
Murasaki: A Fast, Parallelizable Algorithm to Find
Anchors from Multiple Genomes
Kris Popendorf1, Hachiya Tsuyoshi1, Yasunori Osana2, Yasubumi Sakakibara1*

1 Department of Biosciences and Informatics, Keio University, Yokohama, Japan, 2 Department of Computer and Informatics Science, Seikei University, Musashino-shi,

Tokyo, Japan

Abstract

Background: With the number of available genome sequences increasing rapidly, the magnitude of sequence data required
for multiple-genome analyses is a challenging problem. When large-scale rearrangements break the collinearity of gene
orders among genomes, genome comparison algorithms must first identify sets of short well-conserved sequences present
in each genome, termed anchors. Previously, anchor identification among multiple genomes has been achieved using
pairwise alignment tools like BLASTZ through progressive alignment tools like TBA, but the computational requirements for
sequence comparisons of multiple genomes quickly becomes a limiting factor as the number and scale of genomes grows.

Methodology/Principal Findings: Our algorithm, named Murasaki, makes it possible to identify anchors within multiple
large sequences on the scale of several hundred megabases in few minutes using a single CPU. Two advanced features of
Murasaki are (1) adaptive hash function generation, which enables efficient use of arbitrary mismatch patterns (spaced
seeds) and therefore the comparison of multiple mammalian genomes in a practical amount of computation time, and (2)
parallelizable execution that decreases the required wall-clock and CPU times. Murasaki can perform a sensitive anchoring
of eight mammalian genomes (human, chimp, rhesus, orangutan, mouse, rat, dog, and cow) in 21 hours CPU time
(42 minutes wall time). This is the first single-pass in-core anchoring of multiple mammalian genomes. We evaluated
Murasaki by comparing it with the genome alignment programs BLASTZ and TBA. We show that Murasaki can anchor
multiple genomes in near linear time, compared to the quadratic time requirements of BLASTZ and TBA, while improving
overall accuracy.

Conclusions/Significance: Murasaki provides an open source platform to take advantage of long patterns, cluster
computing, and novel hash algorithms to produce accurate anchors across multiple genomes with computational efficiency
significantly greater than existing methods. Murasaki is available under GPL at http://murasaki.sourceforge.net.

Citation: Popendorf K, Tsuyoshi H, Osana Y, Sakakibara Y (2010) Murasaki: A Fast, Parallelizable Algorithm to Find Anchors from Multiple Genomes. PLoS ONE 5(9):
e12651. doi:10.1371/journal.pone.0012651

Editor: Darren P. Martin, Institute of Infectious Disease and Molecular Medicine, South Africa

Received May 20, 2010; Accepted August 6, 2010; Published September 24, 2010

Copyright: � 2010 Popendorf et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported in part by a grant-in-aid for scientific research on the priority area ‘‘Comparative Genomics’’ (No.17018029) from the Ministry
of Education, Culture, Sports, Science, and Technology Japan (http://www.genome-sci.jp/), the Takeda Science Foundation, and by Keio University (http://www.
keio.ac.jp/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yasu@bio.keio.ac.jp

