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The nature of developmental buffering processes has been debated extensively, based on both theoretical reasoning and
empirical studies. In particular, controversy has focused on the question of whether distinct processes are responsible for
canalization, the buffering against environmental or genetic variation, and for developmental stability, the buffering against
random variation intrinsic in developmental processes. Here, we address this question for the size and shape of Drosophila
melanogaster wings in an experimental design with extensively replicated and fully controlled genotypes. The amounts of
variation among individuals and of fluctuating asymmetry differ markedly among genotypes, demonstrating a clear genetic
basis for size and shape variability. For wing shape, there is a high correlation between the amounts of variation among
individuals and fluctuating asymmetry, which indicates a correspondence between the two types of buffering. Likewise, the
multivariate patterns of shape variation among individuals and of fluctuating asymmetry show a close association. For wing
size, however, the amounts of individual variation and fluctuating asymmetry are not correlated. There was a significant link
between the amounts of variation between wing size and shape, more so for fluctuating asymmetry than for variation among
individuals. Overall, these experiments indicate a considerable degree of shared control of individual variation and fluctuating
asymmetry, although it appears to differ between traits.
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INTRODUCTION
Developmental buffering is an important factor in evolutionary

processes, because it can maintain adaptive phenotypic traits in

the presence of genetic and environmental variation and it can

conceal genetic variation from selection [1–3]. The processes

responsible for developmental buffering are little known and have

been debated extensively [4–6]. Possible mechanisms include

molecular chaperone proteins such as Hsp90 [7] and the

architecture of genetic regulatory networks responsible for gene

expression [8,9]. A particular focus in this debate is the question of

how canalization, the buffering against genetic and environmental

variation, is related to developmental stability, the buffering

against random variation arising in developmental processes [4]. It

has been contentious whether these are independent processes

[4,10] or whether they are manifestations of the same biological

process [6]. Theoretical studies typically favor the latter point of

view because both types of buffering emerge as results of

developmental models [2,11], and some authors treat the two

concepts as synonymous [12]. Nevertheless, the relation of

canalization and developmental stability is primarily an empirical

question, and therefore needs to be addressed by studies of real

organisms.

Empirical studies have tackled the question of whether

canalization and developmental stability are distinct processes by

comparing variation among individuals and the left-right asym-

metries within individuals. Two main approaches have been used,

which focus either on the amounts of variation or on covariance

structures of multivariate features such as shape. Some studies

have indicated that the amounts of individual variation and

fluctuating asymmetry (FA) are correlated among genotypes [13],

whereas others found no such association [14] and some studies

reported differences according to traits [15]. Likewise, the studies

comparing the multivariate patterns of shape variation have

produced a range of results from strong congruence [16–18] to

more or less complete independence [10,19,20], whereas other

studies produced intermediate or mixed results [21,22]. Many of

these studies used population samples without controlling for

genetic variation and with little replication, if any, and therefore

these results should be interpreted with some caution.

This study used both these approaches simultaneously in the

context of an experimental design with complete control of genetic

variation, replicated for 115 distinct genotypes from the Exelixis

deficiency stocks of Drosophila melanogaster [23]. Each of these strains

carries a different deficiency on an otherwise isogenic background

and therefore can be considered as a distinct and fully controlled

genotype. We used the methods of geometric morphometrics [24–

26] to quantify variation of size and shape in the wings of the flies.

This design provided a large sample size for comparisons among

genotypes and a high degree of replication for within-genotype

analyses. The study yielded clear evidence for a common basis for

developmental stability and canalization.
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RESULTS

Measurement Precision
We digitized 15 landmarks on the left and right wings of each fly

(Fig. 1). To estimate the amount of measurement error for shape,

we carried out Procrustes ANOVA [16] for a subsample of 72 flies

for which two images of each wing were taken and each image was

digitized twice. The mean squares for FA and individual variation

exceeded the error components by more than 41-fold (Table 1),

indicating that measurement error was negligible relative to the

biological shape variation. Likewise, measurement error for

centroid size was negligible (not shown).

