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Abstract

Obesity in children has become an epidemic in the U.S. and is particularly prominent in minority populations such as
Mexican-Americans. In addition to physical activity and diet, genetics also plays a role in obesity etiology. A few studies in
adults and adolescents suggest a link between obesity and paraoxonase 1 (PON1), a multifunctional enzyme that can
metabolize organophosphate pesticides and also has antioxidant properties. We determined PON1192 genotype and
arylesterase levels (ARYase, measure of PON1 enzyme quantity), to characterize the relationship between PON1 and obesity
in young Mexican-American children (n = 373) living in an agricultural community in California. Since PON1 polymorphisms
and obesity both vary between ethnic groups, we estimated proportional genetic ancestry using 106 ancestral informative
markers (AIMs). Among children, PON1192 allele frequencies were 0.5 for both alleles, and the prevalence of obesity was high
(15% and 33% at ages two and five, respectively). The average proportion of European, African, and Native American
ancestry was 0.40, 0.09, and 0.51, yet there was wide inter-individual variation. We found a significantly higher odds of
obesity (9.3 and 2.5- fold) in PON1192QQ children compared to PON1192RR children at ages two and five, respectively. Similar
relationships were seen with BMI Z-scores at age two and waist circumference at age five. After adjusting for genetic
ancestry in models of PON1 and BMI Z-score, effect estimates for PON1192 genotype changed 15% and 9% among two and
five year old children, respectively, providing evidence of genetic confounding by population stratification. However even
after adjustment for genetic ancestry, the trend of increased BMI Z-scores with increased number of PON1192 Q alleles
remained. Our findings suggest that PON1 may play a role in obesity independent of genetic ancestry and that studies of
PON1 and health outcomes, especially in admixed populations, should account for differences due to population
stratification.
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Introduction

Childhood obesity rates have risen rapidly from 6.5 to 20% in

the last 30 years[1,2] and are particularly high among Latinos

[2,3,4]. Studies have demonstrated that obesity early in life can be

a risk factor for later chronic diseases such as cardiovascular

disease and diabetes [5], making it a significant public health

concern. Although overnutrition and sedentary behaviors are

widely accepted as major contributors to the development of

obesity in children, growing evidence suggests obesity is a complex

condition that is also influenced by genes[6,7] and the environ-

ment[8,9,10,11].

Although genome-wide association studies (GWAS) of obesity

have been performed in children[12,13], only a few candidate

genes have been identified and they explain only a small portion of

the heritability of obesity[14]. One of the limitations of GWAS is

the sheer number of multiple tests required when hundreds of

thousands to over a million genetic variants are analyzed. Since

obesity is a complex trait, the reduced power of adjusting for

multiple testing can mask associations with some polymorphisms,

such as paraoxonase 1 (PON1), which may also contribute to

obesity heritability with small but significant effects[15].

PON1 is a high density lipoprotein (HDL)-associated enzyme

that detoxifies the oxon derivatives of some organophosphate (OP)

pesticides. It is also involved in prevention of lipid peroxidation

and has been associated with diseases characterized by high

oxidative stress, such as cardiovascular disease and diabe-

tes[16,17,18]. Obesity, in particular, is considered a condition of

chronic oxidative stress[19]. Data on the relationship between

PON1 and obesity, especially in children, are limited[20]. In

adults, a few small studies have reported a trend of lower PON1

activity in obese versus normal weight individuals[21,22,23]. In

the only study of children, 12-year-olds (N = 110) with BMIs .95th

percentile had significantly lower PON1 levels in comparison to

normal weight controls[17].

Data on the relationship between obesity and PON1 genotypes

has been limited and inconsistent. Among Portuguese women, the

odds of obesity were higher among women with the PON1192 QR

or RR genotypes but no association was seen with the PON1L55M

genotype [24]. In contrast, in a Mexican population [25], the

PON155 LL genotype but not the PON1192 QR or RR genotype
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was associated with obesity. Obesity is also an important risk factor

for cardiovascular disease. The PON1192 QQ genotype has also

been associated with increased risk of major cardiovascular events

in a cohort of white and African-American adults[16], however

among school-aged children prenatally exposed to pesticides, the

RR genotype was associated with adverse cardiovascular risk

profiles[26].

Despite pronounced differences in PON1 allele frequencies and

obesity prevalence between ethnic groups, no studies of PON1

genetics and obesity have adjusted for potential genetic confound-

ing. For instance, the frequency of the Q allele for the PON1192

SNP is 0.73 for Caucasians[27], 0.37 for African-Americans[27]

and 0.48 for Mexicans[28,29]. Furthermore, it is well established

that prevalence of obesity differs among different ethnic and racial

groups even after controlling for socioeconomic status[30]. In

genetic association studies of admixed populations, heterogeneity

of genetic background can lead to spurious associations if ancestry

is related to both a candidate gene and the disease outcome of

interest; this is also referred to as genetic confounding due to

population stratification[31]. Structured association methods

enable us to adjust for potential genetic confounding. Briefly,

proportions of genetic admixture are estimated using ancestral

informative markers (AIMs), unlinked genetic markers whose

frequencies differ substantially between ancestral groups. Estimat-

ed proportion can then be included in statistical models as

covariates. To our knowledge, only one study has attempted to

adjust for population stratification in PON1 genetic association

studies and this was in relation to PON1 enzymatic activities[32].

