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Background. Many biological processes are characterized by allometric relations of the type Y = Y0Mb between an observable
Y and body mass M, which pervade at multiple levels of organization. In what regards the hematopoietic stem cell pool, there
is experimental evidence that the size of the hematopoietic stem cell pool is conserved in mammals. However, demands for
blood cell formation vary across mammals and thus the size of the active stem cell compartment could vary across species.
Methodology/Principle Findings. Here we investigate the allometric scaling of the hematopoietic system in a large group of
mammalian species using reticulocyte counts as a marker of the active stem cell pool. Our model predicts that the total
number of active stem cells, in an adult mammal, scales with body mass with the exponent L. Conclusion/Significance. The
scaling predicted here provides an intuitive justification of the Hayflick hypothesis and supports the current view of a small
active stem cell pool supported by a large, quiescent reserve. The present scaling shows excellent agreement with the
available (indirect) data for smaller mammals. The small size of the active stem cell pool enhances the role of stochastic effects
in the overall dynamics of the hematopoietic system.
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INTRODUCTION
Scaling, in physics, has provided fundamental insights from the

tiny quark to the universe at large. In biology, allometric scaling

[1] is typically associated with a simple power law: Y = Y0Mb,

where Y is some observable and M is the mass of the organism.

Allometric scaling has been identified on a wide range of

observables [2–5], from basal metabolic rate (BMR), heart rate,

aortic and tree trunk radii, to unicellular genome lengths.

Intriguingly, most of the scaling exponents b are multiples of the

power 1/4, and the origin of this general dependence has been

subjected to intense investigation. A beautiful explanation was

proposed by West et al. [4], where the 3/4 exponent in BMR
scaling was related to a surface to volume ratio in a four-

dimensional biological world. Although other explanations have

been proposed [6], the 3/4 scaling has been challenged [7,8] and

plants have recently been found to scale differently [9], allometric

scaling remains ubiquitous in biology, and has provided novel

insights on various biological processes.

Blood is also ubiquitous, and has been the subject of

investigation for centuries. Our present understanding of the

hematopoietic system has improved tremendously since William

Harvey described the circulatory system in the 17th century.

Indeed, our current understanding relies on the concept of stem

cells [10–15]. This view identifies the bone marrow as the site of

active cell replication, responsible for the maintenance of the

circulating blood cell pool that is continuously undergoing

apoptotic senescence. Blood cell production is maintained by

hematopoietic stem cells that have the capacity to both self-renew

and differentiate into all types of blood cells [12] (see Figure 1).

The number of hematopoietic stem cells has been estimated in

various species using indirect methods. These include the SCID

repopulating cell (SRC) assay [16], rescue of lethally irradiated

mice and rats using serial dilutions of bone marrow derived cells

[17,18] and ferrokinetic studies that estimate red blood cell

production and correlate this with total marrow cellularity and the

myeloid to erythroid ratio [19].

Perhaps rather surprisingly, Abkowitz et al. [19] recently

suggested that the total number of hematopoietic stem cells is

conserved from mouse to humans, and proposed that this may

apply to all mammals. They estimated that mammals have between

11000 and 22000 hematopoietic stem cells. Subsequent studies in

Rattus norvegicus were consistent with this prediction [18]. There is

indirect evidence to suggest that this may also be true in elephants,

whose African variant may reach a mass of approximately 6000 kg

[20]. However, the demands for blood cell production vary across

species: the number of cells produced by a murine bone marrow

over the life-time of a mouse is equal to what a human bone

marrow produces in a day or a cat in a week [21].

Potential mechanisms that can explain these different pro-

duction rates include (i) an active stem cell pool that varies with

animal size, (ii) faster rates of replication as the size of the species

increases, (iii) longer cell specific contribution to hematopoiesis

and (iv) a number of committed cell lineages that produce

terminally differentiated blood cells which increases with animal

size (Figure 1), with none of these mechanisms being mutually

exclusive.
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Current models of hematopoiesis suggest that stem cells exist in

two functionally distinct compartments [22]: a quiescent, reserve

pool where cells divide rarely, and another pool of actively

replicating cells that contribute to hematopoiesis for some time to

be replaced by cells from the reserve pool. Since the demands for

blood cell production vary across species [17–19,21], it is possible

that the active stem cell pool scales allometrically with adult mass

despite the fact that the total number of stem cells may be

conserved across mammalian species [19].

Potential explanations (i) and (ii) relate the hematopoietic system

with animal size. Basal metabolism is clearly related to the

hematopoietic system since hemoglobin, exclusively transported by

red blood cells, is the main carrier of oxygen throughout the

organism, thereby ensuring an adequate supply for metabolic

needs. Consequently, it is natural to assume the existence of

allometric scaling in the hematopoietic system, a feature which

may prove insightful in determining the size and properties of the

stem-cell pool.

