
A Cognitively Grounded Measure of Pronunciation
Distance
Martijn Wieling1*, John Nerbonne2, Jelke Bloem3, Charlotte Gooskens2, Wilbert Heeringa2, R.

Harald Baayen1,4
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Abstract

In this study we develop pronunciation distances based on naive discriminative learning (NDL). Measures of pronunciation
distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the
commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is
able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances
by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with
accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of
perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched
perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were
comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to
incorporate acoustic information other than sound segments.

Citation: Wieling M, Nerbonne J, Bloem J, Gooskens C, Heeringa W, et al. (2014) A Cognitively Grounded Measure of Pronunciation Distance. PLoS ONE 9(1):
e75734. doi:10.1371/journal.pone.0075734

Editor: Johan J. Bolhuis, Utrecht University, Netherlands

Received June 25, 2013; Accepted August 16, 2013; Published January 9, 2014

Copyright: � 2014 Wieling et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been funded by the Netherlands Organisation for Scientific Research and the Alexander von Humboldt Foundation. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: wieling@gmail.com

Introduction

Obtaining a suitable distance measure between two pronunci-

ations is important, not only for dialectologists who are interested

in finding the relationship between different dialects (e.g., [1]), but

also for sociolinguists investigating the effect of political borders on

vernacular speech [2], language researchers investigating the

typological and genealogical relationships among the world’s

languages (e.g., [3]), applied linguists attempting to gauge the

degree of comprehensibility among related languages [4], and

researchers measuring the atypicality of the speech of the bearers

of cochlear implants [5]. Furthermore, having a distance measure

between word pronunciations enables quantitative analyses in

which the integrated effect of geography and sociolinguistic factors

can be investigated (e.g., [6]). Standard sociolinguistic analyses

focus on whether specific categorical differences are present in the

speech of people from different social groups. By using a measure of

pronunciation difference, we allow more powerful numerical

analysis techniques to be used. For these analyses to be

meaningful, however, the measurements of pronunciation distance

need to match perceptual distances as closely as possible.

There are various computational methods to measure word or

pronunciation distance (or similarity), of which the Levenshtein

distance has been the most popular [1,7,8,9,10]. The Levenshtein

distance determines the pronunciation distance between two

transcribed strings by calculating the number of substitutions,

insertions and deletions to transform one string into the other [11].

For example, the Levenshtein distance between two accented

pronunciations of the word Wednesday, [wenzdeI] and [wen sde]

is 3 as illustrated by the alignment in Table 1.

A clear drawback of this variant of the Levenshtein distance is

that it does not distinguish the substitution of similar sounds (such

as [o] and [u]) from more different sounds (such as [o] and [i]).

Consequently, effort has been made to integrate more sensitive

segment distances in the Levenshtein distance algorithm [1,12]. As

manually determining sensitive segment distances is time-consum-

ing and language-dependent, Wieling and colleagues [13]

developed an automatic method to determine sensitive segment

distances. Their method calculated the pointwise mutual infor-

mation between two segments, assigning lower distances between

segments which aligned relatively frequently and higher distances

between segments which aligned relatively infrequently. Results

indicated that the obtained segment distances were acoustically

sensible and resulted in improved alignments [14]. Applying the

adapted method to the example alignment shown above yields the

associated costs shown in Table 2.

While Levenshtein distances correlate well (r = 0.67) with

perceptual dialect distances between Norwegian dialects [15],

there is no cognitive basis to link the Levenshtein distance to

perceptual distances (but see [16] for an attempt to adapt the

Levenshtein algorithm in line with theories about spoken word

recognition). This is also exemplified by the fact that the

Levenshtein distance is symmetrical (i.e. the distance between

speaker A and B is the same as the other way around), while
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perceptual dialect distances may also show an asymmetrical

pattern [15].