Furthermore since studies suggest genetic admixture may influ-

ence obesity parameters[33,34], it is of critical importance to

adjust for genetic ancestry as a potential confounder in studies of

PON1 and obesity in admixed populations.

Previously, we explored the association of PON1 genotypes and

activities with birth outcomes and fetal growth in newborns from

the Center for Health Assessment of Mothers and Children of

Salinas(CHAMACOS) study and found that lower PON1 activity

was associated with shorter gestational age and smaller head

circumference in newborns[35]. Other studies have demonstrated

that PON1 status, which includes measures of both PON1192

genotype and protein levels, may be a more comprehensive

descriptor of PON1 molecular phenotype and a more accurate

predictor of disease [36,37,38]. In this paper, we extend our

studies of the CHAMACOS birth cohort to examine the

association of PON1 status (modeled as PON1192 genotype and

arylesterase activity) with outcomes of growth and obesity in young

children at ages two and five years. We also determine the

relationship between genetic ancestry and childhood obesity in

these children and additionally whether it confounds the effect of

PON1 on obesity.

Materials and Methods

Ethics Statement
Study protocols were approved by the University of California,

Berkeley Committee for Protection of Human Subjects. Written

informed consent for the participation of mothers and their

children in the study was obtained from all mothers. Consent was

obtained at the time of enrollment by CHAMACOS staff, who

provided a thorough explanation of the study and answered all

questions. Follow-up consents were obtained at the time of

delivery and at each postpartum contact point. Because of the low

literacy level of the population, all consent forms were read aloud

by the study interviewer.

Study population
The CHAMACOS study is a longitudinal birth cohort study of

the effects of pesticides and other environmental exposures on

children’s neurodevelopment, growth, and respiratory disease

[39]. Study participants live and work in the Salinas Valley in

Monterey County, CA, an agricultural region. Pregnant women

who were receiving prenatal care in one of six community clinics

were enrolled in the study between 1999 and 2000. Women

eligible to participate in the study were at least 18 years of age,

spoke English or Spanish, qualified for Medicaid, and were less

than 20 weeks gestation. Participants were primarily Latina and

most were born in Mexico. Six hundred and one pregnant women

were enrolled and 527 delivered liveborn singleton newborns.

Follow-up visits occurred when the children were 6 months, and 1,

2, 3K, and 5 years old. For this analysis, we include those who

were followed up for anthropometric measurements at age 2

(n = 386) and 5 (n = 331), and had blood samples collected at both

time points. We further limit the study to those children who were

genotyped for PON1192 and AIMs (N = 373 children total, 360 and

311 had anthropometric measurements at 2 years and 5 years of

age, respectively). A smaller portion of children also had adequate

heparinized plasma volumes for analysis of ARYase activity at

those ages (n = 243 and 215 for two and five year olds,

respectively). There were no significant differences in demographic

or anthropometric characteristics between the subset of children

included in these analyses and all the children in the CHAMA-

COS cohort.

Anthropometric measurements
Maternal pre-pregnancy BMI was calculated using self-reported

pre-pregnancy weight when interviewed at enrollment (mean 6

SD, 14.0 6 5.0 weeks gestation), and measured height. Children’s

height and weight were measured at each visit and waist

circumference was measured at age 5 [40,41,42]. Height without

shoes was measured using a stadiometer. Waist circumference was

calculated with a measuring tape placed around the abdomen at

the iliac crest. Height and waist measurements were performed in

triplicate and then averaged. Child weight was determined using a

calibrated electronic scale (Tanita Mother-Baby Scale Model

1582, Tanita Corp). To ensure reliability, periodic refresher

trainings were performed and measurements were compared

among interviewers. BMI, calculated as weight divided by height2

(kg/m2) was compared to CDC reference data[43] to generate

BMI Z-scores standardized by sex and age. Children with a BMI

at or above the 95th percentile of the 2000 CDC sex-specific BMI-

for-age growth charts,[44] were considered obese.

Blood collection and processing
Blood specimens were collected from the umbilical cords of

CHAMACOS children after delivery for the determination of

PON1 and AIMs genotypes. Genotypes were determined using

DNA isolated from blood clots as described previously. [28].

Heparinized whole blood was collected in BD vacutainersH
(Becton, Dickinson and Company, Franklin Lakes, NJ), centri-

fuged, divided into plasma, buffy coats and red blood cells, and

stored at -80uC at the School of Public Health Biorepository,

University of California, Berkeley. Measurement of ARYase

activity was performed in heparinized plasma collected from

children at two (mean6SD, 2.01 6 0.09 yr) and five (mean6SD,

5.10 6 0.22 yr) years of age. Stringent conditions in accordance

with the Best Practices for Biorepositories were followed [45].

