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Abstract
How animals navigate the constantly moving and visually uniform pelagic realm, often

along straight paths between distant sites, is an enduring mystery. The mechanisms

enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used

shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test

whether olfaction contributes to pelagic navigation. Leopard sharks were captured along-

shore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h

each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded

with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming

depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, fol-

lowing relatively straight paths that were significantly directed over spatial scales exceeding

1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following signifi-

cantly more tortuous paths that approximated correlated random walks. These results held

after swimming paths were adjusted for current drift. This is the first study to demonstrate

experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by

chemical gradients as has been hypothesized for birds. Given the similarities between the

fluid three-dimensional chemical atmosphere and ocean, further research comparing swim-

ming and flying animals may lead to a unifying paradigm explaining their extraordinary navi-

gational abilities.

Introduction
The mechanisms underlying pelagic underwater navigation have long captivated human
observers, who, as instinctively visual navigators, would be utterly disoriented in this appar-
ently uniform realm devoid of visible landmarks and beacons. Whereas terrestrial navigators
may orient themselves using the position of the sun [1–2], for example, or the axis of celestial
rotation [3–4], not even these cues are perceptible to underwater pelagic navigators except per-
haps immediately below the surface. Furthermore, swimming movements in the open ocean
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are permanently uncoupled from stationary substrate, against which deflection due to current
drift might otherwise be visually gauged and mitigated [5]. Thus, without non-visual means of
compensation, the geographic path travelled may not reflect the intended movements of the
animal swimming within constantly moving water parcels. These challenges notwithstanding,
a variety of marine animals make routine oceanic migrations, including fishes, turtles, pinni-
peds, and cetaceans, often between distant sites and along relatively straight paths [6]. Facilitat-
ing these migrations appear to be geomagnetic, chemical, and hydrodynamic cues, which are
known to convey positional (map-sense) and directional (compass-sense) information to
pelagic navigators; however, knowledge of how these cues are integrated over various spatial
scales is underdeveloped and mostly limited to experiments involving sea turtles and salmonid
fishes [7].

A more comprehensive understanding of the cues exploited by pelagic navigators requires a
comparative approach, expanding to understudied taxa, including the cartilaginous fishes
(Chondrichthyes), which have been shown to undertake directed movements through the open
ocean [8]. For example, white sharks (Carcharodon carcharias) migrate between California and
Hawaii, and to the conspicuous ‘offshore focal area’ or ‘café’ between the two [9]; scalloped
hammerhead sharks (Sphyrna lewini) rhythmically disperse from islands and seamounts at
night to forage in the surrounding pelagic environment [10]; salmon sharks (Lamna ditropis)
travel between Alaska and the North Pacific Subtropical Gyre [11]; and tiger sharks (Galeo-
cerdo cuvier) move between the islands of the Hawaiian Archipelago [12–13]. Among the
potentially useful navigational cues, directed movements of sharks through the open ocean
have mostly been attributed to geomagnetic orientation [10, 14–15], thought to be mediated
indirectly via induction of the electrosensory system or directly via biogenic magnetite crystals
[16–19]. However, multiple sensory modalities are likely integrated, as shown for other com-
plex behaviours such as feeding [20], which together with spatial memory enables pelagic navi-
gation and homing [21]. Other viable navigational cues may include sound, current, swell,
wind, temperature, and, perhaps most interestingly, odorants.

Sharks are known for their keen sense of smell, but mostly as it relates to feeding [20, 22–
25]. On the other hand, Jacobs [26] hypothesized that the primary function of olfaction is not
the detection and discrimination of odours per se, but rather decoding and mapping odour dis-
tributions in space and time for the purpose of navigation. This ‘olfactory spatial’ hypothesis
sought to explain why the vertebrate olfactory bulb (OB) does not scale allometrically with the
rest of the brain [27–29] and predicts that OB scaling should reflect the adaptive value of track-
ing a dynamic chemical world and linking locations in olfactory space. Thus, OB size should
scale with navigational demand independent of phylogeny. Yopak et al. [30] confirmed this
prediction in sharks, demonstrating the largest OBs were found in migratory coastal-pelagic
species such as the white shark (C. carcharias), tiger shark (G. cuvier), and blue shark (Prionace
glauca). Although recent work by Gardiner et al. [31] has shown that olfaction participates in
homing by juvenile blacktip sharks (Carcharhinus limbatus) within a shallow bay, the contri-
bution of olfaction to open-ocean navigation in sharks has never been tested until now.

