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Abstract

If potential morphologically cryptic species, identified based on differentiated mitochondrial DNA, express ecological
divergence, this increases support for their treatment as distinct species. However, mitochondrial DNA introgression
hampers the correct estimation of ecological divergence. We test the hypothesis that estimated niche divergence differs
when considering nuclear DNA composition or mitochondrial DNA type as representing the true species range. We use
empirical data of two crested newt species (Amphibia: Triturus) which possess introgressed mitochondrial DNA from a third
species in part of their ranges. We analyze the data in environmental space by determining Fisher distances in a principal
component analysis and in geographical space by determining geographical overlap of species distribution models. We find
that under mtDNA guidance in one of the two study cases niche divergence is overestimated, whereas in the other it is
underestimated. In the light of our results we discuss the role of estimated niche divergence in species delineation.
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Introduction

Potential morphologically cryptic candidate species are often

first identified based on diverged mitochondrial DNA (mtDNA)

[1], especially with the increased reliance on mtDNA barcoding as

a tool for species identification and biodiversity estimation [2].

Because ecological divergence can promote speciation [3–5], a

handle on potential species status may be provided if mtDNA

divergence is paralleled by niche divergence [6,7]. However,

mtDNA does not always properly reflect species boundaries as

defined by nuclear DNA (nuDNA) and asymmetric introgression

of mtDNA is commonplace [8]. During species displacement

accompanied by hybridization, mtDNA is prone to introgress from

the native, common species to the invading and locally rare

species, due to the demographical imbalance at the hybrid zone

[9,10]. Alternatively, positive selection could cause mtDNA to be

pulled into the range of another species [11]. This raises the

question of how asymmetric mtDNA introgression would affect

the estimation of niche divergence in diagnosing species.

When interpreting mtDNA divergence as coinciding with

species ranges, asymmetrically introgressed mtDNA would distort

niche divergence estimates, by wrongfully excluding a locality

from one lineage and including it with another (Fig. 1a). Two

contrasting effects might result. On the one hand, niche

divergence between the two species could be underestimated,

because part of the niche space occupied by species 1 is

erroneously interpreted as also being occupied by species 2

(Fig. 1b). On the other hand, niche divergence between the two

species could be overestimated, because part of the niche space

occupied by both species is erroneously interpreted as being only

occupied by species 2 (Fig. 1c). Here we explore these potential

effects, using empirical data of crested newts (Amphibia: Triturus),

distributed in SE Europe and adjacent Asia.

Crested Newt Case Studies
MtDNA introgression is regularly observed at crested newt

contact zones [12]. We here present two cases, at different stages

of taxonomic development. The first case concerns T. macedonicus.

Triturus macedonicus was revealed as an allopatric sister lineage of T.

carnifex based on mtDNA and morphology [13,14] and is currently

recognized as a distinct species based on nuDNA divergence [15].

Here asymmetric introgression of mtDNA, derived from T.

ivanbureschi, is found over a considerable part of the Balkan

Peninsula (Fig. 2). Morphological criteria such as the number of

rib-bearing vertebrae can be used to distinguish T. macedonicus from

T. ivanbureschi, but species identification in the field is not always

straightforward [14,16,17].

The second case concerns an as yet undescribed taxon

(hereafter referred to as ‘‘candidate species’’) [18]. The candidate

species was first identified as distinct from T. ivanbureschi based on

diverged mtDNA [13,19,20], subsequently found to occupy

different environmental space [21], and eventually suggested to

represent a distinct nuDNA gene pool as well [22]. The

distribution of nuDNA and mtDNA does not fully overlap: the

candidate species possesses mtDNA derived from T. ivanbureschi in

NW Asiatic Turkey (Fig. 2). There are as yet no documented

morphological criteria to distinguish the candidate species from T.

ivanbureschi [16,17,23].
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We test the hypothesis that estimated niche divergence based on

the true species boundary (i.e. based on nuDNA) differs from that

based on only mtDNA (misrepresenting the true species due to

geographically asymmetric introgression) and in the light of our

results we discuss the role of estimated niche divergence in species

delineation.