PON1, Genetic Ancestry, and Obesity in Children
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Determination of PON1 ARYase activity levels
ARYase activity was measured by determining the rate of

phenyl acetate hydrolysis in plasma samples using spectrophoto-

metric methods as described previously [46]. ELISA and Western

blot based methods utilizing PON1 antibodies confirm a high

correlation (r.0.85) between measured PON1 quantity and

ARYase activity [47,48]. Therefore, the ARYase assay is

considered a measure of PON1 enzyme quantity. All assays were

performed in triplicate. Quality assurance, described in more

detail in Huen et al. [49], included assessment of repeat samples

(separate aliquots of the same sample run on different days),

internal controls (aliquots of the same sample run on all assay

plates), and concurrent analyses of specimens from different

collections (samples from different time points run on the same

plates). Repeated analysis of 3% of samples showed a high degree

of concordance. The average coefficient of variation (CV) for

repeated samples was 8.5% and the correlation coefficient between

repeated runs was 0.94. Inter-assay variability, as measured by the

average CV for internal controls samples was 8.7%.

AIMs selection
One hundred and six SNPs were used as AIMs for determi-

nation of genetic ancestry among CHAMACOS participants, as it

has previously been established that a panel of this size is sufficient

to accurately estimate genetic ancestry in Latino populations[50].

We chose to use the same panel of AIMs as has been reported in

other studies of Latino populations [51,52,53]. Briefly, SNPs were

selected if the delta (difference between allele frequencies) between

pairs of ancestral populations (Western African, European, or

Native American) were greater than 0.5, allowing for maximiza-

tion of information gleaned from each SNP. Selected AIMs were

widely distributed across the genome among all 22 autosomes with

an average distance of 2.4 6 107 bp between each marker.

Determination of genotypes (PON1192 and AIMs)
Previously, we sequenced the PON1 gene in CHAMACOS

subjects and determined the functional significance of over 44

PON1 SNPs[54]. PON1 molecular phenotype is strongly influ-

enced both by enzyme quantity and catalytic efficiency. We found

that the PON1192 genotype was the strongest predictor of catalytic

efficiency, as measured by substrate-specific paraoxonase (POase)

activity, and other SNPs including the coding SNP PON155 only

explained a moderate amount of additional phenotypic variation.

The promoter SNP PON12108 is known to significantly affect

PON1 protein levels, as measured by arylesterase activity, however

even in combination with other promoter polymorphisms, it only

explains 26% of the variation of PON1 quantity in CHAMACOS

children[55]. Therefore, we chose to focus our study on the

PON1192 SNP and arylesterase activity as a comprehensive

measure of PON1 status. PON1 status, which accounts for both

PON1 catalytic efficiency and enzyme quantity, can be more

informative than looking at PON1 genotype alone in epidemio-

logic studies[46].

The coding polymorphism, PON1192 was genotyped using the

Taqman real-time polymerase chain reaction (PCR) method.

Briefly, primers for the nucleotide sequence flanking the SNP, and

probes specific for the SNP were custom-designed by Applied

Biosystems, Inc. (Foster City, CA). AIMs were genotyped using the

multiplex platform iPLEX (Sequenom, San Diego, CA) as

described previously[56]. Four multiplex assays were used to

determine genotypes for 106 AIMs (all SNPs). The main steps

involved multiplex PCR, single-base primer extension, and finally

mass spectrometry to determine the genotype.

Quality assurance procedures for genotyping included assess-

ment of randomly distributed blank samples in each plate and

duplicates of randomly selected samples with independently

isolated DNA from the same subjects. Repeated analysis (4% of

samples) in several runs showed a high degree (.99%) of

concordance. All discrepancies were resolved with additional

genotyping.

Estimation of Genetic Ancestry. We used STRUCTURE

2.3.3 software [57,58,59], which applies a Bayesian approach, to

estimate the proportion of genetic ancestry for each CHAMACOS

participant. An admixture model with independent allele frequen-

cies was performed with a burn-in period of 50,000, followed by

50,000 iterations after burn-in, and K = 3. This analysis generated

proportional ancestry estimates for each of the three ancestral

populations (African, European, and Indigenous American) based

on the known frequencies in 35 West Africans, 40 Europeans, and

28 Indigenous Americans.

Statistical Analysis
We used a chi-squared goodness of fit test to assess whether

allele frequencies for each polymorphism (106 AIMs and PON1192)

deviate from Hardy-Weinberg equilibrium.

We used regression models to determine the associations

between the PON1192 genotype and obesity parameters at ages 2

and 5. PON1192 genotype was expressed in two ways: categorically

as QQ, QR, or RR and ordinally as 0, 1, or 2 for the number of Q

alleles. We incorporated a measure of PON1 status by including

variables for both ARYase and PON1192 genotype within the same

statistical models and considered their interaction.

