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Abstract
Sepsis is one of the highest causes of mortality in hospitalized people and a common com-

plication in both surgical and clinical patients admitted to hospital for non-infectious reasons.

Sepsis is especially common in older people and its incidence is likely to increase substan-

tially as a population ages. Despite its increased prevalence and mortality in older people,

immune responses in the elderly during septic shock appear similar to that in younger pa-

tients. The purpose of this study was to conduct a genome-wide gene expression analysis

of circulating neutrophils from old and young septic patients to better understand how aged

individuals respond to severe infectious insult. We detected several genes whose expres-

sion could be used to differentiate immune responses of the elderly from those of young

people, including genes related to oxidative phosphorylation, mitochondrial dysfunction and

TGF-β signaling, among others. Our results identify major molecular pathways that are par-

ticularly affected in the elderly during sepsis, which might have a pivotal role in worsening

clinical outcomes compared with young people with sepsis.

Introduction
Sepsis is a complex syndrome triggered by infection and characterized by the massive deregula-
tion of immunological networks [1]. Septic patients have a mean age of approximately 65 years
[2] and the incidence of sepsis and its risk of mortality increase significantly with advanced age
[3, 4]. Factors that might contribute to the increased risk and incidence in the elderly include
defects in the integrity of epithelial barriers, decreased gag and cough reflexes, altered levels of
consciousness, immobility, concomitant medical diseases, a dependency on invasive medical
devices, diminished physiological reserves, endocrine deficiencies, and malnutrition [5, 6].
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Age-related defects in immunity are caused by major defects in cell-mediated and humoral
effector functions [7]. Aging causes changes in adaptive immunity associated with a shift of the
T cell repertoire from a naive phenotype to memory T cells [3] and from type 1 to type 2 re-
sponses [8, 9]. Numbers of B and plasma cells gradually decrease with age, while immunoglob-
ulin levels increase [10].

Innate immunity was previously considered to be well-preserved in the elderly [11], but re-
cent studies have also demonstrated significant alterations in these components [3]. Studies
have also indicated the altered expression and function of Toll-like receptors (TLRs) caused by
aging, altering the host’s response to pathogens [12]. Elevated levels of basal inflammation [13,
14], defective activation of mitogen-activated protein kinases (MAPKs) [15], increased number
of apoptotic cells [16], defects in phagocytosis, generation of reactive oxygen species (ROS) and
impaired costimulatory molecule expression have also been reported in the elderly [17]. In-
deed, recent studies have indicated that older adults have elevated levels of pro-inflammatory
cytokines, clotting factors and acute phase reactants in the steady state [18–20].

The inflammatory response of the elderly following infection, however, remains under de-
bate. Animal studies demonstrated that mortality, inflammation, hypothermia, apoptosis and
disseminated intravascular coagulation are increased in aged animals subjected to experimental
models of sepsis [21]. It is intriguing that despite the well characterized aspects of immunose-
nescence and the exaggerated inflammatory response detected in septic aged rodents [22, 23],
clinical studies conducted in humans (including those from our group) observed a similar im-
mune profile when old and young septic critically ill patients were compared [24–27].

The purpose of this study was to perform a genome-wide gene expression analysis of neu-
trophils obtained from elderly and young patients in septic shock, to investigate the potential
differences in cell activation that might explain the altered status of immune and inflammatory
systems in advanced aged patients with sepsis. We decided to focus on neutrophils because re-
cent reports suggested their function was particularly altered in the elderly [28].

