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Abstract

To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of
antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be
challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a
heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin
sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their
functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance
system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and
resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity
of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid
media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response
behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is
a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active
compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic
background required for full functionality of the introduced regulators.
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Introduction

Enterococcus faecalis is one of the most common causes of

nosocomial infections. Increasing incidences of infections with

antibiotic resistant strains, particularly with vancomycin resistant

enterococci (VREs), therefore pose a major health risk [1,2].

Vancomycin is a glycopeptide antibiotic that targets the lipid II

cycle of cell wall biosynthesis by binding to the terminal D-alanyl-

D-alanine (D-Ala-D-Ala) moiety of peptidoglycan precursors on

the surface of the cell, thus inhibiting their incorporation into the

cell wall [3]. Many other antimicrobial substances also target the

lipid II cycle [4], including bacteriocins and mammalian defensins

[5,6], both of which will likely be encountered by E. faecalis in its

natural gut habitat. Furthermore, many enterococcal isolates were

found to be highly resistant against bacitracin [7,8], yet another

inhibitor of cell wall biosynthesis [9].

The molecular mechanisms leading to resistance are often well

known. In the case of vancomycin, high-level resistance is for

example ensured by target alteration through replacement of the

terminal D-Ala-D-Ala by D-Ala-D-lactate. In VanA-type strains,

this is accomplished through the action of the VanHAX system,

while in VanB-type strains the VanHBBXB proteins mediate

resistance [10,11]. High-level bacitracin resistance of E. faecalis is

conferred by the ATP-binding cassette (ABC) transporter BcrAB,

which presumably removes the antibiotic from its site of action (i.e.

the cytoplasmic membrane) [7]. The precise mechanism of

bacitracin resistance by ABC-transporters is not yet fully

understood [12].

The expression of most resistance genes is induced in the

presence of the respective antibiotic. For example, the van operons

are induced in the presence of vancomycin by the two-component

systems VanS-VanR or VanSB-VanRB for VanA- and VanB-type

resistance, respectively [11,13]. Bacitracin-dependent induction of

bcrAB is mediated by the one-component transmembrane regula-

tor BcrR [7,14]. While the regulators and target promoters, as well

as the conditions leading to induction are known, we lack in-depth

understanding of the molecular mechanisms of regulation. For

example, while both VanS and VanSB respond to vancomycin,
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their sensory domains differ considerably in size with 37 amino

acids for VanS and 103 residues for VanSB, and share only low

sequence similarity [15]. It is therefore difficult to envisage the

same sensing mechanism for both proteins. It is similarly unclear

how BcrR detects bacitracin, because the protein lacks any

obvious extracellular domains but is nevertheless able to directly

interact with its substrate [14,16]. Additionally, it is not known

how a membrane-bound transcriptional regulator like BcrR

activates transcription from its target promoter. While a direct

interaction with RNA-polymerase has been proposed [16],

experimental evidence is lacking to date.

Sensory perception of antimicrobial substances by bacteria is a

first and essential step in antibiotic resistance, and a thorough

understanding of the mechanisms involved would provide an

important basis for the development of new drugs to combat

resistance. However, in many genera, e.g. the enterococci,

investigations are hampered by the difficulty to manipulate these

bacteria genetically. Although more and more genetic tools are

becoming available for enterococci, poor transformability of many

strains, including clinical isolates, still impedes studies involving,

for example, high-throughput or detailed mutagenic approaches.

To circumvent these problems, heterologous hosts have been

chosen, often using E. coli [17], or electro-transformable laboratory

strains of E. faecalis [7,14]. The latter provide improved

transformability, but no additional genetic tools, while the former

host does not appear well suited to study resistance against cell wall

active compounds, due to the major differences between the

Gram-positive and Gram-negative cell envelope. Alternatively,

Bacillus subtilis has been used successfully for the functional

expression of the VanS-VanR two-component system of E. faecalis,

as well as of the VanB-type resistance proteins [1,18]. Like E. coli,

B. subtilis is easy to manipulate and a large number of genetic tools

are available. The G+C contents of B. subtilis (43.5%) and of E.

faecalis (37.5%) are comparable, which is of great advantage for

heterologous gene expression. Furthermore, the transcription

machinery in both organisms is sufficiently similar to facilitate

the interaction of heterologous transcriptional regulators with the

native machinery, as has been shown in vitro for activation of B.

subtilis RNA polymerase by E. faecalis BcrR [16]. Importantly for

the present application, the intrinsic resistance mechanisms of B.

subtilis against cell wall antibiotics are well understood [19,20],

allowing directed deletion of genes to create a clean genetic

background.

