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Abstract

Climate change affects the phenology of many species. As temperature and precipitation are thought to control autumn
color change in temperate deciduous trees, it is possible that climate change might also affect the phenology of autumn
colors. Using long-term data for eight tree species in a New England hardwood forest, we show that the timing and
cumulative amount of autumn color are correlated with variation in temperature and precipitation at specific times of the
year. A phenological model driven by accumulated cold degree-days and photoperiod reproduces most of the interspecific
and interannual variability in the timing of autumn colors. We use this process-oriented model to predict changes in the
phenology of autumn colors to 2099, showing that, while responses vary among species, climate change under standard
IPCC projections will lead to an overall increase in the amount of autumn colors for most species.
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Introduction

Climate change and autumn colors
Temperature affects biological processes ranging from the

molecular to the ecological level. It is not surprising, therefore, that

climate change is altering the phenology of many species [1–7]. In

plants, the impacts of climate change on spring phenology

(flowering) are well documented [8–13]. Much less is known,

however, about how warming temperatures and altered precipi-

tation regimes affect autumn phenology, specifically as related to

leaf coloration and senescence.

About 15% of the tree species of the temperate regions of the

world change their leaf color from green to yellow or red in

autumn, a percentage that can reach 70% in some regions like

New England (Northeast USA) [14–15]. As leaf color change and

leaf fall are thought to be controlled by temperature and

precipitation [16–18], it is possible that climate change may also

affect autumn phenology, with obvious biological and ecological

implications [19].

At the continental scale, warmer autumns have for instance

been related to lower net carbon fixation [20–21], as a

consequence of a higher enhancement of ecosystem respiration

than the concomitant enhancement of gross photosynthesis. At a

local scale, temperate deciduous forests may on the contrary show

a higher annual net carbon fixation during warmer autumn as a

consequence of an extended leafy season [22]. There is further

evidence that the asynchrony of autumn phenology may alter the

competition between co-occurring plant species, either in the case

of symmetric (between understory plants - all plants being light-

limited by the overstorey canopy) [23] or asymmetric (between

overstory and understory plants) [24] competition.

Additionally, the potential impact of climate change on the

intensity and duration of autumn coloration is, in some regions, of

enormous economic importance [25]. Autumn tourism—much of

which is to participate in so-called ‘leaf peeping’—contributes

billions of dollars each year to the economies of the states of the

eastern U.S.A. and provinces in adjacent Canada. If climate

change reduces the duration of autumn color display, or results in

less vibrant displays, future tourism revenues will likely be reduced.

Rationale of the study
In order to predict how autumn colors may respond to forecast

changes in environmental drivers, we analyzed data on leaf color

change collected annually between 1993 and 2010 in a New

England forest for eight study-species that develop anthocyanins in

autumn. For each species we calculated the average percentage of

colored leaves and of fallen leaves for each day of the year for the

18 years during which the data were gathered. We investigated

correlations between temperature and precipitation during differ-

ent times of the year, and the timing of various autumn color

thresholds and leaf fall dates. We compared two types of models to

explain autumn coloration and leaf fall. First, we used an empirical

approach [26] based on stepwise multiple linear regression, with

monthly means of temperature and precipitation as the candidate
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independent variables. Second, we used a more mechanistic

approach using a cold-degree-day photoperiod-dependent model

[27]. The correlation analysis and empirical modeling allow us to

identify environmental drivers that may be missing from the

mechanistic model, which is highly constrained in its structure,

and which does not, for example, account for relationships

between precipitation and autumn color. We evaluated the models

against the observational data using cross-validation methods. We

then used the most robust modeling approach, in conjunction with

IPCC climate projections, to forecast changes in the phenology of

autumn color and leaf fall, between now and the year 2099.