Amounts of Variation and Asymmetry
We used two different methods to quantify the amounts of shape

variation among individuals and FA [27]. The first method uses

Procrustes distance to quantify the absolute amount of shape

variation and treats all aspects of shape variation equally,

regardless of their degree of variability in the sample [27]. The

second method is based on Mahalanobis distance and measures

the amount of variation relative to the variability in the data set;

features of shape that are relatively invariant are more heavily

weighted, so that this measure can be interpreted as a measure of

the degree to which shapes or shape asymmetries are unusual [27].

These two measures of shape variability were highly correlated

with each other, both for individual variation (r = 0.81, P,0.0001)

and for FA (r = 0.84, P,0.0001). Although the two measures are

computed from different aspects of variation, they both convey

similar information in the context of this study and therefore can

be interpreted as nearly equivalent measures of shape variation.

The amounts of variation differed markedly among the different

genotypes, although there was also a consistent effect of the vials in

which the flies had been reared. For centroid size, the ANOVAs

indicated that the variation among genotypes exceeded the

variation among vials both for variation among individuals (F114,

259 = 2.08, P,0.0001) and for FA (F114, 259 = 2.26, P,0.0001).

Similarly, the ANOVAs for both measures of shape variation

indicated significant effects of the genotypes on variation among

individuals (Procrustes distance: F114, 259 = 2.21, P,0.0001;

Mahalanobis distance: F114, 259 = 2.63, P,0.0001) and on FA

(Procrustes distance: F114, 259 = 2.34, P,0.0001; Mahalanobis

distance: F114, 259 = 3.29, P,0.0001). These results show that the

chromosomal deficiencies have clear effects on the amounts of

variation among individuals and on FA, which in turn indicates

a genetic basis for the amounts of variation.

Relationship Between Variation Among Individuals

and Fluctuating Asymmetry
For both measures of shape variability, the amounts of shape

variation among individuals and of shape FA were significantly

correlated across genotypes (Fig. 2A, B). In the analysis using

Procrustes distance, the correlation was 0.49 (P,0.0001), and in

the analysis using Mahalanobis distance, it was 0.67 (P,0.0001).

Overall, there is a clear trend for genotypes with greater amounts

of individual variation to have greater amounts of shape FA as well.

In contrast, the correlation between individual variation and FA

of centroid size was low and not statistically significant (r = 0.074,

P = 0.22; Fig. 2C). Unlike shape, therefore, there appears to be no

connection between FA and individual variation of centroid size.

Associations of Size and Shape Variation
The correlations between the amounts of FA of shape and of

centroid size were 0.46 and 0.36 for the shape measures using

Procrustes and Mahalanobis distances, respectively (Fig. 3A, B;

both P,0.0001 in permutation tests). Accordingly, genotypes that

are more asymmetric for size also tend to be more asymmetric for

shape. The correlations between amounts of individual variation

of size and shape were 0.25 (P = 0.0059) and 0.19 (P = 0.022) for

the measures using Procrustes and Mahalanobis distances,

respectively (Fig. 3C, D). The association between the amounts

of size and shape variability therefore appeared to be present at

both levels of variation, but was stronger for FA than for individual

variation.

To assess the possibility that this association was caused by

a direct developmental link between size and shape, we tested for

allometry within genotypes by multivariate regression of shape on

centroid size [28–30]. There was significant allometry among

individuals in more than half of the genotypes (P,0.05 for 68 of

the 115 genotypes after sequential Bonferroni adjustment) and size

accounted for an average of 8.18% of shape variation among

individuals. The asymmetry of size accounted for an average of

Figure 1. The set of 15 landmarks used in this study.
doi:10.1371/journal.pone.0000007.g001

Table 1. Analysis of measurement error
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Source Sums of Squares Degrees of freedom Mean Squares 6106