In the present study, we have used two well-understood

examples from E. faecalis to develop and validate B. subtilis as a

platform for studying the regulatory mechanisms leading to

resistance against cell wall-active antibiotics. To test the feasibility

of our approach and determine the optimal genetic background of

the host, we chose the one-component regulator BcrR and could

show full functionality with highly similar behaviour to its native

context. This set-up was then applied to the VanSB-VanRB two-

component system. A previous attempt at heterologous expression

of this system in B. subtilis had resulted in a constitutively active

behaviour [18]. Optimization of expression levels and growth

conditions now resulted in vancomycin-dependent induction of the

target promoter, further supporting the suitability of B. subtilis as

host organism.

Materials and Methods

Bacterial strains and growth conditions
All strains used in this study are listed in Table 1. E. coli

DH5aand XL1-blue were used for cloning. E. coli and B. subtilis

were grown routinely in Luria-Bertani (LB) medium at 37uC with

agitation (200 rpm). B. subtilis was transformed by natural

competence as previously described [21]. Selective media

contained ampicillin (100 mg ml21 for E. coli), chloramphenicol

(5 mg ml21 for B. subtilis), kanamycin (10 mg ml21 for B. subtilis),

erythromycin 1 mg ml21 with lincomycin 25 mg ml21 (for

macrolide-lincosamide-streptogramin B (mls) resistance in B.

subtilis) or spectinomycin (100 mg ml21 for B. subtilis). Bacitracin

was supplied as the Zn2+-salt. Unless otherwise stated, media for

strains carrying pXT-derived constructs contained 0.2% (w/v)

xylose for target gene expression. Solid media contained 1.5% (w/

v) agar. Growth was measured as optical density at 600 nm

wavelength (OD600).

Construction of plasmids and genetic techniques
All primer sequences used for this study are listed in Table 2; all

plasmid constructs are listed in Table 1.

Transcriptional promoter fusions of PbcrA to lacZ or bacterial

luciferase (luxABCDE) were constructed in vectors pAC6 [22] or

pAH328 [23] by the sites of EcoRI/BamHI and EcoRI/SpeI,

respectively, obtaining plasmids pES601and pNTlux101, respec-

tively. The transcriptional promoter fusion of PvanYB to bacterial

luciferase was cloned into the EcoRI and SpeI sites of vector

pAH328 creating plasmid pCF133. The exact regions contained

in the constructs are given in Table 1.

For heterologous, xylose-inducible expression of bcrR or bcrR-

bcrAB in B. subtilis (pES701 and pES702) the respective DNA

fragments were amplified from the plasmid pAMbcr1 [7] and

cloned in the vector pXT [24] using the BamHI and EcoRI

restriction sites, placing the genes under the control of the vector’s

xylA-promoter. Plasmid pCF132 was constructed by inserting

vanRBSB from E. faecalis V583 into the BamHI and HindIII sites of

vector pXT for heterologous, xylose-inducible expression in B.

subtilis.

Constructs for unmarked gene deletions in B. subtilis were

cloned into the vector pMAD [25]. For each operon to be deleted,

800–1000 bp fragments located immediately before the start

codon of the first gene (‘‘up’’ fragment) and after the stop codon of

the last gene (‘‘down’’ fragment) were amplified. The primers were

designed to create a 17–20 bp overlap between the PCR-products

(Table 2), facilitating fusion of the fragments by PCR overlap

extension and subsequent cloning into pMAD. Gene deletions

were performed as previously described [25].

All constructs were checked for PCR-fidelity by sequencing, and

all created strains were verified by PCR using appropriate primers.

Antimicrobial susceptibility assays
All cultures were grown in Mueller-Hinton (MH) medium for

antibiotic susceptibility assays [26]. Minimal inhibitory concen-

tration (MIC) of bacitracin and vancomycin were determined by

broth-dilution assays. Freshly grown overnight cultures of B. subtilis

in MH medium were used as inoculum at a dilution of 1:500. After

24 h incubation in the presence of two-fold serial dilutions of the

antibiotic the MIC was scored as the lowest concentration where

no growth was observed.

b-Galactosidase assays
Cells were inoculated from fresh overnight cultures and grown

in LB medium at 37uC with aeration until they reached an OD600

between 0.4 and 0.5. The cultures were split into 2 mL aliquots

and challenged with different concentrations of bacitracin with

one aliquot left untreated. After incubation for an additional

30 min at 37uC with aeration, the cultures were harvested and the

cell pellets were frozen at 220uC. b-galactosidase activities were

determined as described, with normalization to cell density [27].
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Luciferase assays
Luciferase activities of B. subtilis strains were assayed using a

Synergy 2 multi-mode microplate reader from BioTek controlled

by the software Gen5. LB medium was inoculated 1:500 from

overnight cultures, and each strain was grown in 100 ml volumes

in a 96-well plate. Cultures were incubated at 37uC with shaking

(intensity: medium), and the OD600 was monitored every 10 min.