Patients and Methods

Study design
The current study was a prospective cohort study, conducted in the Hospital das Clínicas In-
tensive Care Units (University of Sao Paulo, Brazil). Blood samples were obtained from six
aged septic patients (age range 65–78 years old), six young septic patients (age range 22–35
years old), six healthy aged volunteers (age range 60–82 years old) and six healthy younger in-
dividuals (age range 20–35 years old). Patients’ profiles are described in the S1 Table. All cases
of sepsis were in patients with a clinical illness and did not include patients admitted for trau-
ma or surgical reasons. Reasons for the majority of admissions included in this study were sep-
sis, stroke, altered levels of consciousness, pulmonary edema, and asthma and/or chronic
obstructive pulmonary disease. Patients who were less than 18 years old, pregnant, HIV-posi-
tive, or in end-of-life conditions were excluded. Patients with disseminated malignancies or ad-
vanced hepatic disease, those receiving chemotherapy and those who refused to participate in
this study were also excluded. Septic shock was defined according to the criteria of the Ameri-
can College of Chest Physicians/Society of Critical Care Medicine (ACCP/SCCM) Consensus
Conference Committee proposed in 1992 [29].

The study protocol was approved by the Hospital das Clínicas Ethics Committee. Patients
(or their close relatives) received detailed explanations and provided written consent prior to
inclusion in the study (Protocol # 1207/09).

Septic Shock in Advanced Age: Transcriptome Analysis

PLOS ONE | DOI:10.1371/journal.pone.0128341 June 5, 2015 2 / 16

from FAPESP (2014/03150-6) and EMR received an
established investigator fellowship from CNPq.

Competing Interests: The authors have declared
that no competing interests exist.



RNA extraction and microarray experiments
All blood samples were sent to our laboratory for processing immediately after collection. The
anticoagulant-treated blood was layered on the Ficoll-Paque PLUS solution (GE Healthcare)
and centrifuged for a short period of time. Differential migration during centrifugation results
in the formation of layers containing different cell types. The bottom layer contains erythro-
cytes that have been aggregated by the Ficoll and, therefore, sediment completely through the
Ficoll-Paque PLUS. The layer immediately above the erythrocyte layer contains the granulo-
cytes, which at the osmotic pressure of the Ficoll-Paque PLUS solution attain a density great
enough to migrate through the Ficoll-Paque PLUS layer.

After Ficoll-Paque PLUS (GE Healthcare) density gradient centrifugation, we separated the
second layer containing the granulocytes. This layer was transferred to new tubes, diluted in
lysis buffer and kept on ice for 10 minutes. After centrifugation at 290 x g for 10 minutes at 4°C
the pellet was resuspended in lysis buffer and kept on ice for additional 10 minutes. A new cen-
trifugation step was performed at 2500 x g for 2 minutes at room temperature and the samples
were washed with phosphate-buffered saline (PBS). Finally, the samples were centrifuged at
1500 x g for 2 minutes at room temperature and the pellet was resuspended in Trizol (Life
Technology, Carlsbad, USA) and stored at -80°C.

Total RNA was isolated following the manufacturer’s protocol and its integrity and concen-
tration were assessed using the Agilent 2100 Bioanalyzer and the RNA 6000 Nano Kit (Agilent
Technologies, Santa Clara, CA, USA). Expression levels of protein-coding genes and long non-
coding RNAs (lncRNA) were evaluated using the SurePrint G3 Human Gene Expression
8x60K v2 Microarray (design ID # 039494) and the Low Input Quick Amp Labeling kit, follow-
ing a two-color labeling protocol (Agilent Technologies). Cyanine-3 labeled RNA from each
sample and cyanine-5 labeled reference RNA (Universal Human Reference RNA, Agilent, cat
#740000) were combined and hybridized to the microarrays following the manufacturer’s
protocols.

Data processing and filtering
Microarrays were scanned using the SureScan Microarray Scanner (Agilent Technologies) and
images were processed using the Feature Extraction Software v12 (Agilent Technologies) for
quality control, determination of feature intensities and ratios, and for background correction.
The LOWESS procedure was used for data normalization and transformation [30]. We only
considered features that were considered “well above background” in at least five (of six) sub-
jects in at least one study group (young adults with sepsis, control young adults, elderly with
sepsis, and control elderly). After data filtering and processing, 16,698 probes remained. A
Pearson correlation between those filtered features was calculated for each pair of subjects.
Overall, we observed a good correlation between any pair of samples (minimum r = 0.88) and a
higher correlation between samples from the same group (mean intragroup correlation = 0.96)
compared with different groups of samples (mean intergroup correlation = 0.93). Moreover,
the samples grouped by disease status and age using unsupervised hierarchical clustering (S1
Fig) further indicating the good quality of the data.