Individuals 0.1366 1846 74.0 ***

Sides 0.0015 26 57.0 ***

Individuals6sides 0.0307 1846 16.7 ***

Measurement error 1: Imaging 0.0015 3744 0.403 *

Measurement error 2: Digitizing 0.0028 7488 0.378

Procrustes analysis of variance [16] of the amounts of shape variation attributable to different sources, for the wings of 72 individuals that were photographed and
digitized twice. Sums of squares and mean squares are in units of squared Procrustes distance.
*** P,0.001; * P,0.05
DOI: 10.1371/journal.pone.0000007.t001..
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4.61% of the asymmetry of shape (P,0.05 for 14 genotypes after

sequential Bonferroni adjustment). Accordingly, size accounts for

only relatively minor proportions of shape variation and

asymmetry under the conditions of our experiment. It therefore

appears that the correlation between size and shape in the

amounts asymmetry and individual variation is not simply the

result from a direct allometric link between size and shape, but is

based at least to a considerable part on linkages in the processes

that produce or buffer against the variation.

Patterns of Shape Variation
To examine whether among-individual variation and FA primarily

concern the same or different features of shape, we quantified the

degree of congruence between the respective patterns of co-

variation in landmark shifts. For this purpose, we computed matrix

correlations between the respective covariance matrices for those

95 genotypes for which there were at least 50 specimens. Matrix

correlations were computed both with the diagonal blocks

included and excluded to examine whether the total patterns of

landmark variation differ from the patterns of covariation among

different landmarks [16]. The patterns of shape variation for FA

and individual variation consistently showed a clear correspon-

dence in all these genotypes. The matrix correlations ranged from

0.54 to 0.91 for the whole covariance matrices and from 0.31 to

0.79 if the diagonal blocks were omitted (Fig. 4). The difference in

matrix correlations for the two methods of computation suggests

that a component of the correspondence between individual varia-

tion and FA originated from the amounts of variation of individual

landmarks. Nevertheless, because most matrix correlations were still

fairly high even when the diagonal blocks of the covariance matrices

were omitted, there appears to be a clear and consistent congruence

between patterns of shape variation of individual variation and FA.

The permutation tests indicated that all the matrix correlations were

statistically significant (all P # 0.0001).

DISCUSSION
This study shows a significant genetic effect on the amounts of

individual variation and FA as well as a clear association in both

the amounts and patterns of variation between individual variation

and FA for wing shape. This is consistent with the idea of

a common genetic and developmental basis for buffering of wing

patterning processes against variation from different sources. The

correlations between size and shape in the amounts of FA and

individual variation provide further evidence in favor of a common

basis for buffering. In contrast, the lack of association between the

amounts of individual variation and FA for centroid size indicates

that these relationships depend on the specific traits under study

and the processes involved in their development. Here we discuss

these findings and their implications for interpreting the mixed

results of published empirical studies on canalization and

developmental stability.

Amounts of Variation and Asymmetry
Our data indicate a clear association of the amounts of individual

variation and FA of wing shape across genotypes (Fig. 2A, B). This

finding matches the results of an earlier study of sternopleural

bristle counts in Drosophila melanogaster [13]. Moreover, experiments

using overexpression of several genes in different regions of the

Drosophila wing found an association between the severity of effects

and levels of FA [31]. The result is also broadly consistent with

a range of studies in other organisms that have found associations

between individual variation and FA in comparisons across

measurements [15,20,32,33]. There are other studies, however,

Figure 2. Relationships between individual variation and FA for shape
and size. (A) Shape variation and FA quantified by Procrustes distance.
(B) Shape variation and FA quantified using Mahalanobis distance. (C)
Variation and FA of centroid size. The solid lines are major axis
regression lines, and the dashed lines in (A) and (C) are the theoretical
limits for the situation when left and right sides are independent (FA
variance is 4 times the variance among individuals; see text for details).
doi:10.1371/journal.pone.0000007.g002
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that did not find such a relationship [14] or where the results

varied from trait to trait [15,34]. Finally, comparisons among

successive developmental stages in prenatal mice also revealed

similar trends of FA and variation among individuals [35].