At an OD600 of 0.02 (4–5 doublings since inoculation; corre-

sponding to OD600 = 0.1 in cuvettes of 1 cm light-path length),

either bacitracin was added to final concentrations of 0.03, 0.1,

0.3, 1 mg ml21, or vancomycin to final concentrations of 0.01,

0.025, 0.05, 0.25 mg ml21; in all cases one well was left untreated.

Cultures were further incubated for 2 h, and the OD600 and

luminescence (endpoint-reads; 1 s integration time; sensitivity:

200) were monitored every 5 min. OD600 values were corrected

using wells containing 100 ml LB medium as blanks. Raw

luminescence output (relative luminescence units, RLU) was

normalized to cell density by dividing each data-point by its

corresponding corrected OD600 value (RLU/OD).

Table 1. Plasmids and strains used in this study.

Name Descriptiona Source

Vectors

pAC6 Vector for transcriptional promoter fusions to lacZ in B. subtilis, integrates in amyE; cmr [22]

pAH328 Vector for transcriptional promoter fusions to luxABCDE in B. subtilis; integrates in sacA; cmr [23]

pMAD Vector for construction of unmarked deletions in B. subtilis, temperature sensitive replicon; mlsr [25]

pXT Vector for xylose-inducible gene expression in B. subtilis; integrates in thrC; spcr [24]

Plasmids

pAMbcr1 E. coli-E. faecalis shuttle vector containing a 4.7 kb EcoRI-fragment encompassing the bcrR-bcrABD locus
of E. faecalis AR01/DGVS

[7]

pCF102 pMAD containing the joined ‘‘up’’ and ‘‘down’’ fragments for unmarked deletion of bceRS-bceAB This study

pCF104 pMAD containing the joined ‘‘up’’ and ‘‘down’’ fragments for unmarked deletion of psdRS-psdAB This study

pCF119 pMAD containing the joined ‘‘up’’ and ‘‘down’’ fragments for unmarked deletion of yxdJK-yxdLM-yxeA This study

pCF132 pXT containing the vanRBSB operon of E. faecalis V583 This study

pCF133 pAH328 containing PvanYB of E. faecalis V583 from -215 to +65 relative to the vanYB start codon This study

pES601 pAC6 containing PbcrA of E. faecalis AR01/DGVS from -219 to +170 relative to the bcrA start codon This study

pES701 pXT containing bcrR of E. faecalis AR01/DGVS This study

pES702 pXT containing the bcrR-bcrAB region of E. faecalis AR01/DGVS This study

pNTlux101 pAH328 containing PbcrA of E. faecalis AR01/DGVS from -219 to +170 relative to the bcrA start codon This study

E. coli

DH5a supE44 DlacU169(Q80lacZDM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1 [39]

XL1-Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac F9::Tn10
proAB lacIq D(lacZ)M15]

Stratagene

E. faecalis

AR01/DGVS Plasmid-cured clinical isolate; bacr [7]

V583 Sequenced clinical strain containing plasmids pTEF1, pTEF2, pTEF3; vanr [40]

B. subtilis

W168 Wild-type, trpC2 Laboratory stock

SGB34 W168 thrC::pES702 This study

SGB35 TMB035 thrC::pES702 This study

SGB36 TMB035 thrC::pES702 amyE::pES601; kanr, spcr, cmr This study

SGB40 W168 thrC::pES701 amyE::pES601; spcr, cmr This study

SGB42 W168 thrC::pES702 amyE::pES601; spcr, cmr This study

SGB43 TMB035 thrC::pES701 amyE::pES601; kanr, spcr, cmr This study

SGB273 TMB1518 sacA::pNTlux101; cmr This study

SGB274 TMB1518 thrC::pES701 sacA::pNTlux101; spcr, cmr This study

TMB035 W168 bceAB::kan; kanr This study

TMB1518 W168 with unmarked deletions of the bceRS-bceAB, psdRS-psdAB, yxdJK-yxdLM-yxeA loci This study