As exposure to language shapes expectations and affects what is

judged similar to one’s own pronunciation and what is different,

we turn to one of the most influential theories about animal and

human (discrimination) learning: the model of Rescorla and

Wagner [17]. The basic assumption of this model is that a learner

predicts an outcome (e.g., the meaning of a word) based on the set

of available cues (e.g., the sounds of a word). Depending on the

correctness of the prediction, the association strengths between the

outcome and the cues are adjusted so that future prediction

accuracy improves. Concretely, if an outcome is present together

with a certain cue, its association strength increases, while the

association strength between an absent outcome and that cue

decreases. When an outcome is found together with multiple cues

(i.e. when there is cue competition), the adjustments are more

conservative (depending on the number of cues). The learning

theory of Rescorla and Wagner is formalized in a set of recurrence

equations which specify the association strength Vtz1
i of cue Ci

with outcome O at time tz1 as Vtz1
i ~Vt

i zDVt
i , where the

change in association strength DVt
i is defined as:

DVt
i ~

0 if ABSENT(Ci,t)

aib1(l{
P

PRESENT(Cj ,t)

Vj) if PRESENT(Ci,t) &PRESENT(O,t)

aib2(0{
P

PRESENT(Cj ,t)

Vj) if PRESENT(Ci,t) &ABSENT(O,t)

8>>>>><
>>>>>:

In this definition, PRESENT(X ,t) denotes the presence of cue X

at time t and ABSENT(X ,t) its absence at time t. Whenever the

cue occurs without the outcome being present, the association

strength is decreased, whereas it is increased when both the cue

and outcome are present. The adjustment of the association

strength depends on the number of cues present together with the

outcome. The standard settings for the parameters are l~1, all a0s
equal, and b1~b2.

The Rescorla-Wagner model has been used to explain findings

in animal learning and cognitive psychology [18] and more

recently, Ramscar and colleagues [19,20,21] have successfully

used this model in the context of children’s language acquisition.

For example, Ramscar and colleagues [21] showed that the

Rescorla-Wagner model clearly predicted that exposure to regular

plurals (such as rats) decreases children’s tendency to over-

regularize irregular plurals (such as mouses) at a certain stage in

their development.

Danks [22] proposed parameter-free equilibrium equations (i.e.

where Vtz1
i ~Vt

i ) for the recurrence equations presented above:

Pr(ODCi){
Pn
j~0

Pr(Cj DCi)Vj~0, where Pr(Cj DCi) represents the

conditional probability of cue Cj given cue Ci, and Pr(ODCi) the

conditional probability of outcome O given cue Ci. Consequently,

it is possible to directly calculate the association strength between

cues and outcomes in the stable (i.e. adult) state where further

learning does not substantially change the association weights.

Baayen and colleagues [23] have proposed an extension to

estimate multiple outcomes in parallel. Their ‘naive discriminative

learning’ (NDL) approach (implementing the Danks equations

[22]) lends itself for efficient computation and is readily available

via their R package ‘ndl’. More details about the underlying

computations can also be found in [23].

After all association strengths of the adult state are determined,

the activation (i.e. activation strength) of an outcome given a set of

cues can be calculated by summing the corresponding association

strengths. Especially these activations are important for prediction.

For example, Baayen and colleagues [23] found that the estimated

activation of words correlated well with experimental reaction

times to those words.

Here we propose to use naive discriminative learning to

determine pronunciation distances. The intuition behind our

approach is that a speaker of a certain dialect or language variety

is predominantly exposed to speakers who speak similarly, and this

input shapes the network of association strengths between cues (in

our case, sequences of three sound segments representing the

pronunciation, i.e. substrings of the phonetic transcription) and

outcomes (in our case, the meaning of the pronounced word) for

the speaker. The use of sequences of three segments, so-called

trigrams, allows the measure to become sensitive to the

adjustments sounds undergo in the context of other sounds, and

trigrams have been experimented with in dialectology before [24].

(For comparison, we will also report results when using unigram

and bigram cues.) By exposing the speaker to a new pronunciation

(in the form of its associated cues) we can measure how well the

speaker is likely to understand that pronunciation by inspecting the

activation strength of the corresponding outcome. The activation

strength of the outcome will depend on the association strengths

between the outcome and the cues involved in the pronunciation.

If only cues are present which have a high association strength

with the outcome, the activation of the outcome will be high,

whereas the activation of the outcome will be somewhat lower if

one of the cues has a low association strength with the outcome. By

calculating the activation strength difference for two different

pronunciations of the same word, we obtain a (gradual) measure of

pronunciation distance. For example, the word ‘with’ would be

highly activated when a native English listener hears [wıh].

However, when a Mandarin speaker would incorrectly pronounce

‘with’ as [wız], this would result in a somewhat lower activation.

