inhibits node E and activates node D, a situation

consistent with the probable states of nodes D and E, respectively.

The reconciled marginal distributions for the same variables

(Figure 1 (A), marginals) are visually similar to the corresponding

prior distributions. However, the reconciled marginal distribution

on average became more informative: the overall entropy of the

reconciled marginal distributions drops by 0.45 bits for the node

variables and by 2.14 bits for the arc variables, in comparison to

the prior distribution. (The Shannon entropy of a random variable

with just two states, 0 and 1, is defined as -p0 log2 p0 -p1 log2 p1,

where p0 and p1 are the probabilities that we will find the variable

in state 0 or 1, respectively. A similar expression with three terms

in the sum defines the entropy of a three-state random variable.

Self-Correcting Pathways
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The Shannon information is defined as a difference between two

values of entropy for the same system; information is gained when

entropy decreases and is lost when entropy grows.) In other words,

if we start with a set of logically consistent prior distributions over

variables in a graph, we can gain information by computing the

joint distribution over all variables, because consistent parts of the

random graph reinforce one another and make the reconciled

marginal distribution sharper (more informative).

The inconsistent prior distributions for the same variables

(Figure 1 (B) and (C)) lead to quite different properties of the

reconciled distributions. In the graph shown in Figure 1 (B), node

B is active and is believed to inhibit node C, yet C is believed to be

active. In addition, node C is believed to activate node D, yet node

D is most likely inhibited/absent. The corresponding reconciled

marginal distributions for arcs and nodes are no longer incon-

sistent: node D becomes activated, while arc ABC changes its most

likely value from inhibit to activate. However, this improvement in

consistency is achieved at a price: loss of certainty in the reconciled

marginal distributions. That is, the entropy for the reconciled

distributions increases by 1.41 bits for nodes and by 0.32 bits

for arcs. The example in Figure 1 (C) has an apparent conflict

between the states of arcs AGC and ABC (both arcs are, most likely,

in the state inhibit) and the active/present states of nodes G, B and C.

In addition, node E is originally believed to be activated by node

C, but its most likely state is inactive. As with the previous examples,

the reconciled marginal distributions are free of the inconsistencies

observed in the prior distribution, but at the expense of an increase

in the entropy (loss of information, by 0.125 bits for nodes and

0.53 bits for arcs). A larger, realistic pathway graph can have both

consistent and contradictory parts.

To get a large, experimentally grounded data set, we used data

from a large-scale text-mining project [12,13] that provided access

to experimental results described in hundreds of thousands of

published research articles. These data closely match the

imaginary situation described earlier, where researchers at

numerous laboratories ran experiments unaware of each other’s

results [14]. We decided to compile and analyze a set of human

molecular interactions among genes that are suspected to harbor

genetic polymorphisms predisposing to one of four major

neurological disorders: autism, Alzheimer’s disease, bipolar

disorder, and schizophrenia. We present here analysis of 3, 161

full-text articles (we used 6, 724 unique sentences from these

articles to extract molecular interactions) from 64 major scientific

journals (see Supporting Information for detailed information on

sources of data). The molecular network that we analyzed with our

method was devoid of directed cycles; to generate a loopless graph,

in each directed cycle of the original literature-derived network

model, we removed the weakest (least supported) arc, striving

to minimize the overall number of deleted arcs. To collect

information on the brain-specific expression of genes in our

molecular network, we examined 910, 221 journal abstracts that

specifically referred to brain tissues; 14, 780 of these abstracts

mentioned genes that we selected for our example (see Supporting

Information for more detail). The result of this analysis was

a molecular network that comprised 288 nodes and 353 arcs;

each arc was represented by multiple statements and types of

interactions from the literature. (We could have analyzed a much

larger network, but the results would not have been amenable to

compact representation easily accessible to a reader; nonetheless,

our current pathway model, presented in Figures 2 and 3, is much

larger than a typical pathway described in a comprehensive review

article.)