Linear regression models were performed for the continuous

outcomes BMI Z-score (both ages) and waist circumference (only

age five) and logistic regression models were employed for obesity

status (coded at above and below the 95th percentile). In this study,

we chose to focus on obese children, although trends for

overweight children were similar (data not shown). For linear

and logistic regression models including PON1 status, we retained

the interaction term for PON1192 6ARYase in the model if the F-

test comparing the full model with the interaction term to the

nested model with no interaction term was statistically significant

(p,0.20).

To determine which covariates should be included in the

models, we tested for the association of demographic (e.g.

maternal country of birth, maternal age during pregnancy,

maternal education), diet (e.g. soda, fruit, and vegetable consump-

tion), and physical activity (time spent outside, hours of television

watched) parameters with PON1 and found no significant

associations except for maternal BMI, child birthweight, and

genetic ancestry. Only a few factors were significantly associated

with obesity parameters at age two (maternal BMI, birthweight,

child soft drink consumption[40], and genetic ancestry) and five

(maternal BMI, birthweight). Although birthweight was associated

with both PON1 genotype and obesity, it was likely an

intermediate variable such that PON1 genotype influences

birthweight[35] and then birthweight in turn influences obesity.

Therefore, we chose not to include it in our models as it has been

shown that controlling for intermediary variables leads to

overadjustment and can bias results towards the null[60].

Furthermore, maternal BMI was not included in our models

because adjusting for maternal obesity may overcontrol for the

relationship between genetic ancestry and child obesity. To

examine the possibility of confounding by population heterogene-

ity, we added genetic ancestry estimates as continuous variables to

the models looking at effects of PON1 on obesity parameters at

ages 2 and 5. Since the sum of the admixture proportions for all

PON1, Genetic Ancestry, and Obesity in Children

PLOS ONE | www.plosone.org 3 May 2013 | Volume 8 | Issue 5 | e62565



three ancestral groups (European, Native American, and African)

is equal to one, the three variables are collinear. Therefore, we

included only two of the admixture proportions (European and

African) in the models. Beta estimates or odds ratio for PON1

genotype that differed by more than 10% after adjusting for

admixture proportions were considered as evidence of genetic

confounding. Since we performed numerous tests over three

measurements of obesity (only two at age two) at two ages (5 tests

total per model), we used Bonferonni correction in which a p-value

less than 0.01(a= 0.05/5) was considered to be significant after

adjusting for multiple testing.

As a secondary analysis, we also examined the direct

relationship between genetic ancestry and obesity parameters at

ages two and five. We constructed linear and logistic regression

models where the outcome was the obesity parameter of interest

(e.g. BMI Z score, obesity status, or waist circumference) and the

independent variable was the proportion of European, Native

American, or African ancestry. Separate models were run for each

ancestral group. European ancestry and Native American ancestry

were coded continuously as percent ancestry. Since the distribu-

tion of African ancestry was right-skewed, it was log transformed

to normalize the distribution. Again we used Bonferonni

adjustment for n = 15 tests and considered a p-value less than

0.003 to be statistically significant. All analyses were performed in

Stata 11.2 (College Station, TX).

Results

Participant Characteristics
Maternal and child characteristics and information on child diet

and activity are presented in Table 1. At the time of birth,

mothers were primarily young (mean 6 SD, 25.6 65.3 years),

low-income, and Mexican-born. Furthermore, the majority were

either overweight or obese before their pregnancy. There was a

relatively even distribution of CHAMACOS boys and girls

included in this analysis.

Obesity parameters among CHAMACOS children
At age two, child BMI Z-scores ranged from 25.1 to 4.4 with a

mean 6SD of 0.4761.2. In five year olds, the mean6SD BMI Z-

score was 1.261.1 and ranged from 22.5 to 4.2. Waist

circumference among five year olds ranged from 46.3 to

92.7 cm with a mean6SD of 58.667.7. Over 15% of two-year

olds and 33% of five-year olds were obese (BMI Z-score $ 95th

percentile). The prevalence of obesity was higher in CHAMACOS

children at both ages two and five than Mexican-American

participants of the NHANES study (ages two through five)[1].

PON1192 Genotype and ARYase Activity
Among CHAMACOS children, the allele frequencies were 0.51

and 0.49 for the PON1192 Q and R alleles, respectively. We

observed broad variability of ARYase activity among CHAMA-

COS children ranging from 8.5–151.2 U/mL in two year olds and

22.4 to 157.9 U/mL in five year olds[61]. We found no significant

differences in mean ARYase activities among two and five year old

children.