Methods

Distribution and Environmental Data
We used ref. [12] as a base for our locality dataset. We

incorporated 18 newly identified localities, three of which replace

localities with a less accurate provenance from ref. [12]. We

excluded 13 localities where only genetically admixed individuals

were found based on 52 nuDNA markers (ref. [24]; Wielstra et al.

in prep.) and two further localities for which no nuDNA could be

consulted but which were positioned close to admixed populations.

The dataset encompassed 300 localities and was partitioned based

on nuDNA and mtDNA as follows: T. macedonicus 127 nuDNA and

89 mtDNA localities, T. ivanbureschi 127 nuDNA and 183 mtDNA

localities and the candidate species 45 nuDNA and 32 mtDNA

localities. Five range sections were recognized based on the

combination of nuDNA composition and mtDNA type as follows:

range section A (T. macedonicus with species-specific mtDNA) with

89 localities over c. 85,200 km2, range section B (T. macedonicus

with introgressed mtDNA) with 40 localities over c. 49,200 km2,

range section C (T. ivanbureschi with species-specific mtDNA) with

127 localities over c. 224,300 km2, range section D (candidate

species with introgressed mtDNA) with 16 localities over c.

16,700 km2 and range section E (candidate species with species-

specific mtDNA) with 32 localities over c. 100,000 km2. Species-

specific and introgressed mtDNA were found in syntopy in two T.

macedonicus and three candidate species localities. For details see

Fig. 2 and Dataset S1. For ease of communication we use range

section names A–E throughout the Methods and Results.

For environmental data layers, we used bioclimatic variables at

2.5 arcminute resolution (c. 565 km) available from the

WorldClim database 1.4 [25]. To obtain realistic and transferable

models, it is recommended to mirror the physiological limitations

of the study species and minimize the effects of multicollinearity

among data layers [26–29]. Crested newt species differ in the

length of their annual aquatic period [16,19]. Therefore, we

included a set of layers that likely reflects the availability of water

bodies during the breeding season, i.e. seasonal variation in

evaporation and precipitation: bio10=mean temperature of

warmest quarter, bio11=mean temperature of coldest quarter,

bio15= precipitation seasonality, bio16= precipitation of wettest

quarter, and bio17= precipitation of driest quarter. These layers

show a Pearson correlation ,0.7. This selection is identical to the

one used by us before [12,21].

Niche Divergence in Environmental Space
Environmental values of the bioclim layers corresponding to

each crested newt locality were extracted in ArcGIS (www.esri.

com). The data were standardized to a mean of zero and a

standard deviation of one to eliminate measurement-scale effects.

Niche divergence in multidimensional space derived from the

principal components axes were quantified with Fisher distances

under default settings with XLSTAT 2013 (www.xlstat.com) and

used to test the following null hypotheses (see also Fig. 2): 1) the

environmental conditions experienced by species are not signifi-

cantly different, i.e. Fisher distances are not significantly different

from zero, if species are delineated based upon either mtDNA or

nuDNA (A+B vs. A for T. macedonicus, C vs. B+C+D for T.

ivanbureschi and D+E vs. E for the candidate species); 2) the

environmental conditions of the areas with species-specific and

introgressed mtDNA are not significantly different, i.e. Fisher

distances are not significantly different from zero, within species (A
vs. B for T. macedonicus, D vs. E for the candidate species); and 3)

the environmental conditions in the area where T. macedonicus and

the candidate species possess introgressed mtDNA are not more

dissimilar (i.e. Fisher distances are relatively larger) to those

encountered in the range of the mtDNA ‘donor’ T. ivanbureschi

than those encountered in the area where species possess species-

specific mtDNA (A vs. C compared to B vs. C for T. macedonicus, C
vs. D compared to C vs. E for the candidate species).