In this large molecular network, we defined the prior

distributions for the node variables using published statements

Figure 1. Computation of marginal distributions for all variables (arcs
and nodes) of a hypothetical toy graph. A node in the network is
a random variable that can have one of two values, false or true (0 or 1,
respectively). Both the brightness and the size of a node represent the
strength of the probability that the corresponding molecule is present/
active in the tissue or cell of interest, P(Vi = 1). A higher probability is
depicted with a lighter color and larger ball radius (see key to the node
color and size); when the P(Vi = 1) drops to 0, the node disappears from
the figure (the ball radius drops to zero). Each arc is a random variable
with three possible different values: inhibit, activate, and no effect (21,
1, and 0, respectively). Complete confidence that an arc AV,U represents
an inhibiting function (P(AV,U = 21) = 1) would be drawn as a thick
bright-blue edge with a disk at the end (the leftmost edge in the key to
the figure). If both probabilities (P(AV,U = 21) and P(AV,U = 1)) drop to
zero (indicating that P(AV,U = 0) = 1), then the edge vanishes from the
figure, indicating the no effect value. (A) An internally consistent set of
prior probabilities. The resulting marginal distributions are either
unchanged (on the input nodes G and B and on the sink node E) or
have a decreased entropy (on all arcs and on nodes C and D), in
contrast to the prior probabilities. (B) An example with inconsistent
prior probabilities. The marginal distribution for arc ABC is reversed with
respect to the prior. (C) Another example of conflicting prior
probabilities. Here, node C changed its distribution significantly.
doi:10.1371/journal.pone.0000061.g001

Self-Correcting Pathways
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Figure 2. Distributions for all arc and node variables in a large human molecular network. (A) Prior distributions for arcs and nodes computed by
automated analysis of thousands of research articles. (B) Reconciled marginal distributions for all variables in the graph: The graph has changed to
improve the consistency of individual pieces of information, some of which were conflicting in the graph A. Green, blue, yellow, and red nodes
correspond to genes that were previously reported as associated with Alzheimer’s disease, autism, bipolar disorder, and schizophrenia, respectively.
The nodes that we mentioned in the text have the following coordinates: WNT1 (6b), HBP1 (6b), EMX2 (6b), SRF (3b), SP1 (3b), TP53 (4b), PSEN1 (5c).
doi:10.1371/journal.pone.0000061.g002

Self-Correcting Pathways
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Figure 3. Difference and entropy-change graphs for networks shown in Figure 2. (A) The absolute difference between the reconciled (Figure 2 B)
and the prior (Figure 2 A) distributions. For the activate arc value, an increase in probability is shown in yellow; a decrease is shown in red. Similarly,
for the inhibit arc value, an increase in probability is shown in blue; a decrease is shown in green. For graph nodes, positive changes (increases) in the
probability of observing the node in the active/present state are shown in red; negative changes (decreases) are shown in blue. (B) Differences in the
Shannon entropy (bits) for arc and node variables between the reconciled and prior marginal distributions. Red variables lost their entropy (gained
information), whereas blue ones increased their entropy (lost information), after computation of reconciled distributions. The nodes that we
mentioned in the text have the following coordinates: WNT1 (6b), HBP1 (6b), EMX2 (6b), SRF (3b), SP1 (3b), TP53 (4b), PSEN1 (5c).
doi:10.1371/journal.pone.0000061.g003
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about tissue-specific expression of individual genes. We computed

the prior distributions for the arcs using the individual relation-

ships between molecules extracted from the literature combined

with the estimated confidence in the quality of the extraction of the

individual relations (see Mathematical Box and Supporting

Information for details).

We visualized the prior and reconciled marginal distributions

side-by-side in Figure 2 to facilitate their comparison, and showed

the absolute difference between them in Figure 3 (A). Additionally,

we computed the change in entropy between the prior and

reconciled distributions for each individual random variable

(Figure 3 (B)). The difference in entropy highlights the consistent

and inconsistent parts of the graph: the blue-spectrum nodes and

arcs increased their entropy (lost information), while the red-

spectrum variables lost entropy (gained information). The blue-

spectrum variables are the best candidates for further experimental

corroboration or refutation.

We begin the analysis of our realistic pathway example by

observing that the hypothetical example which we posited in the

introduction exists in the real-life example. According to published

statements, gene WNT1 is inhibited by both HBP1 and EMX2

[15,16]. Therefore, the pathway, as represented by the set of prior

distributions over variable values, is inconsistent.