AIMs and Genetic Ancestry
Minor allele frequencies for AIMs ranged from 0.02 to 0.5 and

the average was 0.3. Twenty-three AIMs significantly deviated

from Hardy-Weinberg equilibrium. Among all CHAMACOS

children (n = 373), the average proportion of European, African,

and Native American ancestry was 0.39 (range = 0.03–0.8), 0.09

(range = 0.02–0.47), and 0.52 (range = 07–0.91), respectively.

Similar proportions were also observed in CHAMACOS mothers.

Figure 1 shows a bar plot representing the estimated proportions

of genetic ancestry for all three ancestral groups for each

CHAMACOS child. The figure shows great variability between

Table 1. Study Population Demographics and Child Diet and
Physical Activity Parameters.

No. %

Maternal Characteristics

Pre-Pregnancy BMI

Underweight (,18.5) 1 0.3

Normal (18.5 – 24.9) 132 35.4

Overweight (25 – 29.9) 149 39.9

Obese (.30) 91 24.4

Maternal Age at Delivery (years)

18–24 164 44.0

25–29 121 32.4

30–34 59 15.8

35–45 29 7.8

Years Lived in US at Time of Delivery

#1 86 23.1

2–5 99 26.5

6–10 96 25.7

11+ 56 15.0

Entire life 36 9.7

Maternal Education

# 6th grade 166 44.5

7–12th grade 137 36.7

$High School Graduate 70 18.8

Child Characteristics

Sex

Boy 179 48

Girl 194 52

Diet and Physical Activitya

Soda consumption (nondiet) at age 2

,1 per week 160 44.6

1–6 per week 154 42.9

1+ per day 45 12.5

Soda Consumption (nondiet) at age 5

,1 per week 119 38.3

1–6 per week 165 53.1

1+ per day 27 8.7

Average daily TV time at age 5

,1 hr/day 73 23.5

1–2 hrs/day 106 34.1

2+ hrs/day 132 42.4

Average daily outdoor play at age 5

,1 hr/day 44 14.2

1–2 hrs/day 157 50.8

3–4 hrs/day 82 26.5

5+ hrs/day 26 8.4

aTotal number of observations vary due to missing data.
doi:10.1371/journal.pone.0062565.t001
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individuals. Participants on the left side of the plot have high

European ancestry, while those on the right side of the plot tend to

have much higher proportions of Native American ancestry. On

average, the proportion of African ancestry among Mexican-

American CHAMACOS participants was quite low although the

range was broad.

PON1, BMI, and Obesity
We observed a significant association of child PON1192 genotype

and PON1 status with both BMI Z-score and obesity status at age

two. When we coded PON1192 genotype categorically, we observed

a consistent detrimental effect of the Q allele. For example,

compared to RR children, the odds of obesity (95% confidence

interval) were 5.3 (1.6–18.0) and 9.3 (2.7–32.1) fold higher in QR

and QQ children, respectively (p for trend = 0.01). As can be seen

in the PON1 status model (model 2 including both ARYase and

PON1192 genotype in the same model) shown in Table 2, there

was an independent association of PON1192 and ARYase on BMI

Z-score for two year olds: a standard deviation increase in ARYase

activity was associated with a 0.2 unit increase in BMI Z-score

(p = 0.01) while after adjusting for ARYase activity each Q allele

was marginally associated with a 0.2 unit increase in BMI Z-score

(p = 0.06) in two year old children. Similar trends were seen with

obesity status in which increased ARYase and the number of Q

alleles were associated with increased odds of obesity in children

(p = 0.02 for both), but these were not considered statistically

significant after adjustment for multiple testing. We observed no

significant interaction between ARYase and PON1192 at age two.

Therefore an interaction term was not included in the model.

We observed similar trends between child PON1192 genotype

and waist circumference, obesity status, and BMI Z-score in five

year olds children. With an increasing number of PON1192 Q

alleles, we observed increased waist circumference

(b(95%CI):1.3(0.09–2.51) and also increased odds (1.55 fold) of

obesity in 5 year olds (Table 2). For example, compared to RR

children the odds of obesity was 2.0 and 2.5 in QR and QQ

children, respectively (p for trend = 0.01). After adjusting for

multiple hypothesis testing however only the relationship with

obesity status remained statistically significant. The PON1 status

models for five year olds indicated a statistically significant

interaction between ARYase and PON1192 genotype for waist

circumference and obesity status (p = 0.15 and 0.13, respectively,

Table 2). To interpret the significant interaction terms in the waist

circumference and obesity status, we created models of the

association of ARYase on these outcomes, stratifying by PON1192

genotype. Although cell numbers were relatively small for these

models, they indicated a protective but non-significant trend of

smaller waist circumference b(95%CI):20.45(22.15,1.24) and

decreased odds of obesity OR(95%CI):0.81(0.50–1.30) for a SD

increase in ARYase activity in QQ children. In contrast, among

QR and RR children, we observed the opposite trend of larger

waist circumference and increased odds of obesity with an SD

increase in ARYase activity. However, this relationship was only

significant for increased waist circumference among QR children

b(95%CI):1.73(0.15,3.30).