Of course, using an adult state with fixed association weights

between cues and outcomes is a clear simplification. Language

change is a continuous process and the experience of a listener (i.e.

the association weights between cues and outcomes) will obviously

be affected by this. However, as the new language experience only

makes up a small part of the total language experience of a listener,

the effect of the past experience is most important in determining

the association weights. As a consequence, and in line with the

results of Labov’s ([25]: Ch. 4) Cross-Dialectal Comprehension

Table 1. Basic Levenshtein distance alignment.

w e n z d e Ī
¯

w e n s d e

1 1 1

doi:10.1371/journal.pone.0075734.t001

Table 2. Levenshtein distance alignment with sensitive
sound distances.

w e n z d e Ī
¯

w e n s d e

0.031 0.020 0.030

doi:10.1371/journal.pone.0075734.t002

A Cognitive Measure of Pronunciation Distance
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(CDC) studies (which evaluated how well American English

speakers understand speakers from their own and other regions),

our model will yield lower meaning activations (i.e. more

misunderstandings) when sound change is in progress (i.e. the

original sound segments will have a higher association strength

with the meaning than the new sound segments). In similar

fashion, our model predicts higher meaning activations for

pronunciations closer to one’s own pronunciation variant (i.e.

the ‘‘local advantage’’). We also emphasize that our model is able

to capture differences in understandability per word (as each word

has its own frequency of occurrence) – which might explain

Labov’s finding that certain sounds are not always correctly

identified, even if they are characteristic of local speakers ([25]:

pp. 84–85).

Furthermore, the model we propose is general, as it does not

focus on a selection of linguistic features (such as vowels), but takes

into account all sound (sequences) in determining the understand-

ability of a certain pronunciation.

Besides being grounded in cognitive theory of competitive

reinforcement learning, a clear benefit of this approach is that the

pronunciation distances obtained do not need to be symmetrical,

as they depend on the association strengths between cues and

outcomes, which are different for every speaker. This is illustrated

in Section 2.2 below.

To evaluate the effectiveness of this approach, we conducted

two experiments. The first experiment focused on investigating

foreignness ratings given by native American English (AE) speakers

when judging accented English speech, while the second

experiment focused on the asymmetric perceptual distances of

Norwegian dialect speakers.

As we noted in the introduction, the Levenshtein distance has

been applied to pronunciation transcriptions to assay the degree to

which non-local pronunciations sound ‘‘different’’ from local ones

(in dialectology, see [1]), but also to predict the comprehensibility

of other language varieties (in applied sociolinguistics, see [4]).

Since pronunciations may sound non-native or non-local without

suffering in comprehensibility, one might suspect that the two

notions are not the same, even if they are clearly related. In the

present paper we construct a model of an artificial listener to

discriminate well enough between words given sound trigrams,

which is essentially a comprehension task. But we shall evaluate

the same model on how well it predicts human judgments of how

similar the speech is to one’s own pronunciation (i.e. how native-

like foreign accents sound, or how close a pronunciation is to one’s

own dialect). To the degree to which these experiments succeed,

we may conclude that the degree of comprehensibility is largely

the same as the degree of nativeness (or localness).

Materials and Methods

1. Accented English speech
1.1. Material: the Speech Accent Archive. The Speech

Accent archive [26] is digitally available at http://accent.gmu.edu

and contains a large sample of speech samples in English from

people with various language backgrounds. Each speaker read the

same paragraph of 69 words (55 of which are unique) in English:

Please call Stella. Ask her to bring these things with her from the store:

six spoons of fresh snow peas, five thick slabs of blue cheese, and maybe

a snack for her brother Bob. We also need a small plastic snake and a

big toy frog for the kids. She can scoop these things into three red bags,

and we will go meet her Wednesday at the train station.

All speech samples were transcribed by three phonetically

trained transcribers (consensus was reached in the few cases where

the transcriptions differed; [26]) according to the International

Phonetic Alphabet (IPA). The transcriptions include diacritics, and

the associated audio files are available. For this study, we extracted

395 transcribed speech samples and their audio from the Speech

Accent Archive. The total number of native U.S.-born English

speakers in this dataset was 115. The remaining 280 speech

samples belonged to speakers with a different native language or

who were born outside of the United States.

1.2. Obtaining NDL-based pronunciation distances. For

every transcribed pronunciation, we extracted all possible sets of

sequences of three sound segments (diacritics were ignored, and a

separate segment was added to mark word boundaries) as cues. To

model a native AE listener, we randomly selected about half (i.e.