A number of probes (8192) could not be assigned to the known or predicted lncRNA se-
quences annotated in public databases (Genbank RefSeq, Emsembl). These poorly annotated
probes were categorized as “unannotated” and were not analyzed further. The raw and pro-
cessed microarray datasets are deposited at the Gene Expression Omnibus (accession number
GSE67652 associated to platform GPL16699).
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Statistical analysis
We performed two sets of differential gene expression analyses. One analysis was to identify
genes deregulated in young and elderly sepsis subjects compared with matched healthy con-
trols. A second analysis searched for genes deregulated in septic or healthy elderly subjects
compared with matched young controls. In each analysis, a gene was considered differentially
expressed when it was identified by a combination of two statistical methods, namely Signifi-
cance Analysis of Microarrays [31] and rank product [32], using publicly available R packages
[33]. To limit the number of false-positives we only considered for further analysis genes iden-
tified as differentially expressed with a P-value of p� 0.01 by both methods.

Functional annotation and pathway analysis
Lists of differentially expressed genes were annotated and investigated to identify the enrich-
ment of particular gene categories or pathways using the Ingenuity Pathway Analysis suite
(IPA, Qiagen, Redwood City, www.qiagen.com/ingenuity). IPA Upstream Analysis was used to
identify putative upstream regulators and to predict whether they were activated or inhibited,
given the observed gene expression changes in the experimental dataset, and the expected caus-
al effects, which were compiled from the literature in Ingenuity’s Knowledge Base.

Relative Quantification of gene expression levels using Real Time-PCR
To validate the microarray expression data, selected genes were subjected to quantitative Real
Time-PCR using the TaqMan assay system (Life Technologies). Briefly, 100 ng of total RNA
was subjected to reverse transcription using the High-Capacity cDNA Reverse Transcription
Kit (Life Technologies) following the manufacturer’s protocol. Specific TaqMan Gene Expres-
sion Assays (Life Technologies) were used for detecting gene expression levels of TGFB1
(Hs00998133), SRC (Hs1082246), HDAC4 (Hs01041638), CREBBP (Hs00231733), NDUFA4
(Hs00800172), INHBB (Hs00173582), BMP7 (Hs00233476) and SDHC (Hs01698067). PCR
was carried out following the protocol recommended for the TaqMan Universal PCR Master
Mix (Life Technologies) in an AB7500 thermocycler (Life Technologies). For each sample, the
expression data of each candidate gene was normalized to 18S rRNA expression (Eukaryotic
18S rRNA Endogenous Control, Life Technologies). For relative quantification we used the
comparative ΔCt method [34]. The Student’s t-test (p-value< 0.05) was used to determine the
statistical significance of expression differences between the sample groups.

Results
The microarray in this study contained 58,717 probes that included protein-coding mRNAs
(36,075), long noncoding RNAs (14,450), and a number of poorly annotated transcripts (8192)
(Table 1). Approximately 28.4% of all probes were detected in at least one group of samples. A
smaller fraction of lncRNAs (10%) was detected compared with protein-coding mRNAs (82%)
(Table 1), which is in line with the more tissue-specific and less abundant nature of these tran-
scripts [35, 36].

We first compared gene expression profiles of neutrophils across the four groups of samples,
grouped by septic status and age (Fig 1). S1 Table shows the clinical and laboratory characteris-
tics of the study groups. As expected, the occurrence of sepsis affected the expression of a great-
er number of genes (4- to 5-fold) compared with aging (Table 1). We detected 421 genes that
were differentially expressed between old and young subjects with sepsis, and 476 between old
and young healthy controls (Fig 1). Only 1.4% of genes deregulated in old subjects compared
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Table 1. Expressed probes in the array according to gene type and sample group.