PON1, Genetic Ancestry, and Obesity
To determine whether confounding by population stratification

significantly affects the relationship between PON1 and obesity we

looked at their associations while adjusting for proportional

ancestry. The coefficient for PON1192 genotype changed 15%

and 9%, respectively at ages two and five in the models for BMI Z-

score, providing some suggestive evidence of genetic confounding

by population stratification (Table 3). Coefficients in the models

for waist circumference and obesity status did not change

substantially (2–3%). For example, Figures 2 and 3 show that

the significant association of odds of obesity with PON1 genotype

remains at both ages even after adjusting for genetic ancestry.

Genetic Ancestry and Obesity
At age two, proportional European and Native American

ancestry did not appear to be significantly associated with obesity

in CHAMACOS children (Table 4). However, we did observed a

trend of increased African ancestry (log transformed) with higher

BMI Z-scores (b(95%CI):0.28(0.06–0.50)) and an increased odds

of obesity (p = 0.02). These relationships were not statistically

significant after adjusting for multiple testing. We also observed a

similar pattern in five year old children where children with higher

African ancestry had larger waist circumferences and increased

odds of obesity, but these trends were not statistically significant

(Table 4).

Discussion

In this study, we examined the relationship between PON1

genotype and status with obesity in young Mexican-American

children from the Salinas Valley, CA. Increasing number of

PON1192 Q alleles and increasing ARYase levels were both

associated with increased obesity in young children. Despite the

fact that PON1 genotypes vary widely between ethnic groups, few

studies of PON1 have accounted for potential confounding by

genetic ancestry. We identified an effect of genetic confounding on

the relationship between BMI Z-score and PON1192 genotype that

was stronger in two year old children and was not present in

relation to other obesity parameters. After adjusting for genetic

ancestry, the association between BMI Z-score and PON1192

genotype was weaker but the same trend still remained. These

results suggest that PON1 may play an important role in the

heritability of obesity and demonstrate that PON1 genetic studies,

especially those involving admixed populations, should adjust for

potential genetic confounding.

In contrast to Veiga et al.[24], who found an increased risk of

obesity in PON1192RR Portuguese adults, we observed that

Mexican-American children with the PON1192QQ genotype had

an increased odds of obesity. This may be due to differences in the

effect of PON1192 genotype in childhood versus adult obesity.

Alternatively, another major difference between the two studies is

the allelic distributions in the ethnic groups studied. While the

frequency of the Q allele is close to 0.5 in our Mexican-American

cohort, it is much higher (0.7) in the Portuguese population studied

Figure 1. Bar plot of genetic ancestry estimates from STRUC-
TURE software (percent European, African, and Native Amer-
ican) in CHAMACOS children (n = 375). The red, green, and blue
lines represent proportional European, African, and Native American
ancestry, respectively.
doi:10.1371/journal.pone.0062565.g001
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by Veiga and colleagues. Additionally, the PON1192 SNP has been

shown to be in linkage disequilibrium(LD) with other SNPs that

can affect PON1 levels (or ARYase) to varying extents in different

ethnic groups. It is possible that the relationship with PON1192 may

be due to LD with a different polymorphic variant. Furthermore,

in a previous study, we observed slightly different patterns of LD

among PON1 haplotype blocks (particularly the one containing

PON1192) in CHAMACOS Mexicans compared to Cauca-

Table 2. Associations of PON1 with Obesity Parameters at Ages 2 and 5.

Age 2 Age 5

N b or OR(95% CI) p-valuec r2 N b or OR(95% CI) p-value r2

BMI Z score

Model 1

PON1192
a 360 0.25(0.07,0.42) 0.01 0.02 311 0.15(20.03,0.33) 0.10 0.01

Model 2

ARYaseb 243 0.19(0.04,0.33) 0.01 0.05 215 0.04(20.11,0.19) 0.59 0.01

PON1192 0.20(20.01,0.40) 0.06 0.11(20.10,0.32) 0.32

Waist Circumference

Model 1

PON1192 311 1.30(0.09,2.51) 0.04 0.01

Model 2

ARYase 215 1.89(20.04,3.81) 0.05 0.03

PON1192 4.61(20.68,9.90) 0.09

ARYase 6 PON1192 20.98(22.33,0.36) 0.15

Obesity Status

Model 1

PON1192 360 2.41(1.54,3.76) 0.0001 311 1.55(1.10,2.18) 0.01

Model 2

ARYase 243 1.58(1.07,2.32) 0.02 215 1.73(0.87,3.46) 0.12

PON1192 1.87(1.09,3.22) 0.02 5.05(0.79,32.33) 0.09

ARYase 6 PON1192 0.70(0.44,1.11) 0.13

aPON1192 coded as number of Q alleles, 0, 1 or 2.
bChildren were considered obese if their BMI was at or above 95th percentile of the 2000 CDC sex-specific BMI-for-age growth charts.
cUsing a Bonferonni correction for multiple testing (5 tests per model), we considered p-values less than 0.01 to be statistically significant.
Model 1 examines the association of PON1192 only with obesity parameters. Model 2 examines the association of PON1 status with obesity parameters by including both
ARYase and PON1192.
doi:10.1371/journal.pone.0062565.t002