Introduction

‘‘Homology search’’ plays a fundamental role in a variety of

sequence analysis studies. The goal of a homology search is usually

some form of the Longest Common Subsequence (LCS) problem. In the

most general form, with an unbounded number of sequences, LCS

is an NP-Complete problem, therefore any attempts to solve the

problem quickly and at scale are forced to recognize only a limited

subset of the problem. Limiting the number of sequences under

comparison to some fixed number N allows the now ubiquitous

Smith-Waterman polynomial-time dynamic programming solu-

tion [1] to be used. Like most NP-Complete problems, what is easy

for a few small objects becomes impractical for larger more

numerous objects. Indeed the time and space requirements of

Smith-Waterman are considered prohibitive for large (or more

critically numerous) sequences, leading to the evolution of modern

homology search algorithms that employ some heuristic to provide

an approximation of the exact LCS solution. Newer algorithms

like FASTA [2] and later BLAST [3] and its derivatives

(PatternHunter, BLASTZ, Mauve, etc.) rely on subsequences of

unusually high conservation to ‘‘anchor’’ a search to a smaller area

where a more detailed homology search can be conducted in

reasonable time, from which the term anchor is derived. The

increasing availability of sequences and the now common need to

align multiple whole genomes has repeatedly pushed each of these

homology search algorithms to the point where they are no longer

viable, demanding the development of software that takes

advantage of new technologies and novel algorithms with refined

heuristics. Our software, Murasaki, is yet another entry in this

tradition. We also follow the UNIX tradition of making a tool to

do one job and do it well. Thus we confine the scope of Murasaki

to that of anchor search on multiple genomes only, and leave the

question of what to do with anchors to other tools further down

the toolchain. Our goal was to create an efficient flexible way to

search for anchors that meet arbitrary constraints across multiple

genomes (as opposed to simple pairwise comparisons) while taking

PLoS ONE | www.plosone.org 1 September 2010 | Volume 5 | Issue 9 | e12651

advantage of the increasingly multi-core and distributed compu-

tational environments available to researchers.

Anchoring
The term ‘‘anchor’’ generally refers to well-conserved short

regions among two or more genomes, and is biologically defined as

a short gene-coding region or an exon in a long gene or non-

coding region (including functional RNAs) where no rearrange-

ment occurs. Computationally, anchors are generally determined

by identifying occurrences of matching k-mers and extending or

combining them as high scoring pairs.

The task of finding anchors is considerably different from

producing alignments. Finding anchors is only the first step of

BLAST [3], in that BLAST produces lots of anchoring pairs and

tries to extend them. Mauve [4], for example, relies on anchors

only for finding the endpoints of alignable collinear regions.

Therefore, anchoring alone is not expected to be as sensitive as

exhaustive gapped-alignment, but anchoring multiple genomes

can rapidly yield information that can be used to reduce the

computation time of multiple genome alignments [5], to infer

genome rearrangements through synteny identification [6], to find

conserved non-coding RNA regions which are usually much

shorter than protein-coding regions, and to execute genome-wide

evolution analysis such as the identification of ultraconserved

regions [7].

Previous Work
Modern homology search programs generally rely on some

efficiently searchable data structure to index the locations of short

subsequences (we will call these subsequences ‘‘seeds’’). There have

been many approaches to doing this. Mauve [4] uses a sorted list

that is simple and space efficient, and because Mauve prunes all

but the unique seeds, usually fast. MUMmer [8] and later ramaco

[9] use suffix trees to find short exact matches. The latter

implements a pairwise comparison based approach to finding

matches across multiple sequences while relaxing the ‘‘unique’’

constraint of multiMUMs, however offers little opportunity for

parallelization and is limited by the space requirements of its tree

structures. The speed gains from FASTA/BLAST and the vast

majority of popular modern derivatives such as BLASTZ [10]

come from storing the seed index in a hash table where look-up of

a given seed is constant time. In practice this hash table is generally

a block of contiguous memory in the computer, such that we might

think of it as a table of M entries, T0,T1,T2, . . . TM . Key-value

pairs (K,V) might then be recorded in the table by storing V in

the entry Ti specified by a hashing function H(K) (i.e., where the hash

i of K is defined by i~H(K)). For homology-finding, the key K
would generally be a ‘‘seed’’ (e.g., ATGC), and the value V would

be the location in the input sequence(s) at which it occurs. Because

ATGC might occur any number of times, hash table entries are

often some list-like data-structure that allows a different V to be

stored for each incidence of the same seed K . The performance of

a hash table then depends on the ability to find the entries that

match a given key quickly. In other words if H(K) is slow, or

storing to and retrieving from Ti is slow, performance deteriorates.

