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Abstract

Background: On Earth only a few legged species, such as water strider insects, some aquatic birds and lizards, can run on
water. For most other species, including humans, this is precluded by body size and proportions, lack of appropriate
appendages, and limited muscle power. However, if gravity is reduced to less than Earth’s gravity, running on water should
require less muscle power. Here we use a hydrodynamic model to predict the gravity levels at which humans should be able
to run on water. We test these predictions in the laboratory using a reduced gravity simulator.

Methodology/Principal Findings: We adapted a model equation, previously used by Glasheen and McMahon to explain the
dynamics of Basilisk lizard, to predict the body mass, stride frequency and gravity necessary for a person to run on water.
Progressive body-weight unloading of a person running in place on a wading pool confirmed the theoretical predictions
that a person could run on water, at lunar (or lower) gravity levels using relatively small rigid fins. Three-dimensional motion
capture of reflective markers on major joint centers showed that humans, similarly to the Basilisk Lizard and to the Western
Grebe, keep the head-trunk segment at a nearly constant height, despite the high stride frequency and the intensive
locomotor effort. Trunk stabilization at a nearly constant height differentiates running on water from other, more usual
human gaits.

Conclusions/Significance: The results showed that a hydrodynamic model of lizards running on water can also be applied
to humans, despite the enormous difference in body size and morphology.
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Introduction

Running on top of a water surface is a task that only few animals

can accomplish [1]. In fact, the organisms most successful in this

task are water strider insects, which stay afloat by using surface

tension to sustain their small body weight [1]. Because the net

surface tension force scales with perimeter, but gravity forces scale

with volume, surface tension cannot support larger bodies. Bigger

animals use a different strategy to avoid sinking while running:

they strike the surface with sufficient vigor to generate hydrody-

namic forces on their driving legs to support their weight [1]. The

Basilisk lizard (Basiliscus basiliscus, 90 g, Fig. 1A) has been

extensively studied for its ability to run on water by using very

fast (8-Hz stride frequency) slaps and strokes [2,3]. On the heavy

side, the Western Grebe (Aechmophorus occidentalis, 1.5 kg, Fig. 1B) is

a bird capable of a courtship involving running on water for about

20 m at a stride frequency of about 7 Hz.

Notwithstanding various internet hoaxes, humans are appar-

ently incapable of walking or running on water. In their classic

study [2] of the Basilisk lizard, Glasheen and McMahon calculate

the unsurprising result that humans are far too big and weak to

splash their feet hard enough to hold their weight. According to

their estimates [2], humans would be able to run on water only if

they were able to slap water at speeds .30 m/s, which they

estimate would require about 15 times a human’s available muscle

power.

However, there are two ways of circumventing these limitations.

One way is by reducing gravity, and the other one is by running

with flotation devices (giant shoes or fins) as envisaged by

Leonardo da Vinci. Bush and Hu [1] calculated that, even at

very high slapping speeds of the feet (10 m/s), the area of the feet

would need to be about 1 m2 in order for a human to walk or run

on water in normal gravity.

Here we consider a combination of these two mechanisms:

relatively small fins (less than 0.1 m2) to increase the water reaction

force for a given foot motion, and reducing gravity (to about 20%

of Earth gravity) to reduce body weight. To our knowledge,

nobody has previously tested the level of gravity at which humans

could run on water, nor has anybody tested whether the

hydrodynamic model previously developed for lizards by Glasheen

and McMahon also applies to humans, despite the enormous

difference in body size and morphology. These issues are relevant

in the context of comparative physiology. In addition, the

reorganization and adaptation of locomotor patterns to the water
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surface may be of interest for the construction of biologically

inspired robots [4,5], and for searching new forms of the

locomotor repertoire [6,7].

Using both theoretical models and experiments, here we find

what combinations of stride frequency, gravity and mass allow a

human to run on water like the Basilisk lizards and Western

Grebes.