In the following, we make use of allometric scaling to estimate

the number of active stem cells contributing to hematopoiesis in

adult mammals from voles to elephants.

Allometric scaling of the active stem-cell pool
As is well known, blood volume is a function of animal mass [23].

Furthermore, rates of cell production in an animal should scale,

under normal conditions, with the species specific BMR [3]. The

specific BMR -RM- has been shown to scale as RM,M21/4 across

27 orders of magnitude, from the sub-cellular respiratory

complexes to unicellular organisms up to the largest mammals

[3]. If red blood cells of a given animal originate from NSC active

stem cells, then we may expect that, per unit time, the number of

red blood cells produced will scale as NSCRM. During hematopoi-

esis, stem cells divide and as the daughter cells become more

differentiated, they progressively lose their ability to replicate.

However, during replication the number of cells produced from

one stem cell increases exponentially at an ideal rate of 2k, where k

represents the number of distinct replication steps before the cell

loses the ability to divide (Figure 1). Here we assume that the

process exhibits the same efficiency across species and as such

contributes with a constant factor to red blood cell production.

Red blood cell production is best evaluated by measuring the total

number of circulating reticulocytes (RT) in a given species. Indeed,

estimating blood production based on red blood cell survival may be

misleading, since many extrinsic factors contribute to premature

red blood cell destruction, and these can be difficult to quantify

[24]. On the other hand, circulating reticulocytes, precursors of

red blood cells, should reflect more accurately blood production

originating from the active stem cell pool. Consequently, we

predict that reticulocyte production per day (RTD) scales as

RTD,NSCRM.

RTD can be obtained by dividing RT by the time required for

reticulocyte maturation, t. In other words, RTD,RTt
21,RTRM

since, under normal conditions, the specific BMR RM ultimately

determines maturation time [25]. Equating the two expressions for

RTD allows us to predict that NSC,RT. Therefore, we can deduce

the allometric scaling of the active stem cell pool in the animal’s

bone marrow from the corresponding scaling of the total

reticulocyte count across species. In Materials and Methods we

describe how we collected data for RT from mammalian species, as

well as the procedure used to determine its allometric exponent.

RESULTS AND DISCUSSION
By fitting the data collected for reticulocyte count across different

mammalian species in the way described in the Materials and

Methods section, we obtained a L power law- scaling for the

mass-dependence of the size of the active stem-cell pool,

NSC*M
3=4. Using the well-studied cat data [26] as a reference,

which estimates the size of the active stem cell pool as NSC = 13

after a stem cell transplant, the allometric relation above predicts

that NSC = 111 in humans (mass = 70 kg). This result is very

similar to the reported value NSC = 116 of active stem cells after

bone marrow transplantation in humans [27]. Under normal

physiologic conditions, the active stem cell pool in the cat is

composed of NSC$40 cells [26]. Using the minimum value, the

allometric relation leads to an active pool size of NSC<385 cells for

humans. This result is very similar to estimates based on

Figure 1. Schematic representation of the current understanding of erythropoiesis. Hematopoietic stem cells exist in two distinct compartments: cells
in N2 are actively replicating and contributing to blood cell formation. They are supported by a larger quiescent pool (N1). Cell replication leads to an
exponential amplification (2K) of progeny that ultimately differentiate into the various types of cells present in the circulation.
doi:10.1371/journal.pone.0000002.g001
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observation on adult women heterozygous for chronic granulo-

matous disease (CGD) [28]. Furthermore, the present allometric

scaling relation also predicts that one single stem cell is enough to

maintain hematopoiesis for the entire lifespan of a mouse,

consistent with published estimates [21]. The overall consistency

between the predictions based on the allometric relation and

available (though scarce) data for mice, cats and humans suggests

that allometric scaling provides a powerful tool to investigate the

overall properties of the hematopoietic stem cell pool. On the

other hand, such an overall consistency also provides additional

support to the underlying assumptions made in the derivation of

the allometric scaling relation. Extrapolating our data for the pilot

whale (Globicephala macrorhynchus, mass ,2250 kg) we estimate

NSC = 4690 whereas for the Asian elephant (Elephas maximus, mass

,6000 kg) NSC = 9640 cells, both of which are below the

minimum number (11000) of total stem cells that are thought to

be present in any mammal [19].

According to the Hayflick hypothesis, stem cells replicate a finite

number of times before senescence [29]. Associating the

replication rate of stem cells with RM means the Hayflick

hypothesis is equivalent to state that the lifespan of a stem cell

scales with R{1
M *M

1=4. In the laboratory experiments of Ref.