Ideally H(K) produces a different hash Ti for every different value

of K , but when two keys Ki and Kj such that Ki=Kj produce the

same hash (i.e., H(Ki)~H(Kj)) separating their values Vi and Vj

in the hash table requires additional work. These events are called

‘‘collisions.’’ Thus to minimize the time spent resolving collisions,

the selection of a hash function H that avoids collisions is at least

as important as how to resolve them. In cases where the maximum

number of keys is small, as in PatternHunter and BLASTZ where

keys are at most 12 or 14 bases (limiting the number of possible

keys to 412 or 414 respectively), the size of the hash table M can be

chosen to accommodate all possible keys, and the hash function

H(Ki) can simply be the position of Ki in an enumerated list of all

possible values of K (if we think of a string of nucleotides as a base

4 number, thus H(Ki) becomes the trivial identity function

H(Ki)~Ki). This is the standard method used by most existing

hash-based homology search algorithms, and is acceptable for a

small number of keys. However the size of the hash table required

to guarantee no collisions increases exponentially with the length

of keys (e.g., when using longer k-mers). Given 14 bases alone

requires 2:68|108 entries, which at even a modest 32 bits per

entry is 1GB of memory, 15 bases requires then 1:07|109 entries

and 4GB, 19 bases requires 2:7|1011 entries and 1TB and so on,

it’s obvious that if one wants to use longer keys a different solution

is required. BLAST and BLASTZ limit this exponential expansion

by using only the first N bases as a key when the key length

exceeds a predefined threshold.

Ma et al. introduced the notion of spaced seed patterns to homology-

search in PatternHunter [11]. Spaced seed patterns are typically

represented as a string of 1s and 0s, where 1s represent bases that

contribute to a ‘‘seed’’ and 0s do not. For example given the

pattern 1011 and the sequence ‘‘ATGC’’, we could generate two

seeds, ‘‘A.GC’’ and ‘‘G.AT’’ (the reverse complement) where the

‘‘.’’ (period) characters are disregarded or can be thought of as

matching anything, as in regular expressions. The weight of a

pattern refers to the number of 1s in the pattern. Ma et al. showed

that a spaced seed pattern is more sensitive to weak similarities

than a non-spaced seed pattern of the same weight, leading to a

small revolution in homology-search as programs were modified to

incorporate spaced seeds. Calculating so called ‘‘optimal seed

patterns’’ becomes a challenge for long seeds [12]. In general,

however, shorter and lighter patterns are expected to be more

sensitive while longer and heavier patterns are expected to

increase specificity. The use of spaced seeds complicates the

generation of hash functions, often limiting the choice of patterns

(for example, BLASTZ offers users the choice of 2 spaced seed

patterns).

When the MegaBLAST and BLASTZ approach of hashing

using only the first N bases is applied to spaced seed patterns, we

refer to this as the First-N approach. To examine the situations in

which this First-N approach is suboptimal, considering genome

hashing from a Shannon entropy perspective is helpful. Because a

weight w seed Ki has at most w random symbols from an alphabet

of {A,C,G,T}, Ki has at most 2w bits of information. The naive

First-N approach to getting an h bit hash out of a 2w bit seed is

simply to start reading bits from one end and stop once h bits are

collected, as described above for BLAST and BLASTZ. If each

base were statistically independent, any sampling of h bits from the

key Ki would be equally effective. In reality, however, each base of

a k-mer is far from statistically independent. In fact, the average

conditional entropy of a base genome given the previous bases is

estimated to be closer to 1 bit per base [13–14]. Therefore, the

naive approach is expected to provide poor utilization of the

available hash key space. We confirm this in the Results section. At

the other end of the complexity spectrum, we can expect near

uniform utilization of the hash key space by passing all 2w bits to a

cryptographically secure pseudorandom hash function like SHA-1

[15] or MD5 [16]. SHA-1 and MD5 are often used as hash

algorithms where the characteristics of the key domain are

unknown and uniform utilization of the hash range is critical (such

as in file systems [17] to prevent data loss). MD5 has recently been

shown to be vulnerable to a variety of cryptanalysis attacks

designed to generate colliding keys for a given key rendering it

unsuitable for security purposes; however MD5 is faster than

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 2 September 2010 | Volume 5 | Issue 9 | e12651

SHA-1 and the cryptanalytic attacks are irrelevant to our purposes

here. These cryptographic hash functions are, however, compu-

tationally expensive and produce 256 bit hashes from which we

can use only a small fraction. In Murasaki we introduce a novel

hash function generation algorithm to automatically generate hash

functions from arbitrary spaced seed patterns that approximate

maximal hash key space utilization in a computationally

inexpensive manner, which we term the ‘‘adaptive hash

algorithm.’’ The details of this algorithm are explained in the

Methods section.