Results and Discussion

We experimentally tested whether humans could generate

enough muscle power to run in place over a wading pool under

simulated reduced gravity (Fig. 1C). Participants, wearing

relatively small fins (Fig. 1D) and a harness attached to a constant

force unloading system, experienced different levels of simulated

gravity (range 10–25% gEARTH, see Materials and Methods). The

size of the fins, expressed relative to the leg length (i.e. hip-to-heel

distance) was roughly comparable to the relative size of the lizards’

feet [8]. For instance, a typical lizard of 10 g mass has a foot size

with rEFF = 0.008 m and a leg length of 0.035 m [8]

(ratio = 0.229). Our human subjects with fins had a similar

relationship (rEFF = 0.17 m, leg length = 0.8 m, ratio = 0.213).

When using M = 66 kg, rEFF = 0.17 m, uSLAP = 2.504 m/s and

tPUSH = 0.295 s, the model predicts that it is possible to run on

water for 0,g#2.16 m/s2, which corresponds to an upper limit of

about 0.22 gEARTH (Fig. 2, curve of net available vertical impulse.

See Modelling). The two model parameters uSLAP (slap speed) and

tPUSH (push duration) were derived from the experiments in the

wading pool (Table 1). These parameters depend on human

physiological constraints which are likely applicable to Earth’s

gravity and reduced hypogravity. Interestingly, the model

predicted that 82% of the total impulse is contributed by the

stroke at 0.22 gEARTH, similar to the adult Basilisk lizard [8,9].

The stroke impulse is further partitioned into 46% and 54%

contribution due to hydrodynamic and hydrostatic components of

the push, respectively. The model also showed that the maximum

body mass compatible with running on water, at the gravity of the

Moon (0.16 gEARTH) and at a stride frequency of 1.7 Hz, is 73 kg.

As predicted by the model, our experiments show that the

highest gravity for which a person can run on water is about 0.22

gEARTH. All subjects were able to avoid sinking at 10% gEARTH,

and a decreasing number of them were successful at higher

gravities (Fig. 2, bars). We also found that the subject-chosen stride

frequency and maximum vertical speed of the knee were both

independent of the gravity level (see Table 1). Figure 3 shows the

time-course of the vertical position of the markers located at the

hip and shoulder, from which the position of the center of body

mass was obtained. Equation 21 produced the curves shown in

Figure 4.

One can notice from Fig. 2 that the number of participants who

succeeded in running on water at progressively higher gravity

levels decreased in parallel with a similar decrease of the net

available vertical impulse predicted by the model for these gravity

levels. To compute the net vertical impulse, we used values of M,

rEFF, uSLAP and tPUSH averaged across participants and experi-

ments. Thus, at gravities lower than the 22% gEARTH limit, the

available impulse potentially allows almost every subject of normal

size to run on water, while only the most skilled and fit subjects can

sustain running on water when the net impulse (generated by

muscles and gravity, see eq. 4) is close to zero and the effort is

almost maximal.

Consider a situation in which a mechanical power of about 888

W is needed by the stroke. The maximum muscle power needed to

avoid sinking can be calculated by multiplying the overall drag (eq.

9) by the speed at which the vertical movement occurs (assuming a

constant u of 2.5 m/s, see Table 1). Alternatively, maximum

power can be calculated as body weight multiplied by vertical

displacement of the foot and the step frequency: also this

calculation provides a value of 888 W. The combined effect of

the saturation of muscle power (close to its maximum value) and of

the inability to move the legs at higher speeds resulted in a

monotonic increment of the foot excursion under the water surface

(Table 1), until the subjects tended to sink with increasing level of

gravity.

These experiments suffered from various approximations in our

reduced gravity simulations. First, although the overall weight is

reduced by the lifting cord, both the limbs of the participants and

the water were still affected by the full forces of Earth’s gravity.

These affect the limb dynamics and the hydrostatic terms (eq. 9),

respectively. Moreover, running in place implied that the impulse

generated by the muscles was all directed to lift the body vertically,

with no power left for the forward thrust needed to progress

horizontally. Finally, also as a consequence of running in place,

calm water was never available at successive steps.