Probe type Number of probes
in the array

Number of detected
probes*

Control vs.
Sepsis**

Control vs.
Sepsis**

Elderly vs. Young
Adults**

Elderly vs. Young
Adults**

Elderly Young Sepsis Control

Protein-coding
mRNA

36,075 13,622 1,407 1,631 375 277

Long noncoding
RNA

14,450 1,604 165 155 33 112

Unannotated*** 8,192 1,472 230 188 13 87

Total 58,717 16,698 1,802 1,974 421 476

*To be considered “detected” a probe was measured with the ‘Well Above Background’ flag in at least five of six samples in at least one group.

** Number of differentially expressed probes in each group: To be considered “differentially expressed” a probe should have a p-value � 0.01 assigned

by two different methods (SAM and RankProduct).

***Probes were labeled as “unannotated” when not clearly categorized as coding or non-coding in the microarray annotation table.

doi:10.1371/journal.pone.0128341.t001

Fig 1. Venn diagram of differentially expressed genes in each group according to age and disease
status.

doi:10.1371/journal.pone.0128341.g001
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with young subjects were common to both septic and healthy subjects. We also observed a
number of lncRNAs that were deregulated in both sepsis and aging (Table 1).

To identify transcriptional changes that might explain the molecular basis of the clinical be-
havior in septic elderly patients, we examined the molecular pathways that were differentially
expressed between elderly and young adults. First, we identified a number of canonical path-
ways that were enriched in genes deregulated in the elderly. Interestingly, most of these path-
ways were significantly enriched only in the sepsis group, i.e., genes were differentially
expressed between elderly subjects with sepsis and younger adults with sepsis, with marginal
enrichment in the healthy group (Table 2). The oxidative phosphorylation (p = 5.3 × 10−13)
and mitochondrial dysfunction (p = 1.4 × 10−10) pathways were the most enriched in septic pa-
tients of advanced age when compared with the young septic group. Other pathways signifi-
cantly enriched in the elderly were extracellular signal-regulated kinase 5 (ERK5) signaling
(p = 9.4 × 10−4) and the NRF2-mediated oxidative stress response (p = 5.2 × 10−3) (Table 2).
Table 3 lists the enzymes and transporters involved in oxidative phosphorylation that were dif-
ferentially expressed in elderly septic patients.

Next, we performed a pathway enrichment analysis of the genes differentially expressed in
septic patients compared with healthy controls. Many pathways were identified, but none
showed significantly different enrichment in the elderly compared with younger adults. Path-
ways that are modulated during sepsis such as Cdc42 signaling [37], phospholipase C signaling
[38], interleukin 17 (IL-17) signaling [39], protein ubiquitination pathway [40], glucocorticoid
receptor [41] and p38 MAPK signaling [42] were observed.

To favor the identification of molecular pathways preferentially affected in the elderly with
sepsis, we performed a similar analysis using a subset of genes differentially expressed between
elderly sepsis and healthy subjects, but not in younger adults (944 genes, S2 Fig). Canonical
pathways preferentially altered in elderly individuals with sepsis are shown in Table 4. These
pathways included transforming growth factor β (TGF-β) signaling, Wnt/β-catenin signaling,
calcium signaling and other pathways of interest relevant to sepsis. Notably, during sepsis, the
TGF-β pathway was modulated both in the elderly and in younger adults. However, we noted
an excess of TFG-β signaling genes upregulated in elderly septic individuals but not in younger
septic individuals, as well as differences in the repertoire of genes modulated upon sepsis
(Table 5).

Table 2. Differentially enriched canonical pathways between elderly and young individuals, with or
without sepsis.

Canonical Pathway Elderly vs. Young

Control Sepsis

Oxidative phosphorylation 1.95E-001 5.28E-013

Mitochondrial dysfunction 8.98E-002 1.41E-010

ERK5 signaling – 9.37E-004

NRF2-mediated oxidative stress response 2.58E-001 5.23E-003

Bile acid biosynthesis neutral pathway 1.50E-002 2.14E-001

dTMP de novo biosynthesis 1.00E+000 3.23E-003

GADD45 signaling – 4.75E-003

DNA damage-induced 14-3-3σ signaling – 4.75E-003

TWEAK signaling 1.22E-002 4.57E-001

Fisher’s Exact test p-values are shown. Significant values (p < 0.05) are shown.