[26] it was found that stem cells replicate, on average, once every

2.5 weeks in mice and once every 8.3 to 10 weeks in cats (after

transplant). These estimates follow the M
3=4 scaling relation we

derived. Extrapolating these observations to humans, we obtain

a replication rate of once every <20 weeks, significantly lower

than the measurements in Ref. [30] (1 year) or the extrapolation

made in Ref. [26] (42 weeks). Note however that this latter number

was estimated assuming from the outset that stem cells replicate

100 times during the lifetime of a human (80 years). In contrast,

the existence of allometric scaling is the only requirement of our

theory, from which the relevant number can be deduced without

further assumptions. Furthermore, NSC = 111 results from allome-

tric scaling for post-transplant conditions, which do not reflect

normal adult hematopoiesis. If we take the allometric prediction

for normal conditions - NSC = 385 - then we arrive at a replication

value of approximately once every 60 weeks, close to the results

based on an analysis of telomere shortening in human hemato-

poietic cells [30]. The present estimates are consistent with the

idea that mammals do not exhaust their hematopoietic stem cell

reserve during their lifetime. Indeed, if we assume that a cell

replicates 100 times before senescence, then the lifetime of

a murine stem cell is longer than the lifetime of a mouse,

consistent with the view [21] that a single stem cell may be enough

to maintain hematopoiesis for the entire murine lifespan. In fact,

our present allometric relation predicts that, although larger

mammals require larger active stem cell pools, the expected

lifetime of each species-specific stem cell is always longer than the

expected lifetime of the mammal.

In retrospect, examining the possible explanations invoked in

the beginning of this work, clearly argument (i) was given a precise

allometric justification, whereas (ii) can be ruled out, since it would

contradict the well-established allometric scaling of the specific

BMR [3] which suggests that the rate of replication of cells

decreases as the mass of the mammal increases. Argument (iii)

derives from the Hayflick hypothesis and is supported by our

estimates. The available data does not allow us to elaborate on

argument (iv), but we can state that no special adaptations seem

necessary to explain hematopoiesis in whales or elephants.

A L scaling of NSC has been rationalized in terms of a surface-

to-volume ratio in the four biological dimensions [4,5]. This calls

for detailed studies of the structure-function relationships in the

bone marrow. Indeed, the above scaling is consistent with the

interpretation of the bone marrow as a heterogeneous microen-

vironment in which the active stem cell pool is distributed in

surface niches [31], whereas the quiescent stem cell pool might

presumably occupy the bulk of the bone marrow, in accord with

the prevailing view of the stem cell pool as metaphorically

compartmentalized [22]. As such, detailed studies of bone marrow

physiology may shed light on the mechanisms responsible for the

L scaling relations which pervade in living systems. Finally, the

reduced size of the active stem cell pool in mice, cats and humans

indicates that stochastic effects may play a sizeable role in the

overall dynamics of the hematopoietic system in these mammals.

Such effects will be explored elsewhere [32].

MATERIALS AND METHODS
The total number of circulating reticulocytes was calculated as the

product of the concentration of circulating reticulocytes in the

blood and the blood volume of mature animals for each species. In

Figure 2 we plot the logarithm of RT as a function of the logarithm

of the mass, for mammals that cover over six orders of magnitude.

The range varied from voles with a mass of 20 g up to a pilot

whale with an average mass of 2250 kg. The data corresponds to

the mean value of the reticulocyte count for each species (detailed

minimum and maximum counts are provided in Table S1). The

dashed blue line was obtained from a linear regression, which

leads to an exponent of 0.745<L (R2 = 0.94, p,0.0001). The

confidence intervals limit the allometric exponent between 0.70

and 0.76. The intercept of the fitting curve at a mass of 1 gram is

7.641. Hence, we estimate a value of ,108 for the reticulocyte

count of the smallest mammal (a shrew with a mass of 3 g).

Figure 2. Allometric scaling of reticulocyte count. We plot the logarithm
of reticulocyte count of a given mammal as a function of the logarithm
of its mass (in gram). Plotted data correspond to a total of 40 mammal
species with masses ranging over 6 orders of magnitude, from voles to
whales. The data corresponds to the mean value of the reticulocyte
count for each species. A straight linear fit leads to a coefficient of 0.745,
remarkably close to the L exponent (R2 = 0.94, p,0.0001, CI 0.70–0.76),
with an intercept of 7.641. Hence for the smallest mammal (a shrew
with ,3 gram), we predict a reticulocyte count of ,16108.
doi:10.1371/journal.pone.0000002.g002
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SUPPORTING INFORMATION

Table S1. Upper and lower limit of the logarithm of circulating

reticulocytes across mammals.

Found at: doi:10.1371/journal.pone.0000002.s001 (0.07 MB

DOC)
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