One of the arcs that decreased its activate (associated reconciled

marginal probability) is the one connecting SRF to SP1 (see

Figures 2 and 3). It also shows a loss of information (it has a blue

connecting line in 3 (B)). If we trace the arc support back to the

source papers, we find that this particular arc is supported by

a single sentence that formulates a hypothesis: ‘‘The combination

of increased JNK activity and up-regulation of c-JUN and related

proteins may activate gene transcription via interactions between

c-JUN, SRF, and the trans-activation domain of SP1.’’ (see [17]).

Some of our arc reconciled marginal distributions appear to

conflict with the published data. One of the prominent examples

of this kind in our figure is the interaction between TP53 (a

notorious transcription factor participating in a number of cancer-

and cell-death related pathways) and PSEN1 (human gene that is

believed to harbor polymorphisms predisposing the bearer to

Alzheimer’s disease). Our prior distribution for this arc indicated

that TP53 inhibits PSEN1 (e.g., see [18–20]). Yet our prior

distributions for the nodes TP53 and PSEN1 were strongly biased

towards active/present state. Furthermore, according to our

compiled graph, both TP53 and PSEN1 are activated by a number

of other genes (TP53 is activated by EGR1 and TRRAP, while

PSEN1 is activated by e-CADHERIN, and BCL-2), further sup-

porting the hypothesis that both genes are active. As a result, the

reconciled distribution for the arc between TP53 and PSEN1 has

a larger probability for activate than for inhibit (see Figure 2). This

apparent inconsistency can be explained and resolved in a number

of ways. The interaction between TP53 and PSEN1 may be in

reality mediated by a third gene that is inactive in the neurons. An

alternative explanation is that TP53 and PSEN1 are indeed active

in the same neuronal cells, but not at the same time. This can be

tested by looking at experimental time series reflecting changes in

states of genes proteins and other molecules in a cell.

Our computational approach identified inconsistencies in states

of approximately 10% of arcs and 8% of nodes within the realistic

pathway graph (see Figures 2 and 3). We hypothesize that these

estimates reflect the overall level of inconsistency among the

published statements about molecular interactions.

Figures 2 and 3 point to dozens of experimentally testable

hypotheses that, we hope, the reader would be tempted to

examine. Using the proposed methodology and currently

accessible computational resources, we can scale the computation

up to apply to thousands or even millions of statements,

potentially, to the complete set of human molecular interactions.

Relation to other computational approaches
Recent probabilistic approaches, successfully applied to the

analysis of molecular pathways, were built on either treating

physical molecular interactions (arcs) as discrete model parameters

(e.g., see [21,22]) or describing expression levels of genes (nodes) as

random variables related to one another according to immutable

non-contradictory conditional distributions [8,23] learned from

experimental data [3,8,23]. The model that is the closest to our

model [21] used both discrete variables for nodes (gene expression

levels after gene knockout experiments) and discrete parameters

for arcs to infer molecular pathways from experimental data. The

approach that we propose here is different both in the goal

(improving internal consistency of large graphs by refuting or

strengthening individual facts) and in the methodology, which

describes both nodes (states of molecules) and arcs (dependencies

between nodes) as random variables defined within a unified

probabilistic model. In addition, we use a stochastic integration

technique (a Gibbs sampler) to estimate the joint distribution for

all variables in our model. Our model belongs to a large family of

factor-graph models [24] and, to the best of our knowledge, has

not been suggested before our current study.

Extensions and conclusion
A natural next step is to use our model to integrate results from

large-scale wet-laboratory experiments with text-mining analyses

statements. We hope to expand our methodology by incorporating

the ability to handle directed cycles which are critically important

in biological pathways. We can significantly improve (while

making it also more complicated) the model for assigning the

prior probabilities for nodes and arcs. For example, we can use

a probabilistic mode of scientific publication process [13] to take

into account the type and amount of experimental support behind

the published statements. A more long-term goal is to assemble

and cross-validate a reliable and comprehensive map of human

interactions, to enable diagnosis and treatment of complex human

disorders [25]. Since molecular networks of distinct species

interact with each other, as is clear in the case of the pathogens

and various allergy-inducing agents in humans, it is not unimagin-

able to attempt computing a reconciled model of the whole

integrated current knowledge about molecular interactions [14].

Finally, we can imagine a futuristic environment where new

molecular-interaction hypotheses are automatically tested for

consistency against the set of currently available facts.