TMB1560 TMB1518 sacA::pCF133; cmr This study

TMB1562 TMB1518 thrC::pCF132 sacA::pCF133; spcr, cmr This study

aBac, bacitracin; cm, chloramphenicol; fs, fusidic acid; kan, kanamycin; mls, macrolide-lincosamide-streptogramin B group antibiotics; rif, rifampin; spc, spectinomycin;
van, vancomycin; r, resistant.
doi:10.1371/journal.pone.0093169.t001
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Results and Discussion

Functional transfer of the BcrR-BcrAB bacitracin
resistance system to B. subtilis

In E. faecalis, expression of the genes bcrAB that encode the

bacitracin resistance transporter BcrAB is controlled solely by the

one-component regulator BcrR [14]. This regulator is encoded by

a gene directly upstream of the transporter operon, but as an

independent transcriptional unit [7]. To test if BcrR could be

functionally produced in B. subtilis, we introduced a transcriptional

fusion of its target promoter, PbcrA, to lacZ (pES601), together with

an expression construct of bcrR controlled by a xylose-inducible

promoter (pES701), into the wild-type strain. Addition of

increasing concentrations of bacitracin led to a strong upregulation

(approximately 80-fold) of promoter activities with a threshold

concentration for induction of 0.3 mg ml21 (Fig. 1A). No promoter

activities above background (ca. 1 Miller Unit (MU)) could be

detected in a strain lacking BcrR (data not shown), demonstrating

that the observed induction was indeed due to BcrR activity. It was

shown previously that the sensitivity of BcrR is increased in a

strain of E. faecalis lacking BcrAB, and this was attributed to

competition between the transporter and BcrR in bacitracin

binding [14]. While B. subtilis itself does not contain a BcrAB-like

transporter, it nevertheless possesses a transport system for

bacitracin resistance, BceAB, belonging to a different family of

transporters [28]. To test if this unrelated transporter could also

influence the sensitivity of BcrR, we next introduced the

expression and reporter constructs into a strain carrying a

bceAB::kan deletion (TMB035). Here, the threshold for induction

was ten-fold lower at 0.03 mg ml21 bacitracin, with 0.1 mg ml21

leading to full induction. Furthermore, the maximal amplitude of

induction was significantly increased (p = 0.006) to more than 200-

fold (Fig. 1B). Therefore, the BceAB transporter of B. subtilis

appeared to decrease the availability of bacitracin for detection by

BcrR, similar to the effect of BcrAB in E. faecalis.

We next introduced a construct containing bcrR under control of

the xylose-inducible promoter followed by bcrAB under BcrR-

dependent control of its native promoter (pES702) into TMB035

(bceAB::kan). In this strain, the induction behaviour was compa-

rable to that of wild-type B. subtilis carrying BcrR alone (Fig. 1C).

Introduction of the same construct into the wild-type background

produced a strain harbouring both transporters, BceAB and

BcrAB. While the induction threshold was not significantly altered

compared to strains possessing only one transporter, the amplitude

of induction was lowered to approximately 50-fold (Fig. 1D).

These data clearly show that both BceAB and BcrAB are able to

compete with BcrR for bacitracin binding and closely reflect the

behaviour of the system in E. faecalis. As stated above, this

competition is most likely due to removal of bacitracin by the

transporters.

The decreased sensitivity of PbcrA induction in strains harbouring

the construct of bcrR together with bcrAB, with the latter being

controlled by its native promoter (Fig. 1C and D), further implied

that bcrAB was expressed in a BcrR-dependent manner in B.

subtilis. We therefore wanted to test if this construct was also able to

impart bacitracin resistance to the B. subtilis host. The minimal

inhibitory concentration (MIC) of bacitracin was strongly reduced

from 128 mg ml21 in the wild-type to 2–4 mg ml21 in the bceAB-

deleted strain TMB035 (Table 3), consistent with earlier reports

[20,29]. Introduction of the bcrR-bcrAB construct increased the

Table 2. Primers used in this study.