58) of the native AE speakers. We used their pronunciations to

generate the pronunciation cues, and paired these with meanings

as outcomes (i.e. the pronunciation trigrams were linked to the

corresponding meanings). We used only half of the native speakers

for the listener model in order to prevent overfitting, i.e. learning

the peculiarities of the speakers rather than the features of native

American English. The pronunciation of the other half of the

speakers is used to represent average American English speech to

which the pronunciation of individual speakers is compared.

(While we could have used the speech of a single speaker for the

listener model and the speech of another individual speaker to

represent native American English speech, this would have biased

the model to the specific dialectal variants of these speakers.) As

the association strength between cues and outcomes depends on

the frequency with which they co-occur, we extracted word

frequency information from the Google N-Gram Corpus [27].

The total frequency of each meaning outcome was equally divided

among all different pronunciations associated with it. For example,

if the frequency of the word ‘frog’ equals 580,000, the frequency of

each of the 58 pronunciations was set to 10,000. We then

estimated the weights of the model using the ‘ndl’ package in R

(version 0.2.10) which implements the Danks equations [23]

introduced above. The resulting network of association strengths

between pronunciation cues and meaning outcomes represents a

native AE listener. As an example, Table 3 shows part of the input

used for estimating the weights and Table 4 shows the association

strengths obtained after the weights have been estimated (i.e. the

‘adult’ association weights of a native AE listener).

It is clear from Table 4 that the cues found together with a

certain outcome generally have a positive value. The more likely it

is the cue is found together with the associated outcome (and,

crucially, not with other outcomes), the higher the association

strength between the two will be.

Given the table of association strengths representing a simulated

native AE listener, it is straightforward to determine the activations

Table 3. Part of the table used for estimating the association
strengths. The ‘#’ marks the word boundary.

Speaker Outcome Pronunciation Cues Frequency

english23 with [wĪ
¯
h] #wĪ

¯
, wĪ

¯
h, Ī

¯
h# 28,169,384

english167 with [wĪ
¯
ð] #wĪ

¯
, wĪ

¯
ð, Ī

¯
ð# 28,169,384

english23 her [h ] #h , h , # 852,131

english167 her [ ] # # 852,131

doi:10.1371/journal.pone.0075734.t003
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of each outcome for a certain pronunciation (converted to cues) by

summing the association strengths between the cues in the

pronunciation and the outcome. The top half of Table 5 shows

that the pronunciations of native AE speakers strongly activate the

corresponding outcome (the values are equal or very close to the

maximum of 1).

Of course, we can also use the association strengths (of the

simulated native AE listener) to calculate the activations for

accented speech. The bottom part of Table 5 clearly shows that

accented speech results in lower activations (and thus reduced

understanding), compared to the pronunciations of native AE

speakers (shown in the top part of Table 5). In some cases, a

foreign speaker might use a cue which would never be used by a

native AE speaker (such as ‘#x ’ in Table 5). As these cues were

not encountered during the estimation of the model, no association

strengths have been set for those cues and, consequently, their

values do not contribute to the activation of the outcome.

To determine pronunciation distances with respect to native

American English, we exposed our model of a native AE speaker

to both native American English speech as well as accented

English speech and investigated the activation differences of the

meaning outcomes. We used the following procedure:

1. For each of the native American English speakers not

considered when constructing the listener model (i.e. the

remaining 57 native AE speakers), we calculated the activation

of the listener model for each of the 55 different meaning

outcomes (i.e. all unique words in our dataset). Whenever an

outcome occurred more than once (such as ‘we’, which occurs

twice in the paragraph of text), we averaged the activations

associated with the corresponding pronunciations (i.e. the

associated cues). For each outcome, we subsequently averaged

the activations across all 57 speakers. This is our baseline and

can be interpreted as the activations (for 55 individual

meanings) of our native AE listener model when being exposed

to the speech of an average native AE speaker.

2. For each individual speaker (mostly non-native, see below), we

obtained the activations of our native AE listener model for

each of the 55 meanings. Again, whenever an outcome

occurred more than once, we averaged the activations

associated with the corresponding pronunciations.

3. For each individual speaker, we calculated the activation

difference compared to the baseline for all 55 meanings

separately. We then averaged these activation differences

across the 55 meanings. This resulted in a single value for

each speaker and represents the NDL-based pronunciation

distance with respect to an average native AE speaker.

As the specific sample of speakers used for estimating the native

American English listener model may influence the results, we

repeated the random sampling procedure (in which 58 speakers

were selected whose pronunciations were used to estimate the

listener model) 100 times to generate 100 slightly different native

AE listener models. Obviously, this also resulted in a change of the

remaining 57 speakers who were used to represent an average AE

speaker (see step 1, above). Consequently, we obtained 100

(slightly different) NDL-based pronunciation distances for each

individual speaker compared to an average AE speaker.