Figure 2. Odds of obesity by PON1192 genotype in 2 year old
CHAMACOS children. Compared to RR children, the OR(95%CI) for
QQ and QR two year olds was 8.63(2.46–30.24) and 5.06(1.49–17.14),
respectively (n = 360), after adjusting for genetic ancestry. The
genotypic frequencies for these children were: QQ-25% QR-51% RR-
24%. The dashed line indicates an OR of 1.
doi:10.1371/journal.pone.0062565.g002

Figure 3. Odds of obesity by PON1192 genotype in 5 year old
CHAMACOS children. Compared to RR children, the OR(95%CI) for
QQ and QR five year olds was 2.47(1.20–5.10) and 1.97(1.03–3.74),
respectively(n = 311), after adjusting for genetic ancestry. The genotypic
frequencies for these children were: QQ-25% QR-51% RR-24%. The
dashed line indicates an OR of 1.
doi:10.1371/journal.pone.0062565.g003
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sians[54]. Therefore the combination of differences in age and

ethnicities studied and variation of LD patterns within these

groups may help to explain the conflicting results between these

studies. Other studies looking at the relationship of PON1

genotype with obesity among adults have been inconsistent.

Furthermore, only one other study has been reported in children.

Although they focus primarily on the effect of a gene-environment

interaction between pesticide exposure and PON1192 genotype,

their data in unexposed children indicate a small yet statistically

significant association between PON1192 QR/RR genotype and

decreased waist circumference, body fat percentage, and BMI Z-

score[26], corroborating our findings.

Table 3. Associations of Child PON1 and Genetic Ancestry with Obesity Parameters at Ages 2 and 5.

Age 2 Age 5

N b or OR(95% CI) p-valued r2 N b or OR(95% CI) p-value r2

BMI Z-score

ARYase 243 0.19(0.04,0.33) 0.011 ,0.005 215 0.05(20.10,0.21) 0.517 0.01

PON1192
a 0.17(20.03,0.38) 0.102 0.10(20.11,0.32) 0.345

% European Ancestry 0.13(20.96,1.21) 0.815 20.17(21.36,1.02) 0.781

% African Ancestryb 0.16(20.10,0.41) 0.223 0.18(20.11,0.47) 0.225

Waist Circumference

ARYase 215 2.00(0.05,3.94) 0.044 0.04

PON1192 4.75(20.57,10.08) 0.080

ARYase 6 PON1192 21.03(22.38,0.32) 0.135

% European Ancestry 21.46(28.96,6.05) 0.702

% African Ancestry 1.03(20.79,2.85) 0.266

Obesity Statusc

ARYase 243 1.58(1.07,2.34) 0.021 215 1.75(0.88,3.52) 0.113

PON1192 1.91(1.09,3.34) 0.024 5.16(0.80,33.11) 0.084

ARYase 6 PON1192 0.69(0.44,1.11) 0.125

% European Ancestry 0.18(0.01,3.32) 0.250 0.71(0.07,7.24) 0.770

% African Ancestry 1.57(0.78,3.14) 0.203 1.10(0.62,1.96) 0.735

aPON1192 coded as number of Q alleles, 0, 1 or 2.
bProportional African ancestry was log transformed to normalize the distribution.
cChildren were considered obese if their BMI was at or above 95th percentile of the 2000 CDC sex-specific BMI-for-age growth charts.
dUsing a Bonferonni correction for multiple testing (5 tests per model), we considered p-values less than 0.01 to be statistically significant.
doi:10.1371/journal.pone.0062565.t003

Table 4. Associations of Proportional Genetic Ancestry with Obesity Parameters at Ages 2 and 5.

Age 2 Age 5

N b or OR(95% CI) p-valuec r2 N b or OR(95% CI) p-value r2

BMI Z-score

%European Ancestry 362 0.02(20.92,0.95) 0.970 ,0.0005 312 20.34(21.32,0.65) 0.502 0.001

% Native American Ancestry 362 20.43(21.36,0.50) 0.361 0.002 312 0.09(20.89,1.08) 0.850 ,0.0005

% African Ancestrya 362 0.28(0.06,0.50) 0.012 0.017 312 0.14(20.08,0.37) 0.212 0.005