Primer name Sequence (59-39)a Use

TM1569 AGTGGATCCTAGGAACGTTTTTACCAAC bcrAB rev

TM1798 TTAAGGATCCGAAAAACCCGTTGATGGACG bcrR fwd

TM1800 TTAAGAATTCTTTTATTTCATTCCCATCTGC bcrR rev

TM1801 TTAAGAATTCTTTTGCTGTTAATCGGCAAG PbcrA-lacZ fwd

TM1802 TTAAGGATCCCAAGCTGCAACATCATTTTC PbcrA-lacZ rev

TM2450 AAATTGGATCCGGAAACTACAGACTGTTATG vanRB fwd

TM2451 AAATTAAGCTTTATACCTGTCGGTCAAAATC vanSB rev

TM2550 AATTTGAATTCTTTGTTCTGGCTGGATTTAC PvanYB fwd

TM2551 AATTTACTAGTTCCCCAGATTGTTTCATATG PvanYB rev

TM2813 TTAAACTAGTCAAGCTGCAACATCATTTTC PbcrA-lux rev

TM2347 AATTTGGATCCAGTTTAATATCAACGGCCTG yxdJK-yxdLM-yxeA deletion up fwd

TM2348 AGGTAATTCTGCAATAGTCC yxdJK-yxdLM-yxeA deletion up rev

TM2349 ctattgcagaattacctGGAAGAAGTCAAGTTTGAAG yxdJK-yxdLM-yxeA deletion down fwd

TM2350 AATTTGGATCCTTCTGCTTCCGAAAAAACAG yxdJK-yxdLM-yxeA deletion down rev

TM2351 AATTTGGATCCGAGGAAGCAAAAGGAAATC bceRS-bceAB deletion up fwd

TM2352 CTTGATTTCATGAAACAGCG bceRS-bceAB deletion up rev

TM2355 ctgtttcatgaaatcaagATGGTGTTATATACTGCGC bceRS-bceAB deletion down fwd

TM2356 AATTCCATGGACGAATCCAGTTATCATAGC bceRS-bceAB deletion down rev

TM2357 AATTTGGATCCCTACGATCTAAATGGTTTCC psdRS-psdAB deletion up fwd

TM2358 ATTTTTGAAGATGACCGCCC psdRS-psdAB deletion up rev

TM2361 cggtcatcttcaaaaatGTCATATTTATAAGCGTGCTG psdRS-psdAB deletion down fwd

TM2362 AATTCCATGGAGAGATTGAAGCATTCATCG psdRS-psdAB deletion down rev

aRestriction sites are underlined; overlaps to other primers for PCR fusions are shown by lower case letters.
doi:10.1371/journal.pone.0093169.t002
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resistance of the bceAB-deleted strain to 32 mg ml21 (Table 3). This

degree of protection conferred to B. subtilis (i.e. 8- to 16-fold

increase in MIC) is the same as that conferred to E. faecalis itself,

where BcrAB raises the MIC from 32 mg ml21 to .256 mg ml21

[7]. The difference in final resistance reached is due to the

differing degrees of intrinsic bacitracin resistance between the two

hosts. Additional expression of the E. faecalis transporter in wild-

type B. subtilis could not further increase its resistance (Table 3). In

fact we have to date been unable to raise the MIC of the wild-type

strain, even with overproduction of its native BceAB transporter

(own unpublished observation), suggesting that the level of

resistance is not limited by transport capacity.

Taken together, our results demonstrate full functionality of the

E. faecalis Bcr-system in B. subtilis, both regarding gene regulation

and bacitracin resistance. Importantly, however, the native

resistance determinants of the B. subtilis host were shown to

interfere with the sensitivity and amplitude of promoter induction

and masked the resistance imparted by the introduced system.

This observation is addressed in the following section.

Development of a sensitive recipient strain
When employing a heterologous host for functional studies of

resistance and associated regulatory systems, it is of vital

importance to consider any potential interference from intrinsic

resistance determinants. One advantage of using B. subtilis as the

heterologous host is that its resistance determinants against cell

wall antibiotics are very well known. Several proteins were shown

to contribute to broad-spectrum protection from charged antimi-

crobial peptides, for example by modification of teichoic acids in

the cell envelope [30], but most of these mechanisms are not drug-

specific. In contrast, antimicrobial peptide transporters such as the

BceAB system described above, are thought to function by

removal of the antibiotic from its site of action [12,20,31–33], and

are thus likely to interfere with heterologously introduced

Figure 1. BcrR-dependent induction of PbcrA by bacitracin in B. subtilis. The PbcrA-lacZ reporter construct pES601 was introduced into different
strains of B. subtilis producing either BcrR or BcrR and BcrAB. The relevant genes for bacitracin transporters in each strain are given at the top right of
each graph. (A) SGB40; wild-type (WT) B. subtilis with BcrR. (B) SGB43; bceAB::kan mutant with BcrR. (C) SGB36; bceAB::kan mutant with BcrR and BcrAB.
(D) SGB42; wild-type B. subtilis with BcrR and BcrAB. Cultures growing exponentially in the presence of 0.2% (w/v) xylose were challenged with
different concentrations of bacitracin as indicated for 30 min, and b-galactosidase activities, expressed in Miller Units (MU), were determined. Results
are shown as the mean plus standard deviation of three to four biological replicates.
doi:10.1371/journal.pone.0093169.g001