1.3. Validating automatically obtained foreignness

ratings. We evaluated the computed pronunciation distances

by comparing them to human native-likeness ratings. For this

purpose, we developed an online questionnaire for native U.S.

English speakers. In the questionnaire, participants were presented

with a randomly ordered subset of 50 speech samples from the

Speech Accent Archive. We did not include all speech samples, as

our goal was to obtain multiple native-likeness-judgments per

sample. For each speech sample, participants had to indicate how

native-like each speech sample was. This question was answered

using a 7-point Likert scale (ranging from 1: very foreign sounding

to 7: native AE speaker). Participants were not required to rate all

samples, but could rate any number of samples.

Of course, more advanced methods are possible to measure

native-likeness, such as indirect measures which assess the

understandability of the accented pronunciations in a certain

context (cf. [25: Ch. 4]). However, as our dataset was limited to a

small fixed paragraph of text, we used a simple rating approach

Table 4. The association strengths for the cues and outcomes
in Table 1 for our simulated native AE listener after these have
been estimated on the basis of the input of 58 randomly
selected native AE speakers.

Cue Association strength for ‘with’ Association strength for ‘her’

#wĪ
¯

0.2519 0.0000

wĪ
¯
h 0.3738 0.0000

Ī
¯
h# 0.3738 0.0000

wĪ
¯
ð 0.3741 0.0000

Ī
¯
ð# 0.3741 0.0000

#h 0.0000 0.4973

h 0.0000 0.2433

# 0.0000 0.2594

# # 0.0000 1.0000

doi:10.1371/journal.pone.0075734.t004

Table 5. The activations of different outcomes on the basis of the association strengths between the cues and outcomes for our
simulated native AE listener (shown in Table 2).

Speaker Outcome Pronunciation Cues Activation of outcome

english23 with [wĪ
¯
h] #wĪ

¯
, wĪ

¯
h, Ī

¯
h# 0.9995

english167 with [wĪ
¯
ð] #wĪ

¯
, wĪ

¯
ð, Ī

¯
ð# 1.0000

english23 her [h ] #h , h , # 1.0000

english167 her [ ] # # 1.0000

mandarin10 with [wĪ
¯
z] #wĪ

¯
, wĪ

¯
z, Ī

¯
z# 0.2519

serbian10 her [x ] #x , x , # 0.2594

doi:10.1371/journal.pone.0075734.t005
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which, nevertheless, resulted in consistent ratings (see results,

below).

Via e-mail and social media we asked colleagues and friends to

forward the online questionnaire to people they knew to be native

AE speakers. In addition, the online questionnaire was advertised

on Language Log by Mark Liberman. Especially that announce-

ment led to an enormous amount of responses. As a consequence,

we replaced the initial set of 50 speech samples five times with a

new set to increase the number of speech samples for which we

could obtain native-likeness ratings. As there was some overlap in

the native AE speech samples present in each set (used to calibrate

the ratings), the total number of unique samples presented for

rating was 286, of which 280 were samples from speakers who

were not born in the U.S.

2. Norwegian dialects
2.1. Material. The Norwegian dialect material is taken from

the study of Gooskens and Heeringa [15], who perceptually

evaluated the Levenshtein distance on the basis of IPA transcribed

audio recordings of 15 Norwegian dialect speakers reading the

fable ‘‘The North Wind and the Sun’’ (containing 58 unique

words). The original dataset was created by Jørn Almberg and

Kristian Skarbø and is available at http://www.ling.hf.ntnu.no/

nos. The transcriptions (including diacritics) were made by the

same person, ensuring consistency. Perceptual distances (reported

in Table 1 of [15]) were obtained by asking 15 groups of high

school pupils (in the corresponding dialect areas) to rate all 15

dialectal audio samples on a scale from 1 (similar to own dialect) to

10 (not similar to own dialect). Perceptual dialect distances were

then calculated by averaging these ratings per group.

2.2. Methods. Following the same procedure as described in

Section 1.2, we converted the pronunciations for each of the 15

speakers in our sample to cues consisting of three sequential sound

segments (diacritics were ignored, and a separate segment was

added to mark word boundaries). The word frequencies were

extracted from a Norwegian word frequency list (on the basis of

subtitles and obtained from http://invokeit.wordpress.com/

frequency-word-lists).