This study takes the first step toward understanding the contribution of olfaction to pelagic
navigation in sharks, using the leopard shark (Triakis semifasciata) as a model. This typically
nearshore species is endemic to the western coast of North America, where it forms seasonal
aggregations in shallow, sheltered water, and feeds mostly on benthic invertebrates and fishes
[32]. However, leopard sharks also make occasional forays into the pelagic environment, for
example, crossing the San Pedro Channel between Santa Catalina Island and mainland Califor-
nia, which is 32 km wide at its narrowest point and approximately 800 m deep (Fig 1A) [33–
34]. The mystery of how this otherwise nearshore benthic species navigates the open ocean was
the impetus for this study, in which leopard sharks (some rendered anosmic) were transported
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from a nearshore aggregation site off La Jolla, California [34–35], up to 17 km offshore where
bottom depths exceeded 500 m, released, and manually tracked using acoustic telemetry. It was
hypothesized that these sharks would swim toward the nearest point on shore as their primary
goal, so as to minimize their time in the hostile open ocean, which lacks their typical food and
shelter from predators; the movements of anosmic sharks were hypothesized to be less efficient
(e.g., slower, more tortuous) than sham-treated control sharks. Thus, the goals of this study
were 1) to quantify the horizontal and vertical movements of leopard sharks during the pelagic
phase of shoreward navigation and 2) to assess the importance of olfactory cues in pelagic navi-
gation by comparing movements between anosmic and sham-control individuals.

Fig 1. Swimming paths of experimentally displaced leopard sharks. A) Southern California Bight,
zoomed in view of box in California (CA) inset map. The major Channel Islands are indicated in italics and
various basin depths are indicated in km (bathymetry credit: NOAA). B) Zoomed in view of small box in A,
showing the immediate study area. Bathymetry is shown at intervals of 20 m to 100 m, then at intervals of 100
m. Also shown are tracks (ground paths) of sharks released from Site A under anosmic (red) and sham
(black) conditions and of sharks released from Site B under normal conditions (blue).

doi:10.1371/journal.pone.0143758.g001
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Methods

Capture, Offshore Displacement, and Acoustic Tracking
The capture site (32.853°, -117.262°; bottom depth< 2 m; Fig 1B) was a known leopard shark
aggregation that forms in June–December off La Jolla, California [34–35]. All sharks (n = 36)
were captured from a 5-m skiff using handlines and baited barbless circle hooks, between 0720
and 0935 hrs in July–November of 2013–2014. Hooked sharks were guided into a large scoop
net for hook removal. Then, netted sharks were transferred onto the deck of the skiff and
turned ventral-side-up to induce tonic immobility. Eleven sharks were rendered anosmic by
plugging the nares with cotton wool (0.5 g total per naris) soaked with petroleum jelly, using
forceps. This two-minute minimally invasive procedure has been shown to block olfaction [20,
36–37] without the side effects that may accompany alternative methods of chemical ablation,
numbing, or nerve severing. In fact, blacktip (Carcharhinus limbatus) and bonnethead sharks
(Sphyrna tiburo) fed within several hours of this procedure [20]. Tests on captive leopard
sharks indicated the plugs remained securely in place for at least 24 h, however, had begun to
disintegrate. A sham version of this procedure was performed on another 15 leopard sharks,
mimicking the handling and insertion of forceps, but without inserting cotton into the nares.
Because real-time odorant sampling requires constant water flow across the olfactory lamellae,
anything placed in the nares of sham-control sharks, even if resulting in only partial occlusion,
would have obstructed this circulation and thus inhibited olfaction. This caveat notwithstand-
ing, we describe below why any extraneous perturbation caused by the cotton plugs themselves
would have likely been inconsequential. After the nare-plugging or sham procedure, netted
sharks were released into a holding tank aboard the skiff (diameter = 1.0 m, depth = 0.6 m),
containing 150 L seawater from the capture site.