Materials and Methods

Data
We analyzed data on the autumn phenology of Acer rubrum (red

maple), Acer saccharum (sugar maple), Fraxinus americana (white ash),

Nyssa sylvatica (black gum), Prunus serotina (black cherry), Quercus alba

(white oak), Quercus rubra (red oak) and Quercus velutina (black oak) at

Harvard Forest, a research area owned and managed by Harvard

University, in Petersham, Massachusetts, USA (Prospect Hill

Tract; 42.54 uN, 72.18 uW). For more than twenty years,

phenological observations have been made, every 3–7 days in

spring and autumn [18,28], by the same observer. The observed

trees (3 to 5 permanently-tagged individuals per species) are

located within 1.5 km of the Harvard Forest headquarters at

elevations between 335 and 365 m above sea level. The field

protocol for autumn observations was finalized in 1993 and here

we use observations through the end of 2010. Beginning in

September, and continuing through the end of leaf fall, leaf

coloration (the percentage of leaves that have changed color on a

given tree) and leaf fall (the percentage of leaves that have fallen

from a given tree) are estimated for each individual observed. The

raw data are available at http://harvardforest.fas.harvard.edu/

data/archive.html (datasets HF000, HF001, HF003); the trans-

formed data and the codes used for the analysis are available from

the authors, while the final data are in Table S1.

Measures of autumn color
We used the original data to infer the day (cx) on which the

percentage of colored leaves is x and the day (fx) in which the

percentage of fallen leaves is x (where x may take a value of 10, 25,

50, 75 or 90 percent). Assuming that both color and leaf retention

change as a linear function between the days in which the

observations were recorded, we derived cx using the formula

cx~cxINFz x{xINFð Þ cxSUP{cxINFð Þ= xSUP{xINFð Þ

where xINF and xSUP are the available measure immediately lower

and higher than x; fx was derived in a similar way as

fx~fxINFz x{xINFð Þ fxSUP{fxINFð Þ= xSUP{xINFð Þ

For a few species, in some years (18 in a total of 2304 data

points, that is 0.65% of the data), certain thresholds (mainly c10

and c25) had already been reached before the first field

observations were made: in these cases, rather than extrapolate

backwards, we simply treated these as missing data.

We also used cx and fx to build two different measures of

abundance of autumn color: dx = f902cx measures the duration of

autumn color as the number of days between the day when a

percentage x of the leaves are red (cx) and the day when 90% of the

leaves have fallen (f90). The amount of autumn color is measured

by (in2in21)yn21+(in2in21)(yn2yn21)/2 if yn.yn21 and by

(in2in21)yn+(in2in21)(yn212yn)/2 if yn,yn21, where yn = rn(12tn/

100); rn is the percentage of red leaves, tn is the percentage of

leaves retained, in is the (julian) day when the nth measure (of a

total of m measures) was taken. The yearly amount of autumn color

A~
Xn

i~1

in{in{1ð Þ ynzyn{1ð Þ=2

therefore is (in a Cartesian plane), the area below the lines that

connect the daily amount of autumn color (see Figure 1). 100 units

of A correspond to one calendar day in which all leaves are

retained and red.

Correlation analysis and regression modeling
Air temperature and precipitation are measured (daily) at the

Harvard Forest near to the trees on which phenological

observations have been conducted. Data for the Shaler (1964–

2002) and Fisher (2001-present) meteorological stations are

available online at the web address given above; any missing

observations were filled using measurements from the Harvard

Forest EMS AmeriFlux tower, approximately 1 km distant.

Figure 1. The amount of autumn colors over time for eight
deciduous broadleaf species that turn red in autumn. The
amount of autumn color (0–100) is calculated as in(1002jn) on day n,
where the percentage of red leaves in is multiplied by the percentage of
leaves retained (1002jn). Individual years (1993–2010) are shown by
dotted lines, and their average by the thick curve.
doi:10.1371/journal.pone.0057373.g001
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For both temperature and precipitation, we first calculated

averages (of the daily measures) over all the 1- to 52-week

timeframes preceding each day of the year. We then calculated the

correlation coefficients between these averages and each of the

measures of autumn color (A; cx, fx, dx; see above) for each species.

Based on the correlation analysis, we identified the periods of the

year during which the largest positive and the largest negative

correlations were observed with the measures of autumn color.

For our empirical modeling of leaf color threshold dates (cx) and

leaf fall threshold dates (fx), we calculated monthly means of

temperature and precipitation during the leaf-on (May to October)

period. We conducted a stepwise multiple linear regression

procedure with the monthly mean drivers as candidate indepen-

dent variables (6 months62 drivers = 12 candidate variables). We

specifically chose a monthly time interval (rather than weekly) for

averaging, and restricted our analysis to the leaf-on period, so as to

avoid having too many candidate variables, which could increase

the likelihood of type 1 (false positive) errors and potentially lead to

the inclusion of spuriously correlated variables in the regression. At

each iteration of the stepwise procedure, variables that would be

significant at a p-value of # 0.20 were added to the regression but

were subsequently removed if, after other variables were

accounted for, the p-value exceeded 0.05. We fit a separate model

to each cx threshold and each fx threshold; A and dx were then

calculated from cx and fx. Below, we refer to this Multiple Linear

Regressions approach as the MLR model.