To determine pronunciation distance between dialects Di and Dj

from the perspective of a listener of dialect Di, we used the

following procedure:

1. We estimated the NDL model (i.e. resulting in a specific weight

matrix associating cues with outcomes) using the cues on the

basis of the pronunciations from the speaker of dialect Di. This

model can be seen as representing an experienced listener (Li)

of dialect Di.

2. We expose Li to the cues on the basis of the pronunciations

from dialect Di and measure the activation of each of the

corresponding 58 meaning outcomes. (Because we only had a

single speaker in our sample for each dialect, we could not use

separate pronunciations for estimating the listener model and

representing the speaker.). Whenever an outcome occurred

more than once (some words were repeated), we averaged the

activations associated with the corresponding pronunciations

(i.e. the associated cues). These activations are used as the

baseline, and can be interpreted as the activations (for the 58

individual meanings) of Li when being exposed to speech of its

own dialect.

3. We expose Li to the cues on the basis of the pronunciations of

another dialect Dj and measure the (averaged, when a word

occurred more than once) activation of each of the corre-

sponding 58 meaning outcomes.

4. For all 58 individual meaning outcomes, we calculated the

difference between the activations of Li for Dj and the baseline

Di and average these 58 differences to get a single value

representing the NDL-based pronunciation distance between

Di and Dj (from the perspective of Li).

The above procedure is repeated for all combinations of Di and

Dj resulting in 210 NDL-based pronunciation distances (15615,

but the 15 diagonal values are excluded as they are always equal to

0). Table 6 shows these distances for a set of three Norwegian

dialects. Note that the NDL-based pronunciation distances

between these dialects are clearly asymmetric. The dialect of

Bjugn is closer to the dialect of Bergen from the perspective of

Bergen (0.545) than the dialect of Bergen is from the perspective of

Bjugn (0.559).

To evaluate these distances, we correlated them with the

corresponding perceptual distances (obtained from [15]).

Results

1. Results for accented English speech
A total of 1143 native American English participants filled in the

questionnaire (658 men: 57.6%, and 485 women: 42.4%).

Participants were born all over the United States, with the

exception of the state of Nevada. Most people came from

California (151: 13.2%), New York (115: 10.1%), Massachusetts

(68: 5.9%), Ohio (66: 5.8%), Illinois (64: 5.6%), Texas (55: 4.8%),

and Pennsylvania (54: 4.7%). The average age of the participants

was 36.2 years (SD: 13.9) and every participant rated on average

41 samples (SD: 14.0). Every sample was rated by at least 50

participants and the judgments were consistent (Cronbach’s alpha:

0.853).

To determine how well our NDL-based pronunciation distances

on the basis of trigram cues matched the native-likeness ratings, we

calculated the Pearson correlation r between the averaged ratings

and the NDL-based pronunciation distances for the 286 speakers.

Since we had 100 sets of NDL-based pronunciation distances

(based on 100 different random samplings of the native American

English speakers used to estimate the model), we averaged the

corresponding correlation coefficients, yielding an average corre-

lation of r = 20.72 (p,0.001). Note that the direction of the

correlations is negative as the participants indicated how native-like

each sample was, while the NDL-based pronunciation distance

indicates how foreign a sample is. As a scatter plot clearly revealed

a logarithmic relationship (see Figure 1), we log-transformed the

NDL-based pronunciation distances, increasing the correlation to

r = 20.80 (p,0.001). The logarithmic relationship suggests that

people are relatively sensitive to small differences in pronunciation

in judging native-likeness, but as soon as the differences have

reached a certain magnitude (i.e. in our case an NDL-based

pronunciation distance of about 0.2) they hardly distinguish them

anymore. The sensitivity to small differences is also illustrated by

Table 6. Part of the NDL-based Norwegian dialect
pronunciation distances.

Bergen Bjugn Bodø

Bergen X 0.545 0.584

Bjugn 0.559 X 0.319

Bodø 0.574 0.314 X

doi:10.1371/journal.pone.0075734.t006
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the (slight) increase in performance when trigram cues are used

which incorporate diacritics. In that case, the correlation strength

increases to r = 20.75 (r = 20.82 for the log-transformed NDL-

based pronunciation distances). These results are comparable with

the performance of the Levenshtein distance when applied to this

dataset (r = 20.81, p,0.001 for the log-transformed Levenshtein

distance; unpublished data). In fact, the Levenshtein distances and

the NDL-based pronunciation distances also correlate highly,

r = 0.89 (p,0.001).