En route to the release site, sharks were isolated from potentially retraceable cues. First, to
mask geomagnetic cues, a strong neodymium ring magnet (grade N42; outer diameter = 2.54
cm, inner diameter = 0.64 cm) was suspended 5 cm above the centre of the bottom of the hold-
ing tank, such that it swung and spun randomly during transport. The strength of the magnetic
field varied between 5 μT at 50 cm away and 535 μT at 10 cm away. Next, visual cues were
occluded by covering the holding tank with an opaque tarp. To isolate the shark from chemical
cues, no water changes were performed en route and the water was aerated only from a cylinder
of compressed air filled at Scripps Institution of Oceanography (Fig 1B). Lastly, any potential
inertial cues were masked by figure eight manoeuvres performed at the capture site just prior
to departure and again just prior to arrival at the release site.

These sharks were transported 11.0 km NW to release Site A (32.911°, -117.357°; bottom
depth = 550 m), 9.1 km from the nearest point on shore (Fig 1B); transit time was 1 hour.
Upon arrival, the shark was measured, sexed, and tagged with a Floy Tag FIM-96 identification
tag and a Vemco V16TP continuous acoustic transmitter with depth and temperature sensors,
each via a nylon dart inserted into the musculature and through the radials on opposing sides
of the base of the first dorsal fin. The V16TP transmitter was modified to have a syntactic foam
float (Desert Star Systems) and galvanic timed release (model AA1, International Fishing
Devices), allowing the transmitter to pop off, float to the surface, and be recovered and reused
(S1 Fig). After tagging, sharks were released in a random direction and manually tracked using
a Vemco VH110 directional hydrophone and VR100 acoustic receiver, until the transmitter
apparatus resurfaced. GPS positions of the skiff, which by convention were taken to be the
position of the shark, along with depth and temperature readings from the shark-borne trans-
mitter, were recorded every 5 minutes. Lastly, the thermal structure of the water column was
recorded using a Seabird SBE39 profiler, deployed every 30 minutes to a depth of 100 m or, if
bottom depth was less than 100 m, to the bottom.

Olfaction Contributes to Pelagic Navigation in a Coastal Shark

PLOS ONE | DOI:10.1371/journal.pone.0143758 January 6, 2016 4 / 17



To provide additional context and a point of comparison to the above experiment, ten addi-
tional sharks were transported from the capture site 19.3 kmWNW to release Site B (32.928,
-117.448; bottom depth = 680 m), 17.2 km from the nearest point on shore (Fig 1B); transit
time was 1.5 hours. These sharks were transferred to the holding tank immediately after hook
removal, thus foregoing the tonic immobility and nare-plugging or sham procedure. For the
purpose of discussion, these are termed ‘normal’ conditions, as opposed to the ‘anosmic’ or
‘sham-control’ conditions described above. A longer-duration model AA2 galvanic timed
release was used to enable a longer tracking period. Otherwise, these sharks were treated the
same as above. This study was approved by the Institutional Animal Care and Use Committee
of the University of California—San Diego (Protocol S00080). Sampling and fieldwork were
approved by the California Department of Fish and Game (Permit SC 9893).

Data Analysis
Path tortuosity was measured using the fractal dimension (fractal D) [38–39] with modifica-
tions prescribed by Nams [40]. Fractal D is a continuous analogue of discrete geometric dimen-
sions that ranges between 1 and 2, where 1 reflects a linear path (i.e., one-dimensional) and 2 a
path so tortuous that it covers a plane (i.e., two-dimensional). The mean fractal estimator [40],
implemented by the program FRACTAL v. 5.26 (V. Nams), was used to calculate the mean
fractal D for each shark over a range of spatial scales (100–10,000 m). Briefly, gross distance
was measured by walking 200 pairs of dividers of varying size along the path (i.e., 200 different
spatial scales, equally spaced along the log-transformed span of 100–10,000 m), forward and
backward, and averaging gross distance for each paired replicate. As divider size (spatial scale)
increases, gross distance decreases, and the slope of the log-log plot of gross distance vs. spatial
scale is 1 –D, with more tortuous paths yielding steeper slopes. Then, D was calculated for each
spatial scale, centred within a narrow window spanning (spatial scale)/1.25 –(spatial scale)�

1.25, which was slid along the x-axis from 100 to 10,000 m. The resulting D values were aver-
aged to generate the mean fractal D for each shark, which was then transformed to log (D– 1)
for statistical comparisons.