Motivation
Identification of anchors (or seeds for alignment) for whole-

genome comparison plays a fundamental role in comparative

genomic analyses because it is required to compute genome-scale

multiple alignments [18–20], and to infer among multiple

genomes orthologous genomic segments descendended from the

common ancestor without any rearrangement [21]. A common

approach for the identification of anchors among multiple

sequences, used by TBA [22], first detects anchors between every

pair of sequences, and then progressively integrates pairwise

anchors to form anchors across multiple sequences. For a given

number of sequences (N), this approach requires N C2 computa-

tions of pairwise anchors. Naturally this progressive approach requires

quadratic (O(N2)) time with respect to the number of sequences.

Linear time variations on this approach exist when alignments to a

single reference sequence are appropriate (eg. the UCSC human

conservation track [23]), however these have their own limitations

which we describe in Discussion. Current progress in sequencing

technologies accelerates the accumulation of completely se-

quenced genomes: 1,139 Prokaryotic and 129 Eukaryotic genomes

are now available as of this writing (6th May, 2010) according to

the GOLD database [24]. The rapidly increasing number of

available genomes poses a scalability challenge for bioinformatics

tools where computational cost is bound to the number of

sequences. Progressive alignment is further complicated by the

potential to introduce errors or bias based on the phylogenetic

trees selected for progressive alignment and accumulate pairwise

errors at each stage of the alignment [25]. To address these issues,

we propose an alternative to the progressive approach allowing the

identification of multi-sequence anchors simultaneously wherein

all sequences are hashed simultaneously and well-conserved

anchors are computed in a single pass. This allows us to compute

anchors across multiple genomes with an approximately linear cost

without any pairwise comparisons or tree inference.

Parallelization
With processor densities now pushing the constraints of physics

for speed [26], chip manufacturers have abandoned increasing

clock speeds in favor of adding multiple cores and increased

parallelism. To deal with the exponentially increasing amount of

sequence data available from new sequencing technologies [27],

new algorithms need to be designed to take advantage of multicore

and cluster computing environments in order to keep up.

Furthermore, conventional computer architectures impose a strict

limit on the amount of maximum amount of RAM usable in a

single machine. This has pushed developers working on whole

genome data, as with ABySS [28], to use cluster computing to

avoid memory barriers even if there is little gain in computational

speed (or even a decline).

When using progressive alignment tools such as BLASTZ and

TBA, the NC2 comparisons for each pair of sequences are

independent and therefore trivially parallelizable. Any finer

grained parallelization (necessary to use more than NC2

processors), requires breaking the n sequences into smaller

fragments that can be aligned independently (the technique used

for Human and Mouse genomes in [10]). This fragmentation is in

fact necessary with software like BLASTZ for mammalian scale

genomes where the genome as a whole is too large to be processed

by the alignment software in a single pass. Breaking each sequence

into M fragments incurs an additional cost for each pair fSi, Sjg
of the NC2 comparisons. With fragmentation each comparison is

shorter, however each base is considered at least M times more

than it was without fragmentation. This is because all M
fragments of sequence Si must be compared with all M fragments

of sequence Sj and each fragment gets re-indexed and anchored

each time. In Murasaki we eliminate both the NC2 and

fragmentation costs by introducing a novel fine grained yet highly

efficient approach to parallel anchoring using an unlimited

number of processors independent of the number of sequences

or fragments under comparison.

Methods

Algorithm Outline
At its most primitive definition, Murasaki takes as input a set of

DNA sequences, a spaced seed pattern, and provides as output a series

of anchors.

Anchors are defined in Murasaki as a set of intervals across some

subset of the input sequences. Each anchor contains at least one set

of matching seeds. Here a seed refers to an input substring when

masked by the spaced seed pattern. When an anchor is initially

constructed based on