Niche Divergence in Geographical Space
We used Maxent 3.2.1 [30] to construct species distribution

models for species as identified based on nuDNA (A+B for T.

macedonicus, C for T. ivanbureschi and D+E for the candidate species)

and based on mtDNA (A for T. macedonicus, B+C+D for T.

ivanbureschi and E for the candidate species). We constrained the

background (i.e. the area from which pseudo-absence data are

drawn) to a 200 km buffer zone around known Triturus localities

(see ref. [12]), the rationale being that excluding highly distinct

environmental information, occurring outside the area of interest,

prevents inflation of model performance and predicted suitable

area [31]. We tested whether any of the species distribution models

performed statistically significantly better than random, following

the null model approach of Raes and ter Steege [32].

Geographical overlap of the species distribution models was

quantified with Schoener’s D in ENMTools 1.3 [33,34] as D was

found to perform best in a comparison of various commonly used

metrics [35]. D values range from 0 (no overlap) to 1 (complete

overlap). Because inclusion of a high proportion of grid cells with

low occurrence probabilities – presumably representing back-

ground noise – may bias assessments of niche overlap [35] we

restricted the geographical area for which niche overlap was

determined to that over which the three species are distributed (cf.

Fig. 2).

We determined D values to test the following null hypotheses

(see also Fig. 2): 4) models for pairs of species as identified with

nuDNA and mtDNA, A vs. A+B for T. macedonicus, C vs. B+C+D
for T. ivanbureschi and E vs. D+E for the candidate species, show a

similar degree of geographical overlap, i.e. D values are not

significantly different, and 5) models for the two pairs of species

that show mtDNA introgression show a similar degree of

geographical overlap, i.e. D values are not significantly different,

when identified based on nuDNA or mtDNA, i.e. the two pairwise

comparisons A+B vs. C compared to A vs. B+C+D, for T.

macedonicus vs. T. ivanbureschi, and C vs. D+E compared to B+C+D
vs. E, for T. ivanbureschi vs. the candidate species. The test values

were obtained by running Maxent ten times, under the random

subsampling of 70% of the locality data (the ‘subsample’ replicated

run type with 30% of locality data used as ‘random test

percentage’), yielding 10610=100 semi-replicate D values for

each of the five pairwise comparisons. The sets of D values were

tested with ANOVA and interpreted through a Tukey’s HSD a

posteriori test in SPSS 16.

Results

The first and second principal components of the principal

component analysis have eigenvalues in excess of unity and

together account for 83.5% of the total variance in the data. The

third axis and higher contribute marginally to the explained

variance and were not further considered. The parameters bio10,

mtDNA Introgression and Niche Divergence
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bio11 and bio15 load heavily on the first axis and bio16 and bio17

on the second axis. A scatterplot for these two principal

components is shown in Fig. 3. Fisher distances including the

associated significance levels are reported in Table 1. For the

comparison of environmental conditions experienced by species

when delineated based upon either mtDNA or nuDNA (hypothesis

1 referred to in the methods), only T. macedonicus shows significant

differences (P,0.001). For the comparison of environmental

conditions in areas with species-specific and introgressed mtDNA

within species (hypothesis 2), T. macedonicus shows significant

differences (P,0.001) whereas the candidate species does not (P.

0.05). A comparison of the environmental conditions in the area

where species possess species-specific or introgressed mtDNA with

those encountered in the range of the mtDNA donor (hypothesis 3)

shows that for T. macedonicus conditions in the area with

introgressed mtDNA are more similar to those in the range of

T. ivanbureschi, whereas the opposite is found for the candidate

species (although Fisher distances are considerably smaller in this

case).

The six species distribution models are shown in Fig. 4. All

models have an AUC support value that is statistically significantly

higher than the corresponding null distribution. Comparisons of

geographical overlap D values are provided in Table 2. For the

three pairwise comparisons of sets of D values obtained by

comparing mtDNA and nuDNA delineated species (hypothesis 4),

two are significantly different (T. macedonicus vs. the other two

species; P,0.001) and one is not (T. ivanbureschi vs. the candidate

species; P.0.05). For the two pairwise comparisons of the sets of D

values of the two pairs of species that show mtDNA introgression

(hypothesis 5) both show significant differences (P,0.001).