To determine whether sharks were performing directed (oriented) walks, we used FRAC-
TAL v. 5.26 to implement the scaling test for oriented movement developed by Nams [41].
Briefly, an animal using a directed walk will make movement decisions that operate at large
spatial scales, likely beyond the visual range. Animals performing unoriented movements will
only make movement decisions that operate at small spatial scales (e.g. within visual range).
Unoriented movements approximate a correlated random walk (CRW; the null model), which
is a random walk but with directional bias over short time scales [41]. CRWDIFF, which is a
measure of how movements compare to a CRW, was calculated at each spatial scale (using the
same number and range of scales as the fractal analysis above). CRWDIFF > 0 indicates greater
displacement than a CRW, while CRWDIFF < 0 suggests the movements are more constrained
than a CRW [41]. An animal using a directed walk should thus yield CRWDIFF > 0 at large spa-
tial scales [8, 41].

A weighted mean vector (WMV; weighted by distance) was calculated for each shark using
the program Oriana v. 4 (Kovach Computing Services). WMV bearings (degrees; north = 0° =
360°) and lengths (r, scaled 0–1; r = circular variance, s,– 1) were compared using Mardia Two-
Sample and Mann-Whitney U Tests, respectively [42–43]. A grand WMV (weighted by WMV
length) and 95% confidence interval were calculated for each condition according to Batschelet
[42]. Lastly, the significance of each WMV and grand WMV was determined using Moore’s
Modified Rayleigh Test, a non-parametric analogue of Rayleigh’s Test for weighted vector data
[44]. To measure the fraction of forward swimming efforts directed toward shore, the
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hypothesized goal of the displaced sharks, a shoreward orientation index was calculated for
each track as the ratio of mean shoreward speed to mean overall speed. Shoreward speed was
calculated as [(distance to shore from point A, m)–(distance to shore from point B, m)] / (time
interval between points A and B, s). Lastly, a simple measure of shoreward progress was calcu-
lated as [(distance to shore at start of track, m)–(distance to shore at end of track, m)] / (dis-
tance to shore at start of track, m), where a value of 1 indicates the shark reached the shoreline
and negative values indicate the shark’s net movement was directed away from shore.

To assess the effect of current, these analyses were repeated on the reconstructed motor
path of each shark, derived by subtracting current velocity (speed and direction) from each
step of the tracked ground path. Current profiles were generated for every shark position
(n = 2,212) with a vertical resolution of 1 m using the California coastal (CA) ocean forecasting
system, based on the Regional Ocean Modelling System (ROMS). ROMS is a free-surface,
hydrostatic, three-dimensional, primitive equation regional ocean model [45–47], configured
here to consist of a single domain covering the entire California coastal ocean from north of
Crescent City, CA to Ensenada, Mexico and extending approximately 1000 km offshore at a
resolution of 3.3 km. In the vertical there are 40 unevenly spaced sigma levels with the majority
of these clustered near the surface. Lateral boundary conditions were generated using output
from a global HYCOMmodel (hycom.org) and surface atmospheric forcing is derived from
hourly outputs from operational forecasts performed with the NCEP NAM 5-km North Amer-
ican model (http://www.emc.ncep.noaa.gov/index.php?branch=NAM).