Whereas a relationship between the amounts of individual

variation and FA seems to hold across genotypes and traits, there

does not appear to be such an association between different stress

regimes [15,36].

In stark contrast to the shape data, the association between

individual variation and FA did not hold in the analysis for

centroid size (Fig. 2C). This different behavior, in the same

experiment, suggests that different processes influence the amounts

of variation of size and shape. It is conceivable that size and shape

variation are subject to different sources of external variation. In

particular, it is plausible that size variation is more sensitive to

small variations in the availability and uptake of resources. The

resulting differences in the acquired nutrients among individual

larvae are likely to affect both sides jointly and therefore increase

individual variation but not FA. Because the direct developmental

links between size and shape are weak for most genotypes, size and

shape can respond to such external factors differentially.

The discrepancy between these findings for size and shape

highlights a methodological problem inherent in studies of

developmental buffering: how can the effects of buffering be

distinguished from differences in the initial input of developmental

variation? Buffering is only observable if there is variation, and the

resulting phenotypic variation is the joint expression of both the

input of variation and the buffering of that variation by the

developmental system. The original amount of variation, however,

which is the input for the buffering processes in the developmental

system, is unknown. The input of variation and buffering are

therefore almost inextricably linked and cannot be separated

without specifically designed experiments. Here we used samples

of flies with controlled genotypes, so that genetic variation within

samples can be ruled out. However, non-genetic effects cannot be

controlled in this manner. The theoretical limit is a situation in

which the environment is held constant so that the conditions

under which the wings of two different flies develop are no more

Figure 3. Relationships between size and shape for FA (A, B) and for individual variation (C, D).
doi:10.1371/journal.pone.0000007.g003
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different than the conditions encountered by the two wings of the

same fly. In this case, the left and right wings of individual flies

would not be correlated, and the variance for individuals,

var(0.5(right+left)), would be one-quarter of the variance for

asymmetry, var(right2left). For shape, individual variation

(quantified using Procrustes distance) exceeded this theoretical

limit consistently, but only by relatively small amounts (Fig. 2A,

dashed line). This suggests that the patterning processes de-

termining shape are affected by micro-environmental heterogene-

ity only to a moderate degree. For centroid size, however, the

among-individual variance far exceeds the theoretical minimum

and, in all but a few genotypes, is much greater than FA (Fig. 2C),

indicating that such environmental heterogeneity is a major factor

for size variation. Accordingly, the lack of correlation among

strains in the amounts of individual variation and FA for centroid

size cannot be attributed unambiguously to an inherent difference

between canalization and developmental stability, but must be due

at least in part to a difference in the processes that generate

developmental variation.

The correlation between the amounts of FA for centroid size

and shape across the 115 genotypes exceeds the within-sample

correlations of size and shape asymmetry for all but a few samples.

Therefore, the direct developmental association of size and shape

is not sufficient to account for the agreement of amounts of FA of

size and shape. This is further evidence for a common genetic

control of developmental variation of size and shape, although the

data do not permit one to distinguish whether this control affects

the origin of developmental noise or the developmental stability

buffering against it. The association across many deficiency

genotypes affecting different genomic regions may also be taken

as evidence that a range of different genes contribute to the control

of developmental stability, rather than just a few specialized genes

[7,37,38], and is in agreement with theoretical arguments [2,11] as

well as other empirical evidence [39].