TWEAK: TNF related weak inducer of apoptosis.

doi:10.1371/journal.pone.0128341.t002
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A bioinformatics analysis based on the expression profiles of known targets identified by
microarray identified several upstream regulators predicted to be either activated or inhibited
in aging. Among those we focused on were putative regulators that had opposite activity in el-
derly septic individuals compared with healthy controls (Table 6). Interestingly, these included
the upstream regulators of pathways detected in the previous analysis including ERK and TGF-
β1, which were more active in septic elderly subjects compared with healthy elderly subjects,
and when compared with matched young controls. This indicated that regulatory microRNAs
might be predicted to be activated (miR-590-3p) or inhibited (miR-141-3p, miR-186-5p) in

Table 3. Genes from the oxidative phosphorylation pathway differentially expressed between elderly and young individuals with sepsis.

Symbol Gene name Fold- change p-value

NDUFA4 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4 0.69 1.90E-04

MT-CO1 Mitochondrially encoded cytochrome c oxidase I 0.74 2.80E-03

SDHC Succinate dehydrogenase complex, subunit C 0.83 6.40E-03

ATP5G3 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C3 0.80 1.00E-03

COX5A Cytochrome c oxidase subunit Va 0.83 1.90E-03

COX6C Cytochrome c oxidase subunit Vic 0.79 5.50E-03

NDUFA8 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 8 0.81 1.40E-03

ATP5F1 ATP synthase, H+ transporting, mitochondrial F0 complex, subunit B1 0.83 3.20E-03

NDUFB4 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 4 0.84 4.00E-03

ATP5H ATP synthase, H+ transporting, mitochondrial F0 complex, subunit d 0.83 5.00E-03

NDUFB9 NADH dehydrogenase (ubiquinone) 1 beta subcomplex, 9 0.83 1.40E-03

COX7C Cytochrome c oxidase subunit VIIc 0.78 2.50E-03

UQCRB Ubiquinol-cytochrome c reductase binding protein 0.83 1.70E-03

COX11 COX11 homolog, cytochrome c oxidase assembly protein 0.81 7.50E-03

ATP5O ATP synthase, H+ transporting, mitochondrial F1 complex, O subunit 0.82 2.40E-03

UQCRH Ubiquinol-cytochrome c reductase hinge protein 0.82 3.10E-03

COX7A2 Cytochrome c oxidase subunit VIIa polypeptide 2 0.84 1.50E-03

UQCRQ Ubiquinol-cytochrome c reductase, complex III subunit VII 0.85 3.00E-03

doi:10.1371/journal.pone.0128341.t003

Table 4. Canonical pathways enriched with genes altered in elderly individuals with sepsis compared
with elderly controls, but not altered in young adult septic patients compared with young adult
controls.

Canonical Pathways p-value

TGF-β signaling 5.8E-05

Factors promoting cardiogenesis in vertebrates 6.8E-05

Role of osteoblasts, osteoclasts and chondrocytes in rheumatoid arthritis 4.9E-04

Gα12/13 signaling 2.1E-03

Cardiomyocyte differentiation via BMP receptors 2.9E-03

Wnt/β-catenin signaling 4.2E-03

Cholecystokinin/Gastrin-mediated signaling 4.5E-03

Role of macrophages, fibroblasts and endothelial cells in rheumatoid arthritis 4.5E-03

Calcium signaling 4.7E-03

BMP signaling pathway 5.6E-03

NGF signaling 5.9E-03

Significant values (Fisher’s Exact test; p < 0.05) are shown.

NGF, nerve growth factor; TGF, transforming growth factor; BMP, bone morphogenetic protein.

doi:10.1371/journal.pone.0128341.t004
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septic elders, as well as compounds that may exert an antagonic regulatory role in these pa-
tients compared with healthy controls (Table 6), suggesting novel potential therapeutic areas.