A two-step multi-scale (MS) three-dimensional variational (3DVAR) data assimilation algo-
rithm was used to generate the nowcast estimates of the three-dimensional ocean state. This
MS-3DVAR scheme is a generalization of the 3DVARmethodology of Li et al. [48–49] and is
described in detail by Li et al. [50]. The ROMSMS-3DVAR is designed to assimilate multiple
types of observations simultaneously and reliably, while incorporating both the large-scale and
small-scale impacts of the observations on the model fields, a distinct advantage over single-
scale 3DVAR systems [51]. A number of surface and subsurface data were available in near real-
time and assimilated by the ROMSMS-3DVAR system; a list of these is given in Farrara et al.
[52]. An ecosystemmodel has been coupled with the ROMSMS-3DVAR system for the Califor-
nia Current System. The ecosystemmodel (CoSiNE—Carbon, Silicate, and Nitrogen Ecosys-
tem) includes the following constituents: nitrate, silicate, ammonium, small phytoplankton,
diatoms, micro- and meso-zooplankton, detrital nitrogen and silicon, total CO2 and alkalinity,
and dissolved oxygen [53–54]. The coupled ROMS-CoSiNE produces hourly model outputs for
all grid points. The chlorophyll estimates from the model were derived from the sum of small
phytoplankton and diatoms with a constant conversion factor [54]. The modelled total biomass
was the sum of small phytoplankton and diatoms, along with micro- and meso-zooplankton.
Lastly, to demonstrate the potential for offshore and alongshore transport of dissolved odorants,
‘virtual drifters’ were released just off the coast at a depth of 20 m, directly east of Site A. For
each simulation, 100 drifters were released and tracked for 17 days. This drifter release scenario
was repeated every 15 days during the months of July–November of 2013–2014.

Results
Sharks released from Site A were all mature females, with no significant difference in fork
length, swimming depth, water temperature, or tracking period between anosmic and sham-
control groups (Table 1). Release directions were uniformly distributed (i.e., no directional
bias) in each of the three conditions (anosmic: Rayleigh’s Z = 0.58, Rao’s U = 141, p> 0.1;
sham-control: Z = 1.25, U = 122, p> 0.1; normal: Z = 0.77, U = 135, p> 0.1), with no signifi-
cant difference among the three conditions (Mardia-Watson-WheelerW = 5.67, p = 0.23).
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Swimming depth generally coincided with the bottom of the thermocline and the subsurface
maximum for chlorophyll a concentration (S2 Fig). At the time of transmitter release, which
terminated the tracks, anosmic sharks had on average advanced 37% closer to shore, compared
to 63% closer for sham-control sharks (Table 1; Fig 1B). Five sham-control sharks abruptly
dove to the benthos after crossing over the continental shelf (Table 1; S3 Fig). Ground speed
was significantly slower for anosmic sharks with a smaller fraction of this forward swimming
effort directed toward shore (shoreward orientation index; Table 1). Path tortuosity, measured
by fractal D, was also significantly higher for anosmic sharks than sham-control sharks
(Table 1). Lastly, whereas sham-control sharks exhibited significantly oriented (directed)
movements (CRWdiff > 0) over spatial scales exceeding 1600 m, anosmic sharks showed no
oriented movements beyond the average step size (distance between successive GPS positions)
of 150 m (i.e., movements approximated a correlated random walk at all spatial scales; Fig 2).

Sharks released from Site A generally experienced an undercurrent flowing north and west,
resulting in divergent reconstructed motor paths (S4 Fig). Subtracting current from the tracked
ground path yielded the true motor speed, which, for anosmic sharks (0.42 FLs-1) approxi-
mated the theoretical optimal cruising speed (0.47 FLs-1; U = 84, p = 0.13) predicted by Weihs’
[55] equation, log (optimal cruising speed, ms-1) = 0.44 log (fork length, m)– 0.28, with modifi-
cations prescribed by Ryan et al. [56]. However, the motor speed of sham-control sharks (0.50
FLs-1) was significantly higher than the theoretical optimum (0.46 FLs-1; U = 178, p = 0.007).
Correcting for current changed the grand weighted mean vector bearing from 76.1° to 102.0°
for anosmic sharks (Moore’s Paired R = 1.732, p< 0.001) and from 99.9° to 109.8° for sham-
treated sharks (Moore’s Paired R = 1.312, p< 0.01; S5 Fig). However, the current correction
did not alter the results of fractal analysis or shoreward orientation index (Table 1).