Discussion

We study the distribution of species-specific mtDNA and

nuDNA in crested newts in SE Europe and adjacent Asia. The

three species involved are separated by wide areas in which these

genetic markers yield contrasting species identifications (Fig. 2). In

both these areas the mtDNA of the central species T. ivanbureschi

protrudes outside of its range as delineated based on nuDNA, to

the west in and around southern Serbia into the range of T.

macedonicus [36] and to the east in NW Asiatic Turkey into the

range of the candidate species [22].

Environmental Space
For the western case with T. macedonicus we find a Fisher

distance, reflecting the amount of niche divergence, significantly

different from zero, depending on whether the species is delineated

by either nuDNA (A) or mtDNA (A+B) (Table 1, Fig. 3). For the

Figure 1. The potential effect of asymmetric mtDNA introgression on estimating the niche divergence of species. Schematic with two
species shown in blue and in red, mtDNA shown by hard colors inside symbols, nuDNA shown by soft colors in the background, and range sections
shown as I, II and III. In (a) the two species possess their own mtDNA in range sections I and III whereas in range section II the blue species possesses
mtDNA of the red species. Treating mtDNA as species diagnostic overestimates the range of the red species. The other two panels illustrate
environmental conditions under which species niche divergences are flawed by following the mtDNA guidance. Note the difference in occupied
niche space in range section II that under scenario (b) results in an underestimate of the true species niche divergence and yields an overestimate in
scenario (c).
doi:10.1371/journal.pone.0095504.g001
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eastern case with the candidate species, this distance (i.e. between

D+E and E) is not significantly different from zero. In other words,

using mtDNA as a guidance leads to a flawed estimate of the niche

space taken by T. macedonicus, but not for the candidate species. For

T. macedonicus the environmental conditions in the area with

foreign mtDNA (range section B in Fig. 2) are different from the

core of the range (range section A) and relatively similar to the

environmental conditions experienced by the mtDNA donor T.

ivanbureschi (range section C). Conditions in the region where the

candidate species has foreign mtDNA (range section D) appear,

compared to the core of its range (range section E), dissimilar to

those in the range of T. ivanbureschi (range section C), but the

difference (between range sections D and E) is not significantly

different from zero.

Geographical Space
The species distribution models for T. macedonicus based on

either genetic marker show significantly smaller geographical

overlap, and hence more diverged niches, compared to those for

T. ivanbureschi and the candidate species (Table 2, Fig. 4). In other

Figure 2. Map showing ranges and localities of three Triturus species in SE Europe and adjacent Asia. The ranges shown by light shading
reflect nuDNA composition, whereas the localities shown by dots reflect the observed mtDNA type. In part of their ranges both T. macedonicus and
the candidate species possess mtDNA derived from T. ivanbureschi [22,36]. Five range sections are recognized: range section A where T. macedonicus
possesses species-specific mtDNA, range section B where T. macedonicus possesses introgressed mtDNA, range section C where T. ivanbureschi
possesses species-specific mtDNA, range section D where the candidate species possesses introgressed mtDNA, and range section E where the
candidate species possesses species-specific mtDNA.
doi:10.1371/journal.pone.0095504.g002

Table 1. Differences in environmental space as defined from principal component analysis.

Hypothesis tested Range sections Fisher distance

1 A+B vs. A 8.217***

1 C vs. B+C+D 1.933 NS

1 D+E vs. E 0.297 NS

2 A vs. B 51.635***

2 D vs. E 1.725 NS

3 A vs. C 116.754***

3 B vs. C 18.888***

3 C vs. D 2.423 NS

3 C vs. E 0.231 NS

The hypotheses tested are numbered as in the main text. Range sections correspond to Fig. 2. NS = non-significant;
*** = significant at p,0.001.
doi:10.1371/journal.pone.0095504.t001
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words, models based on nuDNA and mtDNA are relatively more

different for T. macedonicus than they are for the candidate species

and for T. ivanbureschi. Geographical overlap between models for

T. macedonicus and T. ivanbureschi is significantly smaller when

localities from the introgression zone are allocated to T. ivanbureschi

whereas for T. ivanbureschi and the candidate species we find the

opposite. This suggests that the environmental conditions in the

introgression zone of T. macedonicus (section B) are more similar to

those in the range of T. ivanbureschi (section C) than they are to

those in the core of the T. macedonicus range (section A).
Conversely, environmental conditions in the introgression zone

of the candidate species (section D) are more similar to those in the

core of its range (section E) than to those in the range of T.