We should note that this correlation is close to how well

individual raters agree with the average native-likeness ratings (on

average: r = .84, p,.0001). Consequently, the NDL-based method

is almost as good as a human rater, despite ignoring supraseg-

mental pronunciation differences (such as intonation).

Figure 1 also shows that pronunciations which are perceived as

native (i.e. having a rating very close to 7), may correspond to

NDL-based pronunciation distances greater than 0. In this case,

the NDL-based method classifies certain native-like features as

being non-native. This may be caused by our relatively small

sample of only 58 speakers whose pronunciations were used to

model the native AE listener. Real listeners have much more

experience with their native language, and therefore can more

reliably distinguish native-like from foreign cues.

The aforementioned results are all based on using trigram cues.

When using unigram cues instead, the correlation between the

perceptual native-likeness ratings and the NDL-based pronunci-

ation distances dropped to r = 20.54 (log-transformed: r = 20.57).

When using bigram cues, the performance was almost on par with

using trigram cues (r = 20.69, log-transformed: r = 20.79). Using

unigram and/or bigram cues together with trigram cues did not

affect performance, as these simpler cues are not discriminative in

the presence of trigram cues.

2. Results for Norwegian dialects
The correlation between the NDL-based pronunciation dis-

tances and the perceptual distances was r = 0.68 (p,0.001), which

is comparable to the correlation Gooskens and Heeringa [15]

reported on the basis of the Levenshtein distance (i.e. r = 0.67).

Similar to the first study, log-transforming the NDL-based

pronunciation distances increased the correlation strength to

r = 0.72 (p,0.001). In line with the results for the accent data, the

Levenshtein distances and the NDL-based pronunciation distances

correlate highly, r = 0.89 (p,0.001).

The aforementioned results are all based on using trigram cues.

Using unigram cues instead of trigram cues severely reduced

performance (r = 0.10, log-transformed: r = 0.31), whereas using

bigram cues was almost as good as using trigram cues (r = 0.67,

log-transformed: r = 0.71). Similar as before, adding unigram and/

or bigram cues to the trigram cues did not really improve

performance. In contrast to the accent data, incorporating

diacritics in the cues also did not help; the correlation then

dropped to r = 0.65 (log-transformed: r = 0.66). This is likely

caused by the relatively small dataset.

Discussion

In the present paper we have shown that pronunciation

distances derived from naive discriminative learning match

perceptual accent and dialect distances quite well. While the

results were on par with those on the basis of the Levenshtein

distance, the advantage of the present approach is that it is

grounded in cognitive theory of comprehension based on

fundamental principles of human discrimination learning. Fur-

thermore, the Levenshtein distance is theoretically less suitable for

modeling the degrees of difference in the perception of non-local

and non-native speech because it is a true distance, i.e. always

symmetric, while perceptions of similarity may also be asymmetric

[15]. The NDL-based approach naturally generates asymmetrical

distances.

We noted above that the task of recognizing words based on

phonetic cues is essentially a comprehensibility task. A second

contribution of the present paper is therefore to demonstrate that

models constructed to comprehend local speech automatically

assign scores of non-nativeness (or of non-localness among dialects)

in a way that models native speakers judgments.

One may wonder why the NDL-based method only slightly

improved upon the results of the Levenshtein distance for the

Norwegian dataset, especially since that dataset is characterized by

asymmetric perceptual distances. We note here that the 15 NDL

models (one for each listener) are only based on the pronunciation

of a single speaker. Consequently, it does not take into account the

variation within each dialect (taken into account by listeners living

in the dialect area), which would have allowed for more precise

estimates of the association weights. A general limitation is that

Gooskens and Heeringa [15] already indicated that intonation is

one of the most important characteristics in Norwegian dialects,

and no such cues have been used here (as these were not available

to us), thereby limiting the ability to detect relevant asymmetries.

Nerbonne and Heeringa ([28]: 563–564), on the other hand,

speculate that there is a limit to the accuracy of validating

pronunciation difference measures on the basis of aggregate

judgments of varietal distance. If one supposes that poorer

measures are noisier – but not more biased – than better ones,

then the noise will simply be eliminated in examining large

aggregates. If this is right, we cannot expect to change mean

differences by adopting more accurate measurements. They

suggest that improved validation will therefore have to focus on

smaller units such as individual words.