Sharks released from Site B under normal conditions exhibited mixed results in terms of
shoreward navigation ability. Four of these ten sharks appeared lost, having advanced only
7–17% closer to shore before their transmitters released, and exhibiting high fractal D (range:
1.18–1.31) and low shoreward orientation indexes (range: 0.09–0.21). By comparison, the
other six sharks advanced 62–91% closer to shore before their transmitters released, with low
fractal D (range: 1.01–1.04) and high shoreward orientation indexes (range: 0.72–0.84). These
results did not change after current correction (Table 1). The motor speed of the ostensibly lost
sharks (0.46 FLs-1) approximated the theoretical optimum (0.45 FLs-1), while that of the appar-
ently oriented sharks (0.52 FLs-1) was higher than the optimum (0.46 FLs-1); however, due to
small sample size, significance could not be tested. Nevertheless, the movements of the ostensi-
bly lost sharks released from Site B resembled those of anosmic sharks released from Site A,
while the movements of the apparently oriented sharks released from Site B resembled those of
sham-control sharks released from Site A (Table 1).

Discussion
Relatively little consideration has been given to chemical cues guiding animals through the
pelagic environment, even though this dynamic three-dimensional medium in many ways
resembles the dynamic three-dimensional atmosphere, where chemosensory modalities are
widely accepted to participate in bird [57–60] and insect navigation [61–62]. Evidence for
olfaction-mediated homing and navigation in fishes had heretofore been limited to salmonid
fishes [63], rockfishes [64], and fish larvae [65–66], operating mostly in nearshore environ-
ments. Even the most recent work, which demonstrated olfaction-mediated homing in juvenile
sharks, was conducted wholly within a shallow bay [31]. Although olfaction has also been
hypothesized to contribute to pelagic navigation in sharks [8, 15, 67], this had never been tested
until now.
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This study is the first to demonstrate experimentally that olfaction participates in open-
ocean navigation by sharks. Whereas sham-control leopard sharks released from Site A swam
remarkably straight paths back to shore at speeds exceeding the theoretical optimal cruising
speed (consistent with a degree of confidence as to the distance and direction to shore; Fig 1,
Table 1), anosmic sharks swam at the most fuel-efficient speed along more tortuous routes
that, as a group, did not exhibit directed movement. In contrast, control sharks exhibited
directed movements over spatial scales exceeding 1600 m (Fig 2), which is comparable to adult

Fig 2. Comparison of leopard shark swimming paths to correlated randomwalk (CRW) using CRWdiff

statistic.CRWdiff for anosmic (solid red line; top) and sham-treated sharks (solid black line; bottom) over
various spatial scales with 95% confidence intervals (solid light red lines for anosmic and solid gray lines for
sham-treated sharks). If CRWdiff > 0 (indicated by dashed black line), paths are oriented. If CRWdiff < 0, paths
are unoriented. The black arrow indicates the largest scale (>1,600 m) of oriented movement in sham-treated
sharks.

doi:10.1371/journal.pone.0143758.g002
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thresher sharks (Alopias vulpinus) [8]. Given the substantial and identical physical discomfort
and stress sustained by both anosmic and sham-control sharks (i.e., capture, transport in a
dark and turbulent holding tank, tagging, and discharge in unfamiliar and hostile territory),
any additional perturbation caused by the cotton plugs themselves was likely inconsequential.
Moreover, the presence of predators and lack of suitable food should have fomented a strong
and steadfast motivation to return efficiently to shore, a drive that was unlikely to have been
quashed by the plugs themselves. Lastly, because disoriented behaviour was also observed in a
few sharks whose nares were not plugged (four normal sharks and one sham-control shark; Fig
1, Table 1), the disoriented behaviour of anosmic sharks cannot be dismissed solely as an arte-
fact of the plugs themselves. Rather, we contend that the disoriented behaviour of anosmic
sharks was indeed caused by the inability to detect and behaviourally respond to chemical cues.