To provide independent support of the DNAmicroarray data analysis, quantitative PCR ex-
periments were performed for the following genes: 1) NDUFA4 and SDHC, to investigate re-
spiratory chain activity and 2) INHBB, TGFB1 and CREBBP, to investigate TGF-β signaling.
HDAC4 (calcium signaling) and SRC (Wnt/β-catenin signaling) were also investigated because
these genes were significantly altered in elderly individuals with sepsis compared with healthy
elderly controls, and were not expressed at all in young adults (Table 4). In general, we ob-
served a good association (Pearson correlation = 0.68, p< 0.05) between qPCR and DNA mi-
croarray measurements (S3 Fig). NDUFA4, SDHC, and INHBB were significantly altered
(p< 0.02). Although not statistically significant, TGFB1 and HDAC4 showed transcriptional

Table 5. TFG-β signaling pathway genes exclusively differentially expressed in elderly individuals
with sepsis compared with controls.

Symbol Gene Name Fold
change

BMP7 Bone morphogenetic protein 7 1.19

CREBBP CREB binding protein 1.15

INHBB Inhibin beta B 1.53

SERPINE1 Serpin peptidase inhibitor clade E (nexin plasminogen activator inhibitor type
1) member 1

1.29

SMAD4 SMAD family member 4 1.10

SMAD9 SMAD family member 9 1.08

TGFB1 Transforming growth factor beta 1 1.13

Significant values (Fisher’s Exact test; p < 0.05) are shown.

doi:10.1371/journal.pone.0128341.t005

Table 6. Putative upstream regulators with inverted activity between elderly and young adults, with or without sepsis.

Upstream regulators Elderly vs. Young adults

Control Sepsis

z- score p- value z- score p- value

miR-590-3p (miRNAs w/seed AAUUUUA) −0.75 0.025 2.85 0.011

INSR 1.95 0.035 −1.63 0.000

ERK −0.79 0.003 2.74 0.012

GnRH analog −0.90 0.011 2.50 0.003

miR-141-3p (miRNAs w/seed AACACUG) 2.30 0.275 −0.95 0.020

Phorbol myristate acetate −1.67 0.022 1.48 0.006

TP63 −0.44 0.028 1.97 0.080

Phorbol esters −0.49 0.005 1.72 0.002

Cg (Choriogonadotropin) −0.93 0.046 0.80 0.032

SB203580 (kinase inhibitor) 1.40 0.017 −0.16 0.012

TGFB1 −0.44 0.030 1.00 0.034

PD98059 (kinase inhibitor) 0.41 0.014 −0.55 0.019

MAP2K4 −0.76 0.007 0.15 0.015

miR-186-5p (miRNAs w/seed AAAGAAU) 0.03 0.016 −0.36 0.008

Positive/negative z-score values indicate the upstream regulator is activated/inhibited in elderly relative to young adults, respectively.

doi:10.1371/journal.pone.0128341.t006
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changes in agreement with those observed in the microarray. Only CREBBP and SRC showed
changes that were the reverse of those observed in the microarray, but these were not statisti-
cally significant, and therefore were inconclusive. Overall, these results support our observation
that aged people had a reduced expression of genes related to respiratory chain activity and an
increased activation of TGF-β-related genes during the course of overwhelming infection.

Discussion
Transcriptomics is a powerful technique used to identify therapeutic targets and biomarker sig-
natures during infectious disease [43, 44]. A number of gene expression profiling studies were
previously performed in sepsis, revealing a persistent repression of genes involved in adaptive
immunity and the massive activation of innate immune pathways during septic shock [45].
Using whole blood-derived RNA, Wong et al. observed the upregulation of oxidative phos-
phorylation, IL-10 signaling, TLR signaling, NRF2-mediated oxidative stress responses, ubiqui-
none biosynthesis, TREM signaling, NF-κB signaling, protein ubiquitination pathways and IL-
6 signaling in macrophages. They also observed the downregulation of T lymphocyte pathways
and CCR5 signaling [46]. Similarly, Cvijanovich et al. detected the upregulation of TLR, IL-10,
IL-6 and NF-κB signaling and the downregulation of T lymphocyte activation. Moreover, they
detected the upregulation of acute phase responses, p38 MAPK, the complement system, and
some nuclear receptor signaling molecules (LXR and PPAR) associated with the downregula-
tion of antigen presentation pathways [47].