Patterns of Shape Variation
We not only compared the amounts of variation, but also the

patterns of landmark shifts associated with individual variation and

FA. There is a close and consistent correspondence between the

patterns of individual variation and FA. A similar correspondence

of patterns of shape integration for individual variation and FA has

been found previously in the wings of Drosophila melanogaster [17],

interspecific hybrids of two Drosophila species [40], tsetse flies [16],

and bumble bees [41]. In contrast, two studies in Drosophila

subobscura found considerable differences [22,42]. Just as for insect

wings, a range of different results was also found for mammals. A

good correspondence between individual variation and FA was

reported for the mandibles of shrews [18] and mice [43,44],

whereas studies in the skulls of mice found no correspondence

whatsoever [10] or only a weak but statistically significant

association [45]. Small but significant matrix correlations were

also found in a study of macaque skulls [20]. Finally, a study of the

pharyngeal jaws of cichlid fish produced no significant matrix

correlation, but there is the possibility that phenotypic plasticity

contributed to this discrepancy [19]. Overall, there is no clear

pattern discernible in these results, neither for the distribution

across taxa nor for the organ systems that were studied. This lack

of a consistent pattern has contributed to the contentious debate

on the nature of canalization and developmental stability [4].

Because each of our samples was genetically uniform, we can

rule out a contribution from allelic differences to the variation

among individuals, which would produce effects that depend on

the genetic composition of the sample and usually would differ

from the within-individual effects. Imagine a population in which

one locus with two alleles affects shape, so that the allelic

differences will cause variation along a single line (with additive

effect only) or in a plane (with additive and dominance effect).

Unless the non-genetic components of variation also happen to be

concentrated in the direction of this particular line or plane, the

two components of variation will therefore be different. Even when

more complex genetic models are used, the covariance structure

among individuals will depend on the particular mix of genotypes,

and may not reflect the inherent patterns of canalization. This

reasoning can explain the closer resemblance of the patterns of FA

to those of environmental rather than of genetic variation that has

been found in empirical studies that specifically examined this

effect [3,22,46]. Likewise, phenotypic plasticity in response to

environmental differences, such as different trophic morphs [19],

may introduce heterogeneity of covariance patterns that are

unrelated to other patterns of variation. Because most studies were

based on experimental designs that do not distinguish genetic and

environmental components of variation, is not clear to which

extent this reasoning also can explain the heterogeneous results in

other comparisons of patterns of individual variation and FA.

Overall, the results of this study clearly indicate that both the

amounts and the patterns of individual variation and FA of shape

Figure 4. Matrix correlations between the covariance matrices for
individual variation and FA. (A) Matrix correlations including the
diagonal blocks (variances and covariances for x and y coordinates of
each landmark). (B) Matrix correlations for covariance matrices without
the diagonal blocks (only covariances among landmarks).
doi:10.1371/journal.pone.0000007.g004
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are associated consistently across a broad spectrum of distinct

genotypes. This suggests that canalization and developmental

stability for wing shape share a common basis [2,6]. That these

relationships emerged consistently across a large sample of

different genotypes agrees with the view that buffering and its

genetic control may be an intrinsic property of developmental

systems [9,11]. The difference between the results for shape and

size, however, underscores that developmental buffering is specific

to the traits and the processes involved in their development [31].

Developmental stability and canalization therefore need to be

considered in the specific context of the traits under study.

MATERIALS AND METHODS

Flies and Measurements
The flies used here were offspring from crosses between the

Exelixis deficiency stocks [23] and the strain with the common

genetic background used for generating all the deficiency stocks

(strain numbers and the statistics that form the basis of this study

can be found in Table S1). Accordingly, the flies were isogenic,

except for the small genomic regions of the deficiencies themselves,

for which the flies are hemizygous, and the flanking sequences

from the transposable element insertion used to produce the

deficiencies [23]. The flies were reared in vials of cornmeal-

melasses fly food at 25uC and killed one to two days after

emergence. The wings were mounted on slides and digital images

of the wings were taken with a Leica DFC320 camera attached to

a Leica DM LB2 compound microscope.

A set of 15 landmarks was digitized on each image (Fig. 1). To

assess the amount of error due to the imaging and digitizing steps,

two different images of each wing were taken for a subsample of 72

flies and each of these images was digitized twice. The remaining

analyses used samples from 115 lines, averaging 62 flies per strain

(ranging from 40 to 102), for a total of 7123 flies (for variation

among individuals) or 7046 flies (for FA). For each strain, flies from

multiple vials were used, ranging from two to ten vials per strain,

with an average of 19 flies per vial (varying with the sample size

used and on the fecundity and viability of the flies).