Cross-shore chemical gradients associated with coastal productivity could explain these
observations. For example, the cross-shore chlorophyll a gradient is a relatively stable feature
off California, where the concentration of chlorophyll a increases with proximity to shore due
to coastal upwelling. The sharks are not likely smelling the pigment per se, but rather other bio-
logical compounds correlated with productivity. For example, the sharks could be detecting
dissolved free amino acids, which are found in plankton exudates. Amino acids are hypothe-
sized to be the primary odorant guiding salmon to their natal streams [68] and sharks are
known to be able to detect amino acids down to nanomolar concentrations, which is compara-
ble to teleost fishes, and strong enough to detect ambient levels of amino acids in the marine
environment [25]. Another possible chemical cue is dimethyl sulphide (DMS), a fragrant com-
pound produced by degrading dimethylsulfoniopropionate (DMSP), a common metabolite of
phytoplankton and other marine algae [69]. Biogenic DMS has been hypothesized to function
as a navigational and foraging cue for seabirds [58, 70], marine mammals [71], and even plank-
tivorous sharks [72–73]. Recent work by Dove [74] confirms that whale sharks (Rhincodon
typus) detect and behaviourally respond to DMS dissolved in seawater. Interestingly, the swim-
ming depths of the tracked leopard sharks generally coincided with the subsurface chlorophyll
a and biomass maxima, relatively stable features that historically have co-occurred at a mean
depth of 21 m with a thickness of 13 m in the vicinity of our experiment [75]. The nowcast
chlorophyll a and biomass profiles modelled in this study were very similar (S2 Fig). More
important is that near the subsurface maxima is where the greatest horizontal variation
occurred, yielding the steepest cross-shore gradients. Although the ability of sharks to discrimi-
nate different concentrations of chemical cues is not known, swimming at these depths, where
gradients are steepest, would likely facilitate discrimination.

Whereas simple cross-shore chemical gradients provide information in one dimension, gen-
erally perpendicular to shore, a more complex ‘odorscape’ with multiple intersecting gradients
would be necessary for two-dimensional chemical navigation. These could be combinations of
biogenic and abiotic odorants emanating from eroding rocks, river outflows, reefs, or kelp for-
ests, such that geographic locations have unique chemical signatures, akin to those identifying
natal streams to homing salmon. Using virtual drifters, we demonstrated strong potential for
offshore and alongshore transport of coastal odorants (S6 Fig) and recent work by Combes
et al. [76] confirmed that stable gradients do indeed form by continuous dispersal of passive
tracers via currents and advection. Similarly, Wallraff [60] confirmed that gradients of atmo-
spheric trace gases yield sufficient spatial information for navigation by birds over hundreds of
kilometres. Although the scales over which olfaction-mediated navigation operate in the
pelagic environment are unknown, scales of at least tens of kilometres seem likely. Approxi-
mately half of the sharks released from Site B, 17 km from shore, found their way back to
shore, while the other half were ostensibly lost (Fig 1). This could be explained by chemical
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gradients being weaker or patchier with distance from shore or else the mechanism and envi-
ronmental cues used are different and only the most experienced sharks are able to navigate.

Although the paths of anosmic leopard sharks approximated a correlated random walk, these
movements were nonetheless biased toward shore (Table 1, Fig 1B, S5 Fig) and may very well
have reached the shore some time after their transmitters released. This indicates some knowl-
edge of the location of shore was provided by non-olfactory cues. These could still be chemical,
but mediated by taste instead of smell; however, the scale over which gustation operates is likely
much smaller. Horizontal temperature gradients could also be useful (e.g., temperature generally
decreases with proximity to shore due to coastal upwelling); however, their detection would be
confounded by much stronger vertical gradients. The time-compensated position of the sun
could provide directional information, as it does for birds [1–2]. However, several leopard sharks
appeared lost even on completely sunny days, including the shark released on 29-Jul-2013,
which had the shallowest mean swimming depth of any shark (1.9 m; Table 1) and thus the
greatest chance of perceiving the position of the sun underwater. Meanwhile, other sharks suc-
cessfully navigated to shore on completely overcast and foggy days. Although we cannot rule out
orientation to polarized light, the biophysical mechanism in fishes relies on ultraviolet-sensitive
cones [77]; these have not been identified in sharks, which exhibit cone monochromacy with
wavelengths of maximum absorbance outside the ultraviolet spectrum [78].

In contrast, ambient noise could be a very useful navigational cue that has been suggested to
participate in shark homing [15, 67]. For example, low-frequency surf noise could indicate the
location of shore and, off La Jolla, California, surf noise is loudest at approximately 50–300 Hz
[79], which is well within the hearing range of sharks [22]. Furthermore, the leopard sharks
tracked in this study mostly swam near the bottom of the thermocline, where sound travels slow-
est and farthest (S2 Fig), thus facilitating the detection of sounds emanating from shore. Another
interesting observation was that shortly after crossing back over the continental shelf, some
sharks, even after swimming for hours at relatively constant depths, suddenly and deliberately
dove to the benthos, as if they were confident a bottom of suitable depth was there (S3 Fig).
Surely the sharks could not see the bottom from 50 m above it, but the ‘soundscape’may be fun-
damentally different over the shallow shelf compared to deeper offshore areas. Lastly, geomag-
netic cues are strongly suspected to play a role in shark navigation [10, 14–15] and these may
very well contribute to shoreward navigation by leopard sharks. In short, olfaction plays a role in
pelagic navigation, but is apparently supplemented by other sensory modalities, warranting fur-
ther work to elucidate how these are integrated and organized hierarchically for navigation.