Once a proper mapping of arc and node variables is defined, our

model is immediately applicable to a diverse set of problems outside

of molecular biology. For example, in ecology the node variables

can represent presence or absence of a species in a geographic

location, while arcs can represent predator-prey, host-parasite,

mutualism, or synergism inter-species relations [26]. In sociology the

nodes can represent individuals present or absent in different groups

while arcs can represent dependencies or associations between

people [27]. In political sciences the nodes can represent countries

and their interactions in the context of local conflicts and economic

competition [28]. In economics, the graph nodes map to companies

which may be either active or inactive in various markets, and the

arcs depict collaboration, competition, or dependence between the

various businesses. The common feature unifying all these disparate

networks is that each of them has to be assembled from a rapidly

growing avalanche of conflicting observation of unequal quality that

need to be reconciled at a large scale.

Self-Correcting Pathways
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METHODS

Mathematical Box
Node prior-probability values Imagine that our text-mining

machinery can identify in research papers statements of the form ‘‘gene

A is active in tissue B’’ (or ‘‘small molecule A is present in cell B’’). Further-

more, assume that we treat all such statements as equally reliable, and

that we have exactly nAB of them, with each statement appearing in

a separate article. Then, we can define the prior probability for

a specific gene or molecule A to be present (active) in tissue B:

P VA ~ 1ð Þ~ eanAB

1 z eanAB
, ð1Þ

where a is a positive-valued parameter that we introduce to scale

down the counts nAB so that a near-absolute prior certainty is achieved

only at very large values of nAB. Following the same logic, we can

define negative counts for nAB to indicate negative statements (‘‘gene A is

not active in tissue B’’). In the absence of data (nAB = 0), we would have

an uninformative prior: P (VA = 1) = P (VA = 0) = 1/2. We would

obtain a prior-probability value greater than 1/2 if nAB is positive,

and less than 1/2 if nAB is negative.

In practice, we can, approximate counts nAB with the number of

co-occurrences (say, within the same sentence) of the terms A and

B in the research literature.
Arc prior-probability values To compute prior-probability

distributions for arcs, we start with an estimate of the probability

that we correctly extracted the statement. Assuming that we

extracted the statement substance i activates substance j from N distinct

sentences, and knowing the probability that the kth instance was

extracted correctly, we can define the prior confidence in the

corresponding arc:

P Aij is correctly extracted
� �

~ 1 {

P
N

k ~ 1
1 { P kth instance of Aij is correctly extracted

� �� �
:
ð2Þ

This equation follows the simple logic that, for an arc supported

by multiple independent statements to be incorrectly extracted, all

of the independently extracted instances of supporting statements

instances of the fact must be incorrectly extracted.

In the absence of specific knowledge about inhibiting or

activating effect of arcs (such as phosphorylate), the prior distribution

was distributed uniformly over inhibiting and activating values of

the arc. Whenever specific statements supporting an inhibiting or

activating value of a particular arc become available, we compute

the prior distribution for the arc by first using Equation 2

separately, for all activating, inhibiting, and sign-less labels of arcs

(pa, pi and pp, respectively), and then assigning probabilities

pa z
pp

3

pa z pi z pp z y
,

pi z
pp

3

pa z pi z pp z y
, and

pp

3
z y

pa z pi z pp zy

to the prior distribution over activate, inhibit, and no effect values for

the arc, respectively. (Parameter y is set to a small positive value

that ensures that the prior-probability distribution for an arc has

correct properties even in the absence of data.)

We can further improve the prior distribution estimated for an

arc by taking into account the estimated probability that the

statement is true given its publication patter (we can obtain such

an estimate, for example, by using the model of the chain of

collective reasoning [29]).

Arc update The conditional probabilities for arc Aij given its

adjacent nodes, Vi and Vj, are defined in the following way:

P Aij ~ a Vi ~ 1, Vj ~ 1
��� �

~

1 if a ~ 1,

0 if a ~ {1,

0 if a ~ 0:

8><
>:

ð3Þ

P Aij ~ a Vi ~ 1, Vj ~ 0
��� �

~

0 if a ~ 1,

1 if a ~ {1,

0 if a ~ 0:

8><
>:

ð4Þ

P Aij ~ a Vi ~ 0, Vj ~ �
��� �

~ P Aij ~ a
� �

, ð5Þ

where * is a wildcard symbol that represents both 1 and 0.