Process-oriented modeling
We used a cold-degree-day photoperiod-dependent (CDD/P)

model [27]. This model was initially designed to simulate a

coloring stage and was further applied in this study to the

simulation of a fall stage. Whatever the senescence stage (cx or fx)

considered, it is defined in the model by Ssen (arbitrary units) for

each day (doy) following Dstart (the date at which a critical

photoperiod Pstart is reached), representing the progress of the

simulated process. Leaf coloring or fall reaches a given stage (cx or

fx) when Ssen reaches a threshold value (Ycrit, arbitrary units). In this

model, the time derivative of the state of senescence (Rsen, arbitrary

units) on a daily basis is formulated as:

If P doyð ÞwPstart Ssen doyð Þ~0

If P doyð ÞvPstart and T doyð ÞwTb Rsen doyð Þ~0

If P doyð ÞvPstart and T doyð ÞvTb Rsen doyð Þ~ Tb{T doyð Þ½ �x:f P doyð Þ½ �y

Ssen doyð Þ~Ssen doy{1ð ÞzRsen doyð Þ

Where P(doy) is the photoperiod expressed in hours on the day of

year doy; T(doy), the daily mean temperature (uC); Tb, the

maximum temperature at which the considered senescence (i.e.

coloration or fall) process is effective (uC); f[P(doy)], a photoperiod

function that can be expressed as follows :

f[P(doy)] = P(doy)/Pstart

or

f[P(doy)] = 12P(doy)/Pstart

The complete model therefore includes five parameters (Pstart,

Tb, x, y, Ycrit). The dummy parameters x and y may take any of the

{0, 1, 2} discrete values, to allow for any absent/proportional/

more than proportional effects of temperature and photoperiod to

be included. A feature of this model structure is that, depending on

the value of x, the modeled phenophase can be considered as

dependent (x.0) or independent (x = 0) on cold-degree days. In

the latter case, the occurrence of the phenophase is only

determined by a threshold photoperiod.

The optimization procedure consisted of exploring the whole

space of parameters for Pstart (from 10 to 16 h with a 0.5 h step), Tb

(from +7 to +30uC with a 0.5uC step), x, and y. The Ycrit parameter

was identified through the Powell (gradient descent) optimization

method [29]. Parameter optimization was based on minimizing

the model-data mismatch, quantified in terms of root mean

squared error.

As with the MLR approach, the CDD/P model was fit

independently on leaf color (cx) and leaf fall (fx) data for each

species. Yet, while the MLR approach was fit on each color and

fall stage (e.g. 5 fits for color from c10 to c90), we fit the CDD/P

model over the complete phenological trajectory (e.g. simulta-

neously for all five stages from c10 to c90 for leaf coloration) defining

for each model structure a set of five Ycrit parameters, one per

observed stage. We thereafter used the two CDD/P models fit

independently on coloring and fall data to predict canopy duration

(dx) and the amount of color (A). Statistics were computed using

MATLAB version 7.10 (The MathWorks Inc., 2010).

Robustness assessment of the modeling approaches
The accumulation of a large phenological dataset requires

sustained effort over many years, which is why multi-decadal

records are relatively scarce. With 18 years worth of data, the

Harvard Forest dataset is one of the longest autumn datasets

published [28]. However, it is certainly possible that either the

statistical (MLR) or process-oriented (CDD/P) approaches could

result in models being over-fit to what is still a relatively short time

series.