Table 3. Antibiotic susceptibility of B. subtilis strains.

Strain Relevant resistance proteins Bacitracin MICa (mg ml21) Vancomycin MICa (mg ml21)

W168 BceAB+ 128 0.25

TMB035 BceAB2 2–4 0.25

TMB1518 BceAB2 4 0.25

SGB34 BceAB+, BcrR-BcrAB+ 128 0.25

SGB35 BceAB2, BcrR-BcrAB+ 32 0.25

aMinimal inhibitory concentrations (MIC) determined from three biological replicates; where a range of concentrations is given, results varied between replicates.
doi:10.1371/journal.pone.0093169.t003
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resistance determinants. B. subtilis possesses three paralogous

systems of differing substrate specificities: BceAB mediates

resistance against bacitracin, mersacidin, actagardine and plecta-

sin [20,31]; PsdAB confers resistance against a broad-range of lipid

II-binding lantibiotics such as nisin or gallidermin [31]; for

YxdLM no role in resistance has been identified to date, but it’s

expression is induced in response to the human cathelicidin LL-37

[34]. All three transporters are encoded together with an operon

for a two-component regulatory system, BceRS, PsdRS and

YxdJK, respectively, which controls expression of its correspond-

ing transporter operon [28,31,35].

To obtain a recipient strain that is well suited for the study of

resistance mechanisms against cell wall antibiotics from E. faecalis

and potentially also other genetically intractable Gram-positive

bacteria, we therefore created unmarked deletions of all three

entire genetic loci, bceRS-bceAB, psdRS-psdAB and yxdJK-yxdLM-

yxeA. yxeA is a small gene of unknown function that may form a

transcriptional unit with yxdLM and was therefore included in the

deletion. To test for the absence of interference, we then

introduced the bcrR expression construct pES701 used above into

the triple deletion strain, TMB1518. While our study was in

progress, the Losick-laboratory developed a new reporter system

for B. subtilis, based on the bacterial luciferase operon luxABCDE,

which allows time-resolved, semi-automated analyses of transcrip-

tional promoter fusions [23,36]. To test the applicability of this

reporter for our purposes, we inserted the BcrR target promoter

PbcrA upstream of the lux operon and introduced this construct into

the triple deletion strain harbouring BcrR. At high expression

levels of BcrR due to induction by xylose, addition of bacitracin to

growing cultures of this strain resulted in a rapid response, with a

more than ten-fold increase of promoter activity within 5 min after

addition of 1 mg ml21 bacitracin (Fig. 2A). Only background

luminescence (ca. 103 relative luminescence units (RLU) per OD)

was observed in the absence of bacitracin or in a strain lacking

BcrR (Fig. 2A and data not shown). Analysis of promoter activities

30 min post-induction showed a similar dose-response behaviour

(Fig. 2B) compared to the corresponding lacZ reporter strain

shown above (Fig. 1B). While the threshold concentration for

induction appeared slightly increased for the PbcrA-lux construct,

possibly due to the different growth conditions in 96-well plates

compared to test-tubes, the maximal amplitude of induction was

approximately doubled to over 500-fold, which can most likely be

attributed to the very low background luminescence obtained with

luciferase assays. Therefore both the lacZ and lux reporters are

equally suitable to determine dose-response behaviours of regula-

tory systems, while the lux reporter offers higher sensitivity and

additionally allows time-resolved analyses for dynamic studies.

To test if the cellular protein levels of a one-component

regulator like BcrR affected the promoter induction behaviour, the

same experiments were also carried out in the absence of xylose,

relying on the basal activities of the PxylA-promoter for bcrR

expression (Fig. 2C and D). Under these conditions, the maximal

promoter activities were reduced approximately eight-fold

(p = 0.0003). Considering that the difference in PxylA activity in

the presence and absence of xylose is ten-fold under the conditions

used here [36], this difference in BcrR-activity is likely directly due

to a reduced copy number of BcrR in the cell. However, the dose-

response behaviour was again similar to previous results, with a

threshold concentration for induction in the range of 0.03 to

0.1 mg ml21 bacitracin. Thus the overall function of BcrR was

robust to changes in expression, with differences in protein levels

merely affecting the amplitude of induction but not the response to

the stimulus.