While we have not explored this in the present paper, another

important advantage of the NDL approach is that cues are not

only restricted to phonetic segments. Cues with respect to

pronunciation speed or other acoustic characteristics (such as

intonation) can be readily integrated in an NDL model (e.g.,

Figure 1. Logarithmic relationship between NDL-based pro-
nunciation distances and perceptual distances.
doi:10.1371/journal.pone.0075734.g001
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linking cues representing different intonation patterns to the

individual meanings). A problem of the NDL method, however, is

that it only accepts discrete cues. A continuous measurement

therefore needs to be discretized to separate cues, and this

introduces a subjective element in an otherwise parameter-free

procedure.

As our datasets only consisted of a few dozen words, our model

was highly simplified compared to the cognitive model of a human

listener who will have access to thousands of words. It is

nevertheless promising that pronunciation distances on the basis

of our simplified models match perceptual distances at least as well

as current gold standards.
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13. Wieling M, Prokić J, Nerbonne J (2009) Evaluating the pairwise alignment of
pronunciations. In: Borin L, Lendvai P, editors. Proceedings of the EACL 2009

Workshop on Language Technology and Resources for Cultural Heritage,
Social Sciences, Humanities, and Education. pp. 26–34.

14. Wieling M, Margaretha E, Nerbonne J (2012) Inducing a measure of phonetic
similarity from dialect variation. Journal of Phonetics 40(2): 307–314.

15. Gooskens C, Heeringa W (2004) Perceptive evaluation of Levenshtein dialect

distance measurements using Norwegian dialect data. Language Variation and

Change 16(3): 189–207.

16. Wieling M, Nerbonne J (2007) Dialect pronunciation comparison and spoken

word recognition. In: Osenova P, et al., editors. Proceedings of the RANLP

Workshop on Computational Phonology. pp. 71–78.

17. Rescorla RA, Wagner AR (1972) A theory of Pavlovian conditioning: Variations

in the effectiveness of reinforcement and nonreinforcement. In: Black AH,

Prokasy WF, editors. Classical conditioning II: Current research and theory.

New York: Appleton-Century-Crofts. pp. 64–99.

18. Siegel SG, Allan LG (1996) The widespread influence of the Rescorla-Wagner

model. Psychonomic Bulletin and Review 3(3): 314–321.

19. Ramscar M, Yarlett D, Dye M, Denny K, Thorpe K (2010) The effects of

feature-label-order and their implications for symbolic learning. Cognitive

Science 34(6): 909–957.

20. Ramscar M, Dye M, Popick HM, O’Donnell-McCarthy F (2011) The Enigma

of number: Why children find the meanings of even small number words hard to

learn and how we can help them do better. PLOS ONE 6: e22501. doi:10.1371/

journal.pone.0022501.

21. Ramscar M, Dye M, McCauley S (2013) Error and expectation in language

learning: The curious absence of ‘mouses’ in adult speech. Language: In press.

22. Danks D (2003) Equilibria of the Rescorla–Wagner model. Journal of

Mathematical Psychology 47: 109–121.

23. Baayen RH, Milin P, Filipovic Durdevic D, Hendrix P, Marelli M (2011) An

amorphous model for morphological processing in visual comprehension based

on naive discriminative learning. Psychological Review 118: 438–482.

24. Heeringa W, Kleiweg P, Gooskens C, Nerbonne J (2006) Evaluation of string

distance algorithms for dialectology. In: Nerbonne J, Hinrichs E, editors.

Linguistic Distances. Sydney: COLING/ACL. pp. 51–62.

25. Labov W (2010) Principles of Linguistic Change, Cognitive and Cultural

Factors, Vol. 3. Malden: Wiley-Blackwell.

26. Weinberger SH, Kunath SA (2011) The Speech Accent Archive: Towards a

typology of English accents. Language and Computers 73: 265–281.

27. Brants T, Franz A (2009) Web 1T 5-gram, 10 European languages. Version 1.

Philadelphia: Linguistic Data Consortium.

28. Nerbonne J, Heeringa W (2010) Measuring dialect differences. In: Auer P,

Schmidt JE, editors. Language and Space: Theories and Methods. Berlin:

Mouton De Gruyter. pp. 550–566.

A Cognitive Measure of Pronunciation Distance

PLOS ONE | www.plosone.org 7 January 2014 | Volume 9 | Issue 1 | e75734