Node update The conditional probability for a node given

assigned values of parental nodes and arcs is defined as follows:

P Vi ~ 1 states of parental nodes and arcsjð Þ~

P Vi ~ 1ð Þ if Iz
i ~ I{

i ,

1 if Iz
i ~ 1, and I{

i ~ 0,

0 if Iz
i ~ 0, and I{

i ~ 1:

8>><
>>:

ð6Þ

where I+
i = 1 if at least one of the parents of the i

th node is in an

active state and the arc leading from the parent to child node i is in

the state activate (otherwise, I+
i = 0); similarly, I2

i = 1 if one or more

of the parents of the i
th node is in an active state and is connected

to the ith node by an inhibiting arc. Finally,

P Vi ~ 0 states of parental nodes and arcsjð Þ~

1 { P Vi ~ 1 states of parental nodes and arcsjð Þ:
ð7Þ

We developed and tested a number of alternative models for

updating nodes given arcs and arcs given nodes (see Supporting

Information). These alternative models are more parameter-rich

but less restrictive in assumptions about resolution of apparent

conflicts between prior distributions of node and arc variables than

the simplest model described here.

The Gibbs sampler The stochastic update of node and arc

variable values is performed in the following way.

The zeroth step: With probability 1/2, we start with updating

arcs values (or node values). If we decided to start with arcs, we

proceed as follows:

The first step: We sample the value for each arc, Aij from that

arc’s prior distribution, P (Aij = aij), where aij = 1, 0, or 21. The
second step: Having assigned values to the arcs, we update the

values of nodes, starting with input nodes in the graph. Values for

the input nodes (also called external nodes, or parentless nodes) are

sampled from the prior distributions for these nodes. The update

proceeds down to the sink (childless) nodes, sampling the value

for each child node from the conditional distribution P (Vi =

vi|{Vj = vj, Aij = aij}Vj g par(Vi )). (Notation ‘‘Vj g par (Vi)’’ stands for

‘‘Vj belongs to the set of parents of node Vi.’’ Node Vj is called

a parent of node Vi if there is a directed arc, Aji, from node Vj to

node Vi. ) The third step: Having assigned values to the nodes,

we update values of arcs, sampling the value for each arc from the

following conditional distribution: P (Aij = aij|Vi = vi, Vj = vj). Given

the states of the flanking nodes, arcs are independent with regard
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to one another and thus can be sampled individually in any order.

The fourth step: We run steps 2 and 3 for a large, predefined

number of times, recording values of arcs and nodes after each

complete update of those values.

If we decide to start with nodes at the step 0, then we proceed as

follows.

The first step: We generate values for nodes from the prior

distribution for each node, P (Vi = vj ). The second step: We

generate values for arcs; the value for arc Aij is sampled from the

conditional distribution P (Aij = aij|Vi = vi, Vj = vj ). The third
step: Having assigned values to the arcs, we update the values

of nodes, starting with input nodes in the graph and proceeding

down to the sink nodes, sampling the value for each child

node from the conditional distribution P (Vi = vi|{Vj = vj, Aij =

aij}Vj g par (Vi )). The fourth step: We run steps 2 and 3 for a large,

pre-defined number of times, recording values of arcs and nodes

after each complete update of these values.

We estimate the joint distribution of values for arcs and nodes

by running the Gibbs sampler numerous times, each time

randomly deciding whether to start with arc or node update.

We obtain the distribution estimate by computing the frequency of

states (values of arcs and nodes) visited by the Gibbs sampler in

a large number of independent runs. Many independent runs are

required because prior belief conflicts make the joint distribution

multimodal: Each mode corresponds to one of the ways of

resolving conflicts.

We evaluated the convergence of the Gibbs sampler by direct

comparison to the exact distributions computed for a Bayesian

network with estimates provided by the Gibbs sampler (see

Supporting Information). It appears that the stochastic procedure

(Gibbs sampler) converges fairly quickly (tens of thousands of

independent chain starts and hundreds to thousands of iteration

within each such run).

SUPPORTING INFORMATION

Supplement S1 Additional information on mathematics of the

method

Found at: doi:10.1371/journal.pone.0000061.s001 (1.93 MB

PDF)

Supplement S2 Additional information about dataset used

Found at: doi:10.1371/journal.pone.0000061.s002 (0.61 MB

PDF)
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