ivanbureschi (section C).

For the western case with T. macedonicus, findings are in line with

the scenario in Fig. 1c. Here niche divergence is overestimated

because the environmental conditions that T. macedonicus experi-

ences in the introgression zone, relatively similar to those

experienced by mtDNA donor T. ivanbureschi, are erroneously

attributed to that species. We find this pattern when we analyze

the data both in environmental space (by determining Fisher

distances in a principal component analysis) and in geographical

space (by determining geographical overlap of species distribution

models). For the eastern case with the candidate species, findings

are in line with the scenario in Fig. 1b, where mtDNA

introgression leads to an underestimation of niche divergence

because the conditions in the introgression zone, erroneously

included in the niche space inhabited by mtDNA donor T.

ivanbureschi, are actually distinct from that species. However, this

result is less clear cut as we only find it for our analysis in

geographical space and not for the one in environmental space.

As morphologically cryptic species are often closely related,

occasional hybridization is to be expected [37], in which mtDNA

introgression is more common and generally acting over wider

areas than is nuclear introgression [9,10]. Hybridization with

extensive mtDNA introgression will frequently hamper identifica-

tion of morphologically cryptic species. In extreme cases the

original mtDNA of a species can be completely replaced with that

derived from another species [38,39]. Determining niche diver-

gence between range sections characterized by diverged mtDNA is

a promising tool in the discovery of cryptic species [6,7]. However,

we show here that mtDNA introgression can affect estimates of

Figure 3. Scatterplot for the first and second axis in a principal component analysis of bioclimatic values. Filled circles represent
species with species-specific mtDNA with T. macedonicus in green, T. ivanbureschi in red and the candidate species in blue. The grey x and+represent
T. macedonicus and the candidate species with introgressed mtDNA. In (a) the T. macedonicus case and in (b) the candidate species case is presented.
Ellipses represent mean values plus and minus one standard deviation.
doi:10.1371/journal.pone.0095504.g003

Table 2. Differences in the geographical overlap of species distribution models.

Hypothesis tested Geographical overlap (Schoener’s D), based upon

Range sections compared C vs. B+C+D D+E vs. E A vs. B+C+D B+C+D vs. E all locality data semi-replicates

A vs. A+B 4:*** 4:*** 0.69 0.6760.031

C vs. B+C+D 4: NS 0.90 0.8860.014

E vs. D+E 0.88 0.8760.032

A+B vs. C 5:*** 0.55 0.5460.023

A vs. B+C+D 0.49 0.4460.035

C vs. D+E 5:*** 0.56 0.5760.035

B+C+D vs. E 0.57 0.6060.026

The hypotheses tested are numbered as in the main text. Range sections correspond to Fig. 2. Schoener’s D is provided for models based on all locality data and the
average and standard deviation (s) is provided for the hundred semi-replicates based on sub-sampling of locality data. NS =non-significant;
*** = significant at p,0.001.
doi:10.1371/journal.pone.0095504.t002
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niche divergence. In the two cases we explore we observe

underestimation as well as overestimation of niche divergence,

under the common course of mtDNA introgression that disturbs

the estimates of niche divergence. While we acknowledge the

relevance of niche divergence in delineating species (see e.g. the

integrated approach in ref. [40]), we also plea for caution, in

particular when species ranges are derived from mtDNA alone.

Supporting Information

Dataset S1 Locality data partitioned according to
nuDNA composition and mtDNA type.

(XLS)
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