Waist Circumference

%European Ancestry 313 23.00(29.72,3.72) 0.380 0.002

% Native American Ancestry 313 1.85(24.87,8.57) 0.589 ,0.0005

% African Ancestry 313 0.75(20.78,2.28) 0.335 0.003

Obesity Statusb

%European Ancestry 362 0.62(0.07,5.36) 0.663 312 0.83(0.13,5.29) 0.842

% Native American Ancestry 362 0.65(0.08,5.60) 0.699 312 0.86(0.13,5.49) 0.869

% African Ancestry 362 1.91(1.11,3.29) 0.020 312 1.28(0.83,1.96) 0.267

aProportional African ancestry was log transformed to normalize the distribution.
bChildren were considered obese if their BMI was at or above 95th percentile of the 2000 CDC sex-specific BMI-for-age growth charts.
cUsing a Bonferonni correction for multiple testing (15 tests), we considered p-values less than 0.003 to be statistically significant.
doi:10.1371/journal.pone.0062565.t004
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Although PON1 status, which accounts for both PON1 quantity

and enzyme activity[46], is considered more informative than

looking at genotype alone, no other studies have examined the

effect of PON1 status on obesity. Interestingly, while we found

both PON1192 genotype and ARYase were positively associated

with obesity (independent of each other) in two year olds,

increasing ARYase activity was protective in PON1192QQ but not

PON1192RR five year olds. One study of Hungarian children (mean

age = 12 years) also showed lower ARYase in obese children but

did not report PON1 genotype frequencies. However, if we

consider results of other studies that generally observe a much

higher frequency of QQ (51%) than RR(8%) genotypes in

Hungarian individuals[62], our findings in five year old

PON1192QQ CHAMACOS children are consistent with the study

of Hungarian children, the majority of whom were likely

PON1192QQ. The association between increased ARYase and

obesity parameters in two year old children was unexpected.

However, this relationship may have been driven by the weak but

significant LD between PON1192 and promoter SNPs PON12108

and PON12909, both of which are associated with ARYase activity.

Indeed, we found a modest but statistically significant relationship

between ARYase and PON1192 with lower ARYase activity in

children with PON1192 QR and RR genotypes. Among five year

old children, we found a significant interaction between PON1192

and ARYase activity such that higher ARYase activities in QQ

children seemed to be protective against obesity. Given that QQ

children are at increased risk of obesity compared to QR and RR

children, this relationship indicates that children with both low

ARYase and the QQ genotype may have an even higher risk of

obesity than other children. Overall, these data suggest that PON1

genotype and protein expression may play a role in obesity. The

biological link between the two is likely the oxidative stress

pathway as it is well established that PON1 is involved in lipid

peroxidation[18,63,64]and obesity is characterized by chronic

oxidative stress[19].

To our knowledge, this is the first study of genetic associations of

PON1 with obesity that has accounted for potential confounding

by genetic ancestry. Since PON1 allele frequencies are quite

different by ethnic groups and prevalence of obesity clearly varies

between ethnic and racial groups as well, it is important to

consider this critical factor. Our data demonstrate some suggestive

evidence of genetic confounding by population stratification in

models examining the association of PON1 with BMI Z-scores.

Only one other study has used AIMs to examine the effects of

genetic ancestry on PON1 [32]. However in that study, Lee and

colleagues looked at a much smaller set of 35 AIMs and found

adjustment for genetic ancestry provided only limited improve-

ment in the fit of the models of PON1 genotype with ARYase in

African-American and Caucasian mothers and their children.

Accounting for the contribution of genetic ancestry may be more

critical when considering health outcomes that vary broadly

between ethnic groups such as birth weight, obesity, and

cardiovascular disease.

Interestingly, the associations observed at ages 2 and 5 were

quite different. For instance the relationship between PON1192

genotype and obesity was stronger and the effect of genetic

confounding was more noticeable at age 2 compared to age 5.

This data however corroborates well with data from twin and

adoption studies which indicate that the heritability of obesity is

lowest at age 5 when the effect of common environmental factors is

strongest[65]. Along these lines, one would expect that the

association of obesity with both genetic factors (e.g. PON1

genotype and genetic ancestry) would be more prominent at age

2 compared to age 5, as we observed in our cohort.

As a secondary analysis, we also examined the direct association

between genetic ancestry and obesity parameters. We found that

increased African ancestry was marginally associated with higher

BMI Z-scores and odds of obesity. These results are similar to

those reported by Fernandez et al.[33] and Tang et al. [34], which

showed positive associations between African ancestry estimates

and obesity parameters in adults. These data provide further

evidence that it is important to adjust for ancestry in genetic

studies of obesity.

Although we identified some meaningful relationships of obesity

with both PON1 and genetic ancestry, this study does have some

limitations. First, it is well established that obesity is multifactorial

in nature, so while we found that genetics explains some of the

variance in obesity parameters, other factors such as environmen-

tal obesogens, gene-environment interactions, and epigenetics

should be considered in the future. Also, here we focused

exclusively on one candidate gene, PON1, and it may be useful

to explore other related genes, including those involved in lipid

peroxidation and oxidative stress pathways. Despite these limita-

tions, our findings suggest an intriguing role of PON1 in obesity

and underscore the importance of accounting for differences in

genetic ancestry in studies of PON1 and health outcomes.
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