After performing a first fit of both approaches on the full

dataset, we evaluated the robustness of each model (i.e. the ability

of the model to predict an unknown dataset) by using cross-

validation analysis [30,31]. This approach is commonly used when

wholly independent data (e.g., from another site) are unavailable

for model testing (for examples in the phenology literature, see

[26]). Specifically, we used a one-out cross-validation, which is

particularly appropriate when the dataset is relatively small. To

conduct the cross-validation, the models were fit sequentially on 17

of 18 points (i.e. years) from the original dataset (‘calibration’) and

tested for their ability to simulate the remaining point (‘valida-

tion’). This was repeated 18 times, so that each data point was

included in the validation set exactly once. Model performance

statistics (root mean square error, RMSE, and model efficiency,

ME [32]) were then calculated across the 18 validation points.

We assessed the ability of each of the two modeling approaches

to maximize the trade-off between model parsimony and

goodness-of-fit using Akaike’s information criterion, corrected for

small samples (AICc [33]).

Future Climate Scenarios
We used our models to generate forecasts of future shifts in

autumn color phenology at Harvard Forest. Thus the model

structure is a hypothesis, and the resulting predictions can be

tested as future data become available. We ran the models forward

using climate projections (2010–2099) for the Harvard Forest grid

cell. These were previously generated by Hayhoe et al. [34] using

the NOAA GFDL CM2 global coupled climate model [35],

statistically downscaled to one-eighth degree (,10 km) spatial

resolution at a daily time step. The CM2 model was run using two

scenarios of CO2 and other greenhouse gas emissions (the IPCC

Special Report on Emission Scenarios [SRES] higher [A1fi] and

lower [B1] scenarios [36]). Compared to a 1960–1990 baseline of

7.1uC mean annual temperature and 1100 mm annual precipita-

tion, corresponding values (mean 2070–2099) are 12.0uC and

1270 mm for the A1fi scenario and 9.5uC and 1240 mm for the

Climate Change and Autumn Colors
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B1 scenario. Under the A1fi scenario, summer temperature are

projected to increase more than temperatures during the rest of

the year, while relatively more precipitation will fall during the

autumn and winter months, and less during the spring and

summer months. Under the B1 scenario, changes in seasonality

are negligible, with changes in temperature and precipitation

being relatively similar across the year.

Results

Variations in phenology
In the 18 years in which the data were collected, autumn color

display typically started at the beginning of September, peaked at

variable times in October, and lasted until November, with

marked differences among species and, within each species, among

years (Figure 1; Table S1). Peak color was earliest for Prunus

serotina, Acer rubrum and Fraxinus americana, and latest for Acer

saccharum and the various Quercus spp.

Year-to-year shifts in the entire sequence of stages are easily

seen, with 1994 being a year of early coloration and 2002 being a

year of late coloration (example of Quercus alba, Figure 2a). The

interspecific variability of autumn stages is illustrated with the

example of 50% leaf fall, which occurs on average 23 days earlier

in Acer rubrum than in Quercus rubra (Figure 2b). The interannual

variability of autumn stages varied from species to species, with,

for example, a SD of 3.1 days in Acer rubrum and 6.6 days in Quercus

alba for 50% leaf fall.

The interannual variation of autumn phenology of each species

was correlated with interannual variation in temperature and

precipitation at specific times of the year. Consider, for example,

Acer rubrum (Figure 3). Both leaf fall (fx) and the display of red leaves

(cx) were shifted significantly later in years with warmer autumn

temperatures. Dates of the full display of autumn colors (c75, c90)

were positively correlated with temperatures from spring through

autumn (although spring temperature correlations were weaker

than those in autumn), but earlier onset of color (c10) occurred in

years with warmer spring temperatures. Both the duration of

autumn colors (dx) and the total amount of autumn color (A)

tended to increase in years with warmer temperatures, particularly

warmer spring and autumn temperatures.

For each species there is a different ‘fingerprint’ to correlations

between autumn colors and temperature/precipitation at different

times of the year (Figure S1). In Acer saccharum, Nyssa sylvatica, and

Prunus serotina, the onset of color and leaf fall were correlated with

temperature in a manner that was similar to Acer rubrum. In Fraxinus

americana, advances in the onset of autumn color (c10), and delays in

the full display of autumn color (c90) occurred in years with warmer

temperatures, while leaf fall dates were advanced in years with

warmer temperatures. As a consequence, the duration of the full

display of autumn color (d90) was reduced in years with warmer

autumn temperatures. In Quercus velutina, delays in both leaf

coloration and leaf fall were correlated with warmer autumn

temperatures, and the total amount of autumn color (A) was

positively correlated with summer and autumn temperatures.