Statistical Analyses
The shape information was extracted from the landmark

coordinates with a generalized least-squares Procrustes fit [25].

The measurement error components for shape were quantified

with Procrustes ANOVA [16,19] for the subsample of flies for

which replicate images had been taken.

To quantify individual variation and FA of wing size, we used

the within-sample variance of the centroid size [25] of the wings

and the variance of the (right2left) difference of centroid size. This

procedure corresponds to the two-factor ANOVA model custom-

ary in asymmetry studies [47] and automatically corrects for the

presence of directional asymmetry.

We used two different methods to quantify variation, which are

based on different measures of morphological distance: Procrustes

distance and Mahalanobis distance [27]. Procrustes distance is

a measure of absolute shape differences [25] and treats shape

deviations from the sample mean equally, regardless of their

direction. Procrustes variances were obtained by summing the

squared deviations from the respective sample means and dividing

by the appropriate degrees of freedom. Mahalanobis distance is

a measure of distance relative to the variation in each direction of

the multivariate space [48]. We used the pooled within-group

covariance matrix (within genotypes and sexes) to compute the

Mahalanobis distance of each observation from the mean shape of

its group [27]. A measure of the amount of variation within

samples was obtained by summing up the squares of the

Mahalanobis distances and dividing by the respective degrees of

freedom.

To test whether the amounts of variation differed among

genotypes, we used an extension of Levene’s test [49], that is, an

ANOVA of the individual deviations from the respective group

averages. To take into account the effect of the environment in

which the flies were reared, we used a nested ANOVA design with

vials nested within genotypes. The tests used the vial effect as the

error term, and a significant result therefore indicates that the

differences among genotypes exceed the environmental variation

among vials. The extension for the shape data was based on the

fact that the Procrustes and Mahalanobis distances of individual

observations from the sample mean shapes are measures of

deviation that are similar to the absolute value of the deviation

from the mean of scalar variables. Accordingly, the test used the

same nested ANOVA of these Procrustes or Mahalanobis

distances, with the genotypes as the grouping criterion and vials

as the error term.

To examine the correspondence between the amounts of

individual variation and FA, we computed the variances based on

the two distance measures for data sets with either the mean

shapes of both wings or the signed (right2left) differences of wing

shape. Product-moment correlations were then computed across

genotypes. The statistical significance of correlations was assessed

with permutation tests [50] with 10,000 random permutations per

test.

Allometry within genotypes was tested by multivariate re-

gression of shape on centroid size [28,29]. This was done for both

the variation among individuals (means of both sides for size and

shape) as well as for FA (signed asymmetry values of size and

shape). Percentages of shape variation for which size accounted

were computed from the Procrustes variances of the shapes

predicted by the regression and the total Procrustes variance for

the respective analysis (asymmetry or means of both sides). The

statistical significance of the regressions was established with

permutation tests with 10,000 random permutations per analysis.

For the strains for which at least 50 specimens were available,

we also compared the patterns of shape variation between

individual variation and FA [16]. Matrix correlations between

the covariance matrices for the means of both wings of each

individual and for the signed (right2left) differences were

computed and tested with a matrix permutation test using

10,000 random permutations of landmarks in one of the matrices

(x and y coordinates of each landmark were kept together) [16].

Matrix correlations were computed both with and without the

diagonal blocks of the covariance matrices (variances of landmark

coordinates and covariances between x and y coordinates of each

landmark) [16].

SUPPORTING INFORMATION

Table S1 Strains used in this study and various sample statistics.

Found at: doi:10.1371/journal.pone.0000007.s001 (0.36 MB

DOC)
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14. Réale D, Roff DA (2003) Inbreeding, developmental stability, and canalization

in the sand cricket Gryllus firmus. Evolution 57: 597–605.
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