Using whole blood-derived RNA from patients in septic shock, the global gene expression
experiments of Shanley et al. agreed with these studies. However, they also observed the upre-
gulation of integrin, IGF-1, GM-CSF and insulin receptor signaling [48]. Similarly, Tang et al.
observed the novel activation of many apoptotic genes, including CARD12, APAF1 and
ELMOD2 in mononuclear cells from septic patients [49]. Surprisingly, a recent study in severe
blunt trauma patients reported similar findings, with the activation of a large number of genes
involved in inflammation, pattern recognition and antimicrobial functions with the simulta-
neous suppression of genes involved in antigen presentation and T cell proliferation, suggesting
that severe physiological stress, regardless of its origin, may present common genomic signa-
tures [50].

Sepsis affects very different groups of patients (including aged people, diabetics, patients
with end-stage renal disease, trauma victims, surgical patients’, and obese people). Historically,
it has been accepted that each specific subset of septic patients may have its own characteristic
inflammatory immune response. In the course of sepsis, a transition from inflammation to im-
munosuppression has been suggested to explain the disappointing results obtained by clinical
trials that investigated the use of anti-inflammatory drugs in this population [51–53]. High-
throughput transcriptome analysis has provided additional information and clustering algo-
rithms using separate training and validation cohorts suggested the existence of gene expres-
sion subtypes in sepsis and septic shock [54, 55]. Furthermore, a study of gene expression in
patients with sepsis secondary to community-acquired pneumonia distinguish survivors from
nonsurvivors in part by variations in the expression of genes implicated in energy metabolism
[56]. In contrast, a recent systematic review based on DNA microarray expression data was un-
able to detect a distinctive pro-inflammatory or anti-inflammatory phase in early or late sepsis
or differences in the expression patterns between groups [57]. Thus, this subject remains
highly controversial.

Most transcriptome studies in sepsis were performed in a pediatric population, and to our
knowledge, our study is the first genome-wide expression analysis comparing septic shock pa-
tients of advanced age with young adults.
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Initially, our results confirmed that both the young and the elderly responded alike regard-
ing the production of tumor necrosis factor α (TNFα), IL-6, IL-1β, TLRs and other classical
markers of cell activation, following severe infectious stress. Some specific pathways, however,
appeared to be more critically affected in the elderly with sepsis, explaining the worse prognosis
observed in these patients. Based on the data shown here, it is our opinion that defects in mito-
chondrial function/oxidative phosphorylation, TGF-β, Wnt/β-catenin, nerve growth factor
(NGF) and calcium signaling may play a major role in the clinical features of sepsis in
elderly patients.

We observed a marked decrease in the expression of genes encoding components of the mi-
tochondrial respiratory chain in the septic elderly. Impairment of mitochondrial function sig-
nificantly contributed to organ failure in septic patients [58]. Physiologically, small amounts of
ROS are produced at complexes I and III of the respiratory chain. Sepsis is accompanied by in-
creased oxidative stress caused by numerous factors, including the production of ROS by neu-
trophils, increased xanthine oxidase activity, increased nitric oxide plasma levels, and
decreased antioxidant serum capacity [59]. Pro-inflammatory mediators and oxidative stress
impair the function of the enzyme complexes of the respiratory chain and lead to structural
damage to mitochondrial lipids, proteins and DNA [60, 61], promoting multiple organ failure
[62]. Mitochondrial damage and dysfunction secondary to oxidative stress are also observed in
aged cells [3, 63, 64]. Indeed, mice that present with defective editing functions of mitochondri-
al DNA polymerase exhibit a markedly shortened lifespan and increased features of aging, in-
cluding alopecia, kyphosis, decreased activity, and a loss of reproductive function [65].