Water refills the air cavity sooner on Earth than on the Moon

(0.30 s and 0.75 s respectively, see tSEAL in eq. 2). Therefore, our

participants had to adopt a higher stride frequency, at all

simulated gravity levels, than the frequency people would

presumably adopt in true hypogravity. Also, the waves generated

Figure 1. Running on water in Basilisk lizard (A, Basiliscus basiliscus), and human in our laboratory conditions (B). The fins used are
illustrated in C.
doi:10.1371/journal.pone.0037300.g001

Running on Water
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by each foot-stroke progress at a much slower speed (vWAVE , m/s)

in true hypogravity [10]:

vWAVE~
g t

2p
ð1Þ

where t (s) is the wave period. In true hypogravity, the above

factors would allow each step to occur on unperturbed water and

at a slower frequency, resulting in a higher power and efficiency

available from muscles [11] and decreasing the hydrodynamic

losses. On the other hand, the hydrostatic component of the

impulse is higher during simulated hypogravity. The cancelling of

these contrasting effects may have helped the close match we

found between theory and experiments.

Previous investigations suggest how gait mechanics are affected

by reduced gravity (e.g. [12]), and predict dynamically equivalent

speeds for human locomotion on different planets [13]. Here we

noticed some striking differences between running on water and

normal running on firm Earth ground. Most noticeable is that the

upper limbs and body move little (Fig. 1C). Moreover, by

inspecting the footage of Basilisk lizards, of Western Grebes and

of our subjects, we note that the vertical oscillations are almost nil

in both cases (see CoG trunk trace from 10 to 15 s in Figure 3),

differentiating this gait from usual terrestrial running (oscillation

range of 0.08–0.10 m). Although some upper body markers have

vertical motions, there is an out-of-phase pattern of contralateral

markers (Fig. 3), as opposed to the in-phase relationship observed

in terrestrial running.

For a given duty factor and frequency, the oscillations of the

center of mass are constrained by the momentum-balance

equations. One extreme condition would involve an impulse once

in the middle of each stance phase. The other extreme condition

would involve a constant force during the contact phase. Running

on water and on land can lead to differences in CoG excursions,

only to the extent that these boundary conditions allow. The

situation here is closer to the second ‘extreme’, because the

alternate ‘cycling’ movement of the two lower limbs probably

generates an almost constant force. In lizards and western grebes

(see Movies S1, S2 and S3), the head does not move at all

vertically. By considering the reciprocal movements of the lower

limbs and the compliant water surface, the relative lack of CoG

movements is to be expected. Also, the duty factor is close to 0.5

(see above), a value considered as the separator between

pendulum-like (walk) and bouncing (run) locomotion paradigms

[7,14]. It is interesting how the bicycle-like style of locomotion

(with little changes in the potential energy of the body center of

mass) is accompanied by a pedaling (rotating) moving pattern of

the lower limbs in both lizards, birds and humans during water

running (see Movies S1, S2 and S3). The only limited analogy with

terrestrial running is the possible use of pseudo-elastic mechanics

Figure 2. The curve represents the net vertical impulse available ( = ImpSLAPzImpSTROKE{ImpMIN ), as predicted by the
illustrated model. Bars represent the number of subjects, out of 6, capable to avoid sinking at different simulated gravity values. Both variables
show that 22% of gEARTH is the maximum gravity at which humans can run on water, when assisted by a small rigid fin.
doi:10.1371/journal.pone.0037300.g002

Table 1. Successful subjects, stride frequency (mean6SD)
and maximal knee vertical speed during walking on water at
different simulated gravity levels.

gravity
Successful
subjects Stride Frequency

Knee Vertical
Speed

(%gEARTH) n (Hz) (m/s)

10% 6 1.591 22.067

60.345 60.279

13% 5 1.595 22.449

60.239 60.295

16% 4 1.638 22.756

60.264 60.361

19% 3 1.727 22.808

60.068 60.588

22% 1 1.920 22.440

doi:10.1371/journal.pone.0037300.t001

Running on Water
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to save energy. If tSEAL were long enough (as in true hypogravity),

the hydrostatic reaction to the push (which is greater at deeper air/

water interfaces) could act as a Hookean spring and assist after the

slowing of the limb during the end of the pushing phase.