Qualitative activity assays on solid media for screening
applications

To elucidate the molecular mechanisms of stimulus perception

and signal transduction in regulatory systems, random or site-

directed mutagenesis is often used. Particularly in the case of

random mutagenesis approaches, but also for (synthetic) DNA-

libraries, assays performed on solid media greatly facilitate

screening of large numbers of clones. To evaluate the lacZ and

lux reporters for such applications, the derived BcrR/PbcrA reporter

strains were streaked onto agar plates in the absence or presence of

bacitracin. Strains harbouring the PbcrA-lacZ fusions showed a blue

colouration on XGal-containing agar plates in the presence of

inducing concentrations of bacitracin, but remained white in its

absence (Fig. 3A and B). As observed before in the quantitative

assays, presence of the transporters BceAB or BcrAB diminished

the intensity of colouration (Fig. 3B, sectors 1 and 2). In the strain

possessing both transporters, bacitracin concentrations of at least

10 mg ml21 were required to produce blue colonies (data not

shown), consistent with the low promoter activities reported above

for this strain. The reporter strain harbouring BcrR and the PbcrA-

lux construct showed strong luminescence when grown on agar

plates containing 0.3 mg ml21 bacitracin, and no detectable

luminescence in its absence (Fig. 3C and D).

Both reporter constructs are therefore suitable for screening

libraries of clones for promoter induction and are applicable for

high-throughput approaches. In principle, screens for loss-of-

function as well as gain-of-function mutations can be performed,

depending on experimental design. This set-up offers a great

advantage over studies performed directly in E. faecalis, where it is

much more difficult to obtain large numbers of transformants than

in the naturally competent B. subtilis. Importantly, the output of

both promoters is sufficiently sensitive to allow assays to be

performed at sub-lethal concentrations of the antibiotic, at least in

the case of the Bcr-system. The feasibility of this approach was

recently demonstrated in a study that identified essential residues

in the B. subtilis bacitracin resistance transporter BceAB [29], and

the same strategy should be applicable to the heterologous set-up

described here.

Functional transfer of the VanSB-VanRB two-component
system to B. subtilis

Following successful transfer of the Bcr-system of E. faecalis to B.

subtilis, we next wanted to test if our set-up could be applied to

other regulatory systems. The two-component system VanS-VanR

regulating VanA-type vancomycin resistance had previously been

shown to be functional in B. subtilis [1]. However, heterologous

expression of vanRBvanSB encoding the regulatory system for

VanB-type resistance had resulted in constitutive expression of the

target promoter, PvanYB, and the authors could show that this was

due to constitutive activity of the sensor kinase VanSB under the

conditions chosen [18]. To test if vancomycin-dependent modu-

lation of VanSB activity could be obtained by optimization of

conditions, we introduced an expression construct of the

vanRBvanSB operon under control of the xylose-inducible promoter

PxylA into TMB1518. The activity of the two-component system

was monitored as activation of a PvanYB-luxABCDE transcriptional

fusion. In the absence of xylose, only low levels of the two-

component systems will be produced in the cell, due to basal

promoter activity of PxylA. Under these conditions, addition of

increasing concentrations of vancomycin to growing cultures of the

reporter strain led to a gradual up-regulation of promoter activity

(Fig. 4A). Importantly, and in contrast to previous data, only

background activity was observed in the absence of vancomycin
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(Fig. 4A, open circles). The threshold concentration for induction

was 0.01 mg ml21, and a maximum induction of ca. 500-fold was

observed in the presence of 0.05–0.25 mg ml21 vancomycin. The

MIC of B. subtilis for vancomycin was determined as 0.25 mg ml21

for both the wild-type and TMB1518 (Table 3), and therefore

higher concentrations were not tested. In the previous study,

promoter activities were analysed only in the presence of xylose to

ensure high expression levels of the two-component system [18],

which may have led to the high basal activities observed. We

therefore next repeated the induction experiments, but in the

presence of 0.2% xylose, and indeed found ten-fold increased

promoter activities in the absence of vancomycin (Fig. 4B).