Our analysis suggests, therefore, that over the course of the year,

interannual variation in temperature is correlated with species-

specific and phenophase-specific variation in autumn phenology.

Similar patterns are seen when the same analysis is conducted for

precipitation (Figure S2). To the extent that these may represent

causal relationships, it is therefore quite likely that the autumn

phenology of each species will respond to future climate change in

a slightly different manner.

Stepwise regression analysis
In order to increase our understanding of the statistical

dependence between autumn phenology and the climate drivers,

we conducted a total of 40 stepwise regressions (5 thresholds68

Figure 2. Interannual variability of autumn senescence stages.
2a: timing of leaf coloration stages (c10 = 10% of leaves colored …
c90 = 90% of leaves coloured) for Quercus alba, white oak. 2b: timing of
50% leaf fall for four species (ACRU = Acer rubrum; FRAM = Fraxinus
americana, PRSE = Prunus serotina; QURU = Quercus rubra).
doi:10.1371/journal.pone.0057373.g002

Figure 3. Correlation between interannual variation in tem-
perature and interannual variation in autumn color phenology
in red maple, Acer rubrum. Each point (x,y) in each plot represents a
time window spanning the y weeks (vertical axis) before day x
(horizontal axis). The color at each point (x,y) represents the correlation
between the average air temperature for the time window (x,y) and the
measure of autumn leaf phenology for that plot: onset of autumn colors
(ci), time of leaf fall (fi), duration of autumn colors (di) and total amount
of color (A). Values of R are shown by colors ranging from orange-red
(minimum, negative) to blue-purple (maximum, positive); absolute
values of R.0.468 (the critical value of the Pearson product-moment
correlation coefficient; p = 0.05; d.f. = 16) are inside the bold lines. Here,
both leaf fall and the display of red leaves were shifted significantly later
in years with warmer autumn temperatures. Dates of the full display of
autumn colors (c75, c90) were positively correlated with temperatures
from spring through (especially) autumn, while warmer spring
temperatures are correlated with earlier onset of color (c10). Both the
duration of autumn colors (dx) and the total amount of autumn color (A)
tended to increase in years with warmer temperatures.
doi:10.1371/journal.pone.0057373.g003

Climate Change and Autumn Colors

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | e57373



species) for each of cx and fx (Table S2). Across all cx, the mean (61

SD) R2 was 0.4960.28; for fx, the corresponding value was

0.4460.26. However, for 7 of the cx regressions, and 6 of the fx
regressions, no variables were selected by the stepwise procedure,

and hence these models had R2 = 0.

Mean September temperature was included in 23 of the cx

regressions, and 27 of the fx regressions. In all cases, the regression

coefficients were positive, indicating that warmer September

temperatures were associated with delayed coloring and leaf fall.

By comparison, mean October temperature was included in only 5

of the cx regressions and 3 of the fx regressions, and the signs of the

regression coefficients varied among species.

Temperatures earlier in the growing season were, in some cases,

included in the regressions. For example, mean May temperature

was included in 11 of the cx regressions and 6 of the fx regressions.

In each of these cases, the regression coefficient was negative,

indicating that warmer May temperatures were associated with

advanced coloring and leaf fall.

Despite the apparent importance of precipitation indicated by

the correlation analyses described above, for no month was mean

monthly precipitation included in more than three (of 40) cx or fx
regressions.

Cold-degree-day modeling
Across all cx, the mean (61 SD) R2 was 0.4360.20; for fx, the

corresponding value was 0.3460.22. Presumably because of its

lower degree of flexibility, the CDD/P model did not fit the

observations as well as the more highly parameterized MLR

model.

In all but one case, the CDD/P model structure yielding the

lowest prediction error included cold-degree-days (i.e. a sum of

temperature below a certain temperature threshold) as a driving

variable for the simulation of cx and fx phenology (Table S2). Only

for leaf fall in Fraxinus americana was this model structure unable to

simulate the suite of stages better than the null model (which

implicitly assumes that photoperiod was the sole trigger of

senescence processes, yielding each year the same prediction date

for a given stage). In 10 over 80 coloring and fall cases (Table S2),

the selected model structure incorporated an interaction effect of

photoperiod and cold-degree-days, meaning that a given depar-

ture from the base temperature stimulated senescence processes

differently as daylength decreased.