Regarding the comparison of the present levels of simulated

reduced gravity with the gravity of other planets, we note that the

limit value of 0.22 gEARTH that we found for water running would

include the Moon, four Galilean moons of Jupiter (Io, Ganymede,

Callisto, Europa), Saturn moon Enceladus, Pluto, and other 126

celestial objects in the Solar System (Galilean moons and

Enceladus revealed traces of water ice or vapor on their surface).

Materials and Methods

We experimentally tested whether lower limb muscles could

generate enough power to run in place over an inflatable wading

pool (Fig. 1C). Six participants (mean mass 66 kg and height

1.72 m), wearing two small fins (Pro Force Fins, Bob Evans

Designs, USA; surface area of each fin 0.075 m2, stiffened along

their sagittal plane by an aluminium rod) and a harness attached to

a constant weight unloading system [15], experienced 6 different

levels of simulated gravity (range 10–25% gEARTH). The study was

in accordance with the Declaration of Helsinki and written

informed consent was obtained from all participants according to

procedures approved by the Ethics Committee at the Santa Lucia

Foundation. The participant displayed in Figure 1 and the video

provided consent for publication.

The body weight support (BWS) was obtained by means of a

pneumatic device that applies a controlled upward force at the

waist, close to the centre of body mass (WARD system [16]) via a

parachute harness (Reha, BONMED, Germany). The BWS

mechanism consists of a mechanical gear driven by a pneumatic

cylinder, equipped with safety stops. It is held in a cart that slides

forwards and backwards over a track formed by a double steel

beam, mounted in the middle of the upper side of a parallelepiped

steel frame. Very low friction sliding of the mechanism ensures

that only vertical forces are applied to the participant. The subject

is supported in a harness, pulled upwards by a steel cable

connected to the piston of the pneumatic cylinder. Total vertical

excursion admitted is 1 m, so that the device, without any

regulation, adapts itself to the participant’s height or helps raising

him over the surface for air-stepping (100% BWS). WARD exerts

the preset unloading force independent of the position of the

center of body mass, thus simulating a reduced-gravity environ-

ment. A load cell (FGP, type FN3030, France) is positioned in-

series with the suspension cable to measure the actual delivered

force. The desired unloading force (expressed as percent of

subject’s weight) is set on the control computer that accordingly

adjusts the pressure inside the pneumatic cylinder. Preset BWS

values were applied using a ramp-up (20 N/s, about 30 s to reach

100% BWS), hold (20 to 100 s) and ramp-down (about 30 s)

profile of unloading force. The error in the force applied to a

subject and the dynamic force fluctuations monitored by the load

cell are estimated to be less than 5% of body weight (see Fig. 3,

upper trace). The trials were recorded as successful when

participants were able to avoid sinking for at least 7–8 seconds

(the hypothetical time epoch necessary to cross a small swimming

pool).

During the experiments, 3D motion of markers located on main

joints was captured by an optoelectronic system (Vicon-612,

Oxford Metrics, UK). We recorded kinematic data bilaterally at

100 Hz by means of 9 TV cameras spaced around the wading

pool. Infrared reflective markers (diameter 14 and 25 mm) were

attached on each side of the participant to the skin overlying the

following landmarks: gleno-humeral joint (GH), the midpoint

between the anterior and the posterior superior iliac spine (ilium,

IL), greater trochanter (GT), lateral femur epicondyle (LE) and

lateral malleolus (LM). The spatial accuracy of the system is better

Figure 3. Experimental tracings at 16% gEARTH (Moon) simulated gravity. The subject initially experienced 0% gravity (100% body weight
suspension, BWS) then the system was gradually set to the desired value. The upmost signal reflects the force measured by the load cell, while the
lower curves represent the vertical coordinate of hip and shoulder, as measured by the motion analysis system. Red and blue curves refer to right and
left markers, respectively, while the black one is the average value. ‘CoG trunk’ curve has been calculated as the average of the 4 markers to represent
the vertical motion of the head-trunk segment, which approximates the body centre of mass.
doi:10.1371/journal.pone.0037300.g003

Running on Water
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than 1 mm (root mean square). LM marker was often lost from

tracking due to water splashes.