TGF-β has pleiotropic effects on adaptive immunity, especially for the regulation of effector
and regulatory CD4+ T cell responses. TGF-β is a potent suppressor of Th1 and Th2 effector
cell differentiation, a regulator of Foxp3+ regulatory T cells, and is a critical cytokine for the in-
duction of Th9 and Th17 cells [66–68]. TGF-β also has regulatory effects on CD8+ cells [69]
and promotes phagocytosis [70]. Thus, we propose that increased activation of the TGF-β
pathway in elderly septic patients may induce a prolonged downregulation of adaptive immu-
nity and an increased Th17 response.

The Wnt/β-catenin pathway determines major developmental processes in the embryo and
regulates maintenance, self-renewal and differentiation of adult mammalian tissue stem cells
[71]. Many organs with a high cell turnover require continuous replenishment by somatic stem
cells. Ageing of hematopoietic stem cells is associated with impaired hematopoiesis in the el-
derly [72, 73], which was attributed to a switch from canonical to non-canonical Wnt signaling
[74]. In addition, a recent study reported that Wnt/β-catenin signaling induced the aging of
mesenchymal stem cells through ROS generation [75]. These mechanisms might be responsi-
ble for defects in dendritic cell differentiation [76] and loss of T cell potential observed with age
[77]. The Wnt/β-catenin pathway participates in the regulation of many other pathways, in-
cluding NF-κB and PI3-kinase pathways, with important implications in the pathophysiology
of septic shock [78]. In our opinion, the increased upregulation of the Wnt/β-catenin pathway
in the elderly might be a critical detrimental factor.

Nerve growth factor (NGF) ensures the maintenance of phenotypic and functional charac-
teristics of several populations of neurons and immune cells. The role of NGF has never been
investigated in sepsis, but might be involved because neuropeptides possess a broad number of
regulatory functions in immunity [79] and NGF directly affects the survival and differentiation
of stem cells, granulocytes, lymphocytes and monocytes [80–83]. Further studies should inves-
tigate its role in sepsis and in specific populations of septic patients, such as the elderly.

Calcium has a myriad of cellular functions, including effects on hormone secretion, enzyme
activity, nerve conduction, and muscle contraction with obvious repercussions in sepsis.
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Calcium influx is a potent cell activator and, together with phosphate, alters electrostatic fields
and protein conformation, dictating the majority of signal transduction [84].

The mechanisms that lead to the dysfunction of specific pathways in the immune responses
of older people are complex and might involve multiple factors. We propose that environmen-
tal factors [85, 86], microRNAs [87] and epigenetic changes [88] might play a key role as mod-
ulating factors of the immune pathways that are particularly affected in older people.

Our data confirm previous reports that aging is accompanied by changes in the expression
of genes related to immune responses [89], and further studies are required to support the in-
volvement of pathways we identified and their relevance in sepsis. Interestingly, our analysis
also suggests that a number of upstream regulators of molecular pathways display an inverted
pattern of expression in elderly patients with sepsis compared with healthy controls, including
microRNAs miR-590-3p (predicted activation in the septic elderly), miR-141-3p (predicted in-
hibition in the septic elderly) and miR-186-5p (predicted inhibition in the septic elderly). An-
other distinctive feature of this study was the observation for the first time that subsets of long
noncoding RNAs are deregulated in the immune system in sepsis and aging, warranting addi-
tional studies aimed at investigating the biological roles exerted by this class of transcript in
septic shock in patients of advanced age.

Conclusions
There is great hope that high-throughput screening technology will result in a better under-
standing of the complexity of systemic inflammation, identifying new therapeutic targets and
groups of patients that may benefit from specific interventions.

Here, we identified major pathways preferentially deregulated in the elderly following severe
infection, providing evidence that the systemic inflammatory response differs according to pa-
tient age. Thus, oxidative stress might have a major role in inducing multiple dysfunctions in
the elderly. Furthermore, our study identified additional important genes and molecular path-
ways, thus helping to elucidate the mechanisms involved in signaling crosstalk during infection
and in aging.
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