Comparison of modeling approaches
When fit over the full dataset, the MLR model usually (80%

cases) fit the data better (higher modeling efficiency, ME, and

lower RMSE) than the CDD/P model (Table 1). In addition, in

69% of cases, the MLR maximised the trade-off between model

parsimony and goodness-of-fit: the MLR approach generally

resulted in lower Akaike’s Information Criterion (AICc) values

than the CDD/P approach (Table 1). However, the MLR

approach appeared to be somewhat less robust than the CDD/P

approach, suggesting that the empirical models may have been

over-fit. For example, in the one-out cross-validation analysis,

predictions from the CDD/P approach consistently had lower

RMSE than those from the MLR approach (Figure 4). This gives

us greater confidence in the use of the CDD/P model for

forecasting purposes, compared to the MLR approach.

Phenological Forecasts
For modeled future dates of leaf color (cx) and leaf fall (fx), we fit

a linear regression to estimate the predicted rates of change (days

per year) in autumn phenology over the period 2010–2099. We

conducted a similar analysis for canopy duration (dx) and total

color (A). This was done using the final models identified by both

the MLR and CDD/P approaches, keeping in mind that the cross-

validation analysis indicated the latter approach to be more robust.

Indeed, we found that when run under future climate scenarios,

the MLR predictions were sometimes not reliable: ‘crossing-over’

commonly occurred, for some species as early as 2020 or 2030, so

that (for example) f50 was predicted to occur before f25. These

inconsistencies were particularly common for both leaf coloration

and leaf fall for two species, Fraxinus americana and Quercus alba. Of

the eight species considered, Acer rubrum and Quercus velutina were

the only species for which crossing-over was not observed to occur.

For this reason, we focus our analysis on the forecasts generated

with the CDD/P model, acknowledging, however, that (i) this

approach may omit important drivers (specifically, precipitation)

of autumn leaf phenology and (ii) this approach also predicted

dubious patterns in the case of Fraxinus americana, for which e.g. c90

(90% canopy coloration) was predicted to occur after f90 (90% leaf

fall) originating from the inability of the CDD/P model to describe

the current interannual variations of leaf fall in this sole species.

These results, along with uncertainty estimates (indicating 95%

confidence intervals on slope estimates, rather than the uncertainty

in phenology model parameters or model structure [37]), are

shown in Figure 5.

For the CDD/P approach, a shift towards later occurrences of a

given cx or fx stage is the rule (Figure 5). In some species, such as

Acer rubrum, Quercus alba, and Quercus velutina, shifts towards later leaf

color (Figure 5a) and leaf fall dates (Figure 5b) are somewhat

smaller for earlier thresholds (e.g. c10, f10) than later thresholds (e.g.

c90, f90). For other species, all stages of leaf coloring and leaf fall are

predicted to shift by essentially the same amount. Across all

thresholds, leaf color duration (Figure 5c) is predicted to increase

(by about 0.1 d/y) for Acer saccharum, Nyssa sylvatica, and Prunus

serotina, but decrease (by about 0.3 d/y) for Fraxinus americana.

The projected change in total amount of color (A) is generally

positive for all species (Figure 5d). The projected change is

substantially larger for the A1fi scenario (higher CO2 emissions,

larger rise in mean annual temperature and larger increase in

annual precipitation) than the B1 scenario (lower CO2 emissions,

smaller rise in mean annual temperature smaller increase in

annual precipitation). Under the B1 scenario, the 95% confidence

interval on the slope estimate includes zero for several species. We

notice that the CDD/P model (fitted, independently on coloration

Figure 4. Comparison of the empirical and process-oriented
models. Comparison of goodness-of-fit (in terms of RMSE) of empirical
(MLR) and process-oriented (CDD/P) models for leaf coloration (left) and
leaf fall (right), in a leave-one-out cross-validation analysis. The MLR
model is shown to be less robust, as its RMSE is higher (to the right of
the 1:1 line) in a majority of cases.
doi:10.1371/journal.pone.0057373.g004
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and fall data) could not predict a consistent trend for Fraxinus

Americana, for which, for instance, full leaf loss was predicted to

occur before full coloration by year 2075. The strongest response

to the A1fi scenario is predicted for Nyssa sylvatica (+5 units/y),

while little or no change in total color is predicted for Acer

saccharum, a species that is especially popular with leaf peepers. We

note that for Acer rubrum and Quercus velutina, the only two species

for which MLR predictions were considered reliable, the responses

to the A1fi scenario are much smaller for the CDD/P approach

(+2 and +1 units/y, respectively) than the MLR approach (+7 and

+9 units/y, respectively).