Modelling
We follow the approach proposed by Glasheen and McMahon

[2,8,9] for the lizard, and we extend it to humans running on

water at different gravity levels. The general outline of the physical

problem and the corresponding equations are similar to those

presented by Glasheen and McMahon [2,8,9], but the model

parameters are adapted to fit humans. A first constraint for

running on water is that the air cavity created by each foot-stroke

stays open until the end of limb extension. In this way, net

propulsion is obtained because, as in rowing, the recovery

movement occurs in air, a fluid 800 times less dense than water.

Secondly, enough thrust has to be generated to sustain the body

weight.

In the following, gEARTH denotes Earth gravity (9.81 m/s2), g

denotes a variable value of gravity acceleration, the pushing

surface corresponds to the bottom of the foot or fin, and the radius

is the radius of a disk with the same area as the foot or the fin.

For a given g value and an effective radius rEFF of the slapping

surface, water refills the cavity in a time tSEAL [8,9]:

tSEAL~2:285
rEFF

g

� �0:5

ð2Þ

Therefore, the minimum stride frequency fMIN required to run on

water is:

fMIN~
1

2 tSEAL

~0:219
g

rEFF

� �0:5

ð3Þ

The factor of two is required as seal refers to the closing cavity

during one step, while fMIN refers to the stride (2 steps) frequency.

Figure 4. Predictions for two gravity accelerations (Earth - black and Moon - grey) are shown in terms of body mass and stride
frequency. The graphic area below the dashed curves represents the mass-frequency combinations at which water cavity seals before protraction
and the impulse is not enough to run on water. The graphic area between the dashed and the solid curves represents the mass-frequency
combinations at which the impulse is still not enough but the water cavity does not seal before protraction. The graphic area above the solid curves
is the ‘safe area’ where mass and frequency involve a sufficient impulse and water does not seal before the end of protraction. Symbols represent the
Basilisk lizard (open diamond), the Western Grebe (open circle) and humans (open square).
doi:10.1371/journal.pone.0037300.g004

Running on Water
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In accord with [8], we set

ImpSLAPzImpSTROKE§ImpMIN ð4Þ

In other words, the net vertical impulse generated by slapping and

pushing on water must be greater or equal than the one related to

gEARTH. ImpMIN refers to the minimum vertical impulse that is

needed to keep the body with zero average vertical velocity over a

step. Thus, it is a general constraint to avoid sinking into the water.

For a biped (such as man or running lizards), ImpMIN at an

arbitrary gravity g is

ImpMIN~M g tSTEP ð5Þ

where M is the mass of the runner and tSTEP is the duration of half

locomotor cycle.

To avoid sinking:

ImpMIN~M g tSEAL~2:285M g rEFFð Þ0:5 ð6Þ

Here we assume that steps occur with a duty factor (the fraction of

the stride during which one foot is in contact with water) equal to

0.5. This is the most conservative approach (requires the least

average support force). The average support force has to equate

body weight (BW). With shorter times (duty factor smaller than

0.5), the average vertical force over the step must be higher than

BW, presumably adding muscular effort. For example, with a duty

factor of 0.25, the average vertical force during a step would be 2

BW.

In the Glasheen et al model, the forces of water on the fins have

three parts. These are the forces that add to make the impulse

which counteracts the weight of the person. The first is the slap

impulse:

ImpSLAP~mVIRTUAL uSLAP~
4

3
rEFF

3r uSLAP ð7Þ

where mVIRTUAL (kg) is the virtual mass of water accelerated

during impact, r is water density (kg/m3) and uSLAP represents the

impact speed (m/s) of the foot [8].