Vancomycin-dependent induction was still observed, but only to a

maximum of ten-fold over the uninduced control, due to the

higher basal activity.

Together with previously published reports [1,18], our data

show that the regulators of vancomycin resistance in E. faecalis can

be functionally produced in B. subtilis, although the expression

levels have to be adjusted for optimal signal-to-background ratios.

The full functionality of the VanRS two-component systems, both

of VanA-type resistance described previously [1] and VanB-type

resistance shown here, validates the biological relevance of the

heterologous set-up and paves the way for detailed mechanistic

investigations into the respective modes of vancomycin detection.

The high degree of competence of B. subtilis, for example, allows

high-throughput screening of random mutants, synthetic DNA

libraries, or chimeric protein fusions, which may lead to discovery

of ligand binding sites and thus to elucidation of sensory

mechanisms. Promising results can then be validated in a more

targeted fashion in E. faecalis.

Additionally, Bisicchia and colleagues had reported that

vancomycin resistance could be imparted on B. subtilis by

expression of the VanB-type resistance operon vanYBWHBBXB,

further extending the applicability of this host organism.

Conclusions

In summary we here show that B. subtilis is well suited to the use

as a host for functional production of regulatory systems that

control resistance against cell wall active compounds in E. faecalis.

Our data also show that care has to be taken regarding the genetic

background of the host strain and that appropriate expression

levels of the regulator genes have to be experimentally determined.

Due to the availability of a range of inducible and constitutive

promoters, for which strength and dynamic behaviour are very

well characterized [36], B. subtilis offers a vast potential for

optimization of expression levels, again supporting its suitability as

a versatile heterologous host. Full functionality of any newly

introduced system should of course be validated by comparison of

its behaviour between B. subtilis and the native host before detailed

mechanistic investigations are commenced.

To minimize interference from intrinsic resistance determinants

against antimicrobial peptides, we have constructed a B. subtilis

strain devoid of the most efficient systems. This strain should

provide a clean genetic background for the study of a broad range

of resistance mechanisms against cell wall active substances,

particularly regarding their regulation. In addition to one-

component regulation of bacitracin resistance and two-component

regulation of vancomycin resistance implemented here, we have

successfully applied this set-up to the functional reconstitution of a

more complex regulatory and resistance network [37]. It should be

Figure 2. Time-resolved induction of PbcrA by bacitracin in an unmarked, sensitive B. subtilis recipient strain. SGB274, carrying
unmarked deletion of bceRS-bceAB, psdRS-psdAB, yxdJK-yxdLM-yxeA and harbouring the PbcrA-lux reporter construct pNTlux101 and bcrR expression
construct was grown in the presence of 0.2% (w/v) xylose (panels A and B), or in the absence of xylose (panels C and D). In early exponential phase
(t = 0 min), bacitracin was added to final concentrations of 0 (open circles) 0.03 mg ml21 (open squares), 0.1 mg ml21 (grey circles), 0.3 mg ml21 (solid
circles) or 1 mg ml21 (solid squares), and luminescence normalized to optical density (RLU/OD) was monitored. (A, C) Time-course of promoter
induction over 60 min after bacitracin-challenge. (B, D) Dose-response at 30 min post-induction; the time point is labelled with the arrow in the
panels above. Results are shown as the mean and standard deviation of three biological replicates.
doi:10.1371/journal.pone.0093169.g002
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noted that the response of B. subtilis to antibiotics in general is

among the best understood of all bacteria investigated to date [38].

This plethora of available data therefore constitutes an ideal basis

for construction of new sensitive recipient strains adapted to the

study of resistance and regulatory systems also for other classes of

antimicrobials.

Further, we showed that the two reporters, lacZ and luxABCDE,

can both be used for qualitative (high-throughput) screening

approaches, for example of mutant libraries, as well as for the

quantitative characterization of regulators. Complementation

studies with random or directed mutations can thus be initiated

in the genetically accessible, highly competent host B. subtilis, and

promising results then validated directly in E. faealis. Construction

of the desired heterologous strains will be further aided by a

recently established and fully validated tool-box of vectors,

promoters, reporters and epitope-tags for engineering of B. subtilis

[36]. We therefore envisage that the system developed here will aid

investigations into the molecular mechanisms of sensory percep-

tion of antimicrobials and subsequent signal transduction, the first

essential step of antibiotic resistance. Furthermore, this set-up

should also be applicable to the study of unrelated resistance

systems or even regulatory cascades of diverse functions from other

genetically intractable Gram-positive bacteria.
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