Discussion

Our results demonstrate substantial year-to-year variability in

the timing and amount of autumn color for the eight species

considered. Both the empirical, statistical method (MLR ap-

proach, modeling phenological transition dates as a function of

monthly precipitation and temperature during the current year’s

growing season) and the more process-oriented model (CDD/P

approach, simulating the influence of cold-degree-days interacting

with photoperiod on senescence processes) could be successfully fit

to the data, allowing us to reject the null hypothesis that these

events are controlled strictly by photoperiod. The CDD/P model

was shown, by a one-out cross-validation analysis, to be more

robust than the MLR model. The stepwise regression model is

wholly empirical, and imposes no formal structure on the

relationships between phenological states and meteorological

drivers. By comparison, the CDD/P model structure is based on

hypotheses [27] about how cold temperatures and/or photoperiod

combine to regulate autumn phenology. Furthermore, whereas in

the empirical approach the model was estimated separately for

each individual phenological threshold, in the CDD/P model the

entire progression through all five thresholds (x = 10%, 25%, 50%,

75%, 90%) for each of cx and fx was predicted with a single model

Sensitivity to temperatures at specific times of the year varied

among species. For most species, we found that a warm September

delayed leaf coloring, and in some cases a warm May advanced

coloring. In just a few cases was precipitation in any month

included as a statistically significant model driver. Covariation

between temperature and precipitation (e.g., warmer Septembers

tend to be dry Septembers) may explain why both temperature

and precipitation in the same month were rarely included in a

single MLR model. Additionally, the monthly averaging used in

the regression analysis may have been too coarse, but this

approach (e.g. rather than weekly averaging) was selected to

minimize the number of candidate independent variables.

Various hypotheses about the environmental controls on

autumn coloration and senescence have been proposed [16], but

these have not systematically been translated into mechanistic

models with good predictive power. Most models developed to

date focus on air temperature (sometimes in conjunction with

photoperiod) as the primary driver of autumn phenological

transitions (e.g. [18,27,38]). While empirical analyses, such as

performed here (see also the ‘random forest’ decision tree

approach [26]), do not provide insight into the underlying

mechanisms, they can help us identify the drivers that must be

included in a model. We therefore propose that the next

generation of mechanistic models of autumn phenology should

be structured so as to include interacting functions of temperature

and precipitation (or more likely variables related to soil water

balance, such as soil moisture or Palmer Drought Index).

Previous modeling studies have generally concluded that

autumn leaf coloring and autumn leaf fall in temperate deciduous

species will be delayed in the future as continued warming due to

climate change occurs. For example, Lebourgeois et al. [26]

Table 1. Empirical (MLR) and process-oriented (CDD/P) model fit statistics, calculated across the entire trajectory of leaf coloration
(c10 … c90) and leaf fall (f10 … f90) for all eight study species.

Phenology Species MLR model CDD model

RMSE ME P AICc RMSE ME P AICc gAIC

Leaf Color Acer rubrum 2.6 0.93 10 188.7 2.3 0.94 9 162.2 26.6

Acer saccharum 3.3 0.88 14 244.5 3.4 0.88 9 235.7 8.8

Fraxinus americana 2.9 0.93 16 222.3 4.0 0.87 9 260.6 238.3

Nyssa sylvatica 4.2 0.83 8 270.0 4.0 0.84 9 264.2 5.8

Prunus serotina 4.4 0.91 11 282.5 4.7 0.89 9 289.1 26.7

Quercus alba 2.4 0.96 16 190.3 3.3 0.92 9 228.5 238.2

Quercus rubra 2.9 0.92 14 228.1 3.1 0.91 9 224.0 4.1

Quercus velutina 2.6 0.94 17 212.2 3.1 0.91 9 220.1 27.8

Leaf Fall Acer rubrum 1.8 0.94 15 141.9 2.4 0.89 9 173.6 231.8

Acer saccharum 3.4 0.85 11 243.7 2.9 0.89 9 207.2 36.6

Fraxinus americana 4.7 0.76 8 295.8 5.1 0.72 9 310.6 214.8

Nyssa sylvatica 3.2 0.90 17 249.8 4.2 0.83 9 272.5 222.7

Prunus serotina 5.8 0.78 8 335.3 6.0 0.76 9 342.2 26.9

Quercus alba 3.5 0.91 13 258.4 4.9 0.84 9 302.9 244.6

Quercus rubra 4.1 0.80 9 274.9 4.2 0.79 9 278.5 23.6

Quercus velutina 3.0 0.91 14 234.2 3.5 0.87 9 246.4 212.2

AICc = Akaike’s Information Criterion, corrected for small samples (gAIC = AICc(MLR) – AICc(CDD/P)); ME = model efficiency; P = number of fit parameters. ACRU:
Acer rubrum; ACSA: Acer saccharum; FRAM: Fraxins americana; NYSY: Nyssa sylvatica; PRSE: Prunus serotina; QUAL: Quercus alba; QURU: Quercus rubra: QUVE: Quercus
velutina.
doi:10.1371/journal.pone.0057373.t001
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predict that by 2100, leaf coloring would be delayed, on average,

by 13 days compared to the present. Delpierre et al. [27] used a

modeling analysis to predict a trend towards delayed leaf coloring

of 1.4 and 1.7 days per decade in Fagus sylvatica and Quercus petraea,

respectively, over the 1951–2099 period. Similarly, using the

Delpierre et al. ’s cold-degree-day model, Vitasse et al. [38]

predicted delayed autumn senescence trends (through 2100) of

between 1.4 and 2.3 days per decade in the same Fagus and Quercus

species. Our model-based predictions are largely consistent with

these estimates (e.g. Figure 5). However, our results further predict

that impacts of climate change will likely vary not only among

species, but also among specific phenophases—and thus, for

example, dates of 10% and 90% leaf color or leaf fall may not shift

exactly in parallel. This might help explain previous conflicting

suggestions that warmer temperatures may advance or delay leaf

coloring [2,19,27,38–41]. We put these forward as predictions that

should be tested as additional data become available in coming

years, or as improved mechanistic models of autumn phenology

are developed.

In conclusion, we have shown that forecasting autumn

phenology under the IPCC A1fi scenario predicts increases in

the amount of autumn color in a New England forest. While the

response to changing temperatures and precipitation is species-

specific, climate change is expected to have a substantial impact

overall on the timing and duration of autumn colors. This may

have a dramatic impact on both ecosystem-level C cycling [19]

and competitive interactions between species [42], as well as on

the landscape and economy of New England and other regions

where changes in the timing of autumn leaf colors are one of the

most clearly visible indicators of climate change.
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R.0.468 (the critical value of the Pearson product-moment
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dependence of phenological processes (see text for details).

(DOC)

Author Contributions

Made the field observations: JO. Conducted the correlation analysis: MA.

Conducted the modeling and forecast analyses: ADR ND. Conceived and

designed the experiments: MA ADR ND. Wrote the paper: MA ADR ND.

Figure 5. Projected rates of change in the timing of leaf
coloration and leaf fall (5a and 5b; dates at which thresholds of
10%, 25%, 50%, 75% and 90% were reached), leaf color
duration (5c; number of days between different leaf color
duration thresholds and 90% leaf fall), and total amount of
autumn colors (5d). For each species, the process-oriented (CDD/P)
model, calibrated to 18 years of field data, was run forward using
statistically downscaled climate projections from the GFDL CM2 model
(IPCC A1fi and B1 scenarios; only A1fi scenario results shown in panels a
through c). Projected rates of change (as plotted on the y-axis) were
then calculated as the slope of the linear regression line between each
phenological variable and year, over the period 2010–2099. Thus, for
panels a through c, units are days per year, whereas for d, units are
amount of color/year. ACRU: Acer rubrum; ACSA: Acer saccharum; FRAM:
Fraxinus americana; NYSY: Nyssa sylvatica; PRSE: Prunus serotina; QUAL:
Quercus alba; QURU: Quercus rubra: QUVE: Quercus velutina.
doi:10.1371/journal.pone.0057373.g005
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