The second component is the stroke impulse:

ImpSTROKE~

ðtPUSH

0

Drag tð Þ cos w tð Þð Þ dt ð8Þ

where w tð Þ is the time course of changes of orientation of the

pushing surface ( = 0 when the surface is horizontal). A depen-

dence on w tð Þ is justified by the fact that, as the foot travels

downwards, its orientation changes from horizontal (at the start) to

vertical (at the end). The final vertical orientation results in zero

contribution to the vertical impulse at the end of the push phase

(cos 90u= 0).

The third term is from buoyant forces acting on the bottom of

the fin (with no opposing forces at the top), proportional to the

mass of the displaced cavity, namely Srgh(t), with S as the slap

surface area. The Drag(t) represents the time course of the force

applied to water from the ‘‘stroke’’ term and the buoyant term:

Drag tð Þ~S CD 0:5 r u2 tð Þzr g h(t)
� �

ð9Þ

with CD as the water-entry drag coefficient, and the two terms in

brackets referring to hydrodynamic and hydrostatic drag, respec-

tively. The equation can be simplified:

Drag tð Þ~p r2
EFF CD r 0:5 u2 tð Þz g h(t)

� �
ð10Þ

where u tð Þ and h tð Þ are the instantaneous vertical speed and

distance from the water surface of the pushing surface.

As a first approximation, let us assume that during the whole

push phase:

u tð Þ~uSLAP ð11Þ

This seems to be a reasonable approximation, because the foot

vertical speed tends first to decrease after impact, and then to

increase during the following leg extension.

From equation 11

h tð Þ~
ð

u tð Þdt~ uSLAPt ð12Þ

and by computing the definite integral from t = 0 to t = tPUSH

ImpSTROKE~0:5 p CD r r2
EFF uSLAP tPUSH uSLAPzg tPUSH

� �
ð13Þ

CD is assumed to be equal to 0.703 as in [8].

The problem is to find gravity values for which the constraint

equation (Eq. 4) holds, namely.

f g,M,rEFF ,uSLAP,tPUSHð Þw0 ð14Þ

While the parameters M and rEFF are given, the parameters g,

uSLAP and tPUSH must be determined experimentally (see Results).

In order to obtain a more general model that could be applied

to animals of different size, we assumed that the body shape of the

biped is a vertical cylinder (with mass M, density D, radius R and

height H), the base of which is made of two half-circles vertically

extending for a distance P, mimicking the feet alternatively

pushing against the water. The cylinder shape can be defined by

the variable A = R/H, and the pushing distance by the variable S

= P/H. From geometry, it can be calculated that

R~
A:M

p:D

� �1
3

ð15Þ

Also, the effective radius of each of the two pushing half

circles, is

rEFF~
Rffiffiffi

2
p ð16Þ

The slap speed can be calculated as

uSLAP~
P

tPUSH

~
S:H

tPUSH

ð17Þ

where

H~
M

p:R2:D
ð18Þ

Running on Water
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Since

freq~
1

2:tPUSH

ð19Þ

we obtain

uSLAP~2:freq:S:H ð20Þ

By assigning the values of A = 0.04 (corresponding to a tall

cylinder, a simplification applicable to lizards and humans) and

S = 0.50 (corresponding to a leg extension of 50% body length,

another reasonable assumption for both lizards and humans) and

by assuming a constant body density (D = 1000 kg/m3)), we were

able to express rEFF, uSLAP and tPUSH as a function of mass and

stride frequency. This allowed simplifying equation 14 into:

f g,M,freqð Þw0 ð21Þ

and we could make predictions based on these three variables

only. For example, for a given gravity and cylinder mass, equation

21 yields the minimum stride frequency to run on water.

Supporting Information

Movie S1 Lizard.mov. A movie showing how the Basilisk

lizard (Basiliscus basiliscus) runs on the water surface.

(MOV)

Movie S2 16%.mov. A movie showing one of our subjects

running in place on water at a simulated gravity of 1/6 of gEARTH

(corresponding to the Moon gravity).

(MOV)
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