Evidence supporting Jacobs’ [26] ‘olfactory spatial’ hypothesis is growing in numerous ver-
tebrate taxa, including the cartilaginous fishes [30], and identifying a unifying paradigm
explaining the extraordinary navigational abilities of phylogenetically unrelated animals, par-
ticularly those that fly through the air and those that swim through the water, seems inevitable.
Animals navigating in either medium face similar challenges, and given the growing body of
evidence supporting olfaction-mediated navigation by flying birds and insects [57–62], along
with the results of this study, olfaction-mediated navigation by underwater navigators is likely
common, if not universal.

Supporting Information
S1 Fig. Reusable tagging apparatus, showing the modified Vemco V16TP transmitter with a
galvanic timed release (GTR) and syntactic foam float (spray-painted orange). A Floy Tag
FIM-96 identification tag was glued to the syntactic foam float to facilitate sighting and recovery at
the surface (right photo; tagging apparatus having detached from shark, shown by white arrow).
(JPG)
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S2 Fig. Mean swimming depths of anosmic (released from Site A; dashed red line), sham-con-
trol (released from Site A; dashed black line), and normal leopard sharks (released from Site
B; dashed black line).Also shown is mean thermal profile along tracks of sharks released from
Site A (solid black line) and Site B (solid blue line), as well as mean chlorophyll a profile along
tracks of all sharks (solid dark green line with mean ± SD indicated by solid light green lines).
(PNG)

S3 Fig. Final approaches to shore of two representative leopard sharks with “touch-down”
onto the benthos after crossing over the continental shelf. Depth data (black dots connected
by solid black lines) are shown at 1-min resolution, spanning a window of 60 minutes. Bottom
depth is indicated by thick gray line. The sham-treated shark tracked on 8-Jul-2014 is shown
on the left with her abrupt dive to the bottom commencing at 4 h 15 min after release from Site
A. The shark tracked on 6-Aug-2013 under normal conditions is shown on the right with her
abrupt dive to the bottom commencing at 6 h 17 min after release from Site B.
(PNG)

S4 Fig. Effect of current on leopard shark movements released from Site A.Mean current
profiles over tracks of sharks released from Site A are shown on the left graph, with the zonal
component as a solid black line (negative is west and positive is east) and the meridional com-
ponent as a dashed black line (negative is south and positive is north). To the right are repre-
sentative tracked ground paths and reconstructed motor paths of sharks released from Site A.
Tracked ground paths are indicated by solid black (sham-treated) and red (anosmic) lines,
while the reconstructed motor paths are indicated by gray (sham-treated) and light red
(anosmic) lines. The four sham-treated examples are shown from the same release point
because they could be easily combined without overlap. The four anosmic examples are sepa-
rated for clarity, but the release point is Site A in all cases.
(PNG)

S5 Fig. Mean weighted vector (MWV) bearings and lengths (r) for tracked ground paths of
sham-treated (black arrows, n = 15) and anosmic (red arrows; n = 11) leopard sharks
released from Site A and normal sharks released from Site B (blue arrows, n = 10). The bold
arrow in each plot represents the grand MWV for the group. Shaded wedges in each plot repre-
sent the 95% confidence interval for the grand MWV.
(JPG)

S6 Fig. Zoomed in view of box in California (CA) inset map. The extent of offshore and
alongshore transport shown by small black dots, which indicate the simulated tracks of clusters
of 100 virtual drifters released just offshore at a depth of 20 m (black arrow), directly east of
release site A. Release site B is shown for reference. These drifters were released every 15 days
during July–November of 2013–2014 and tracked for 17 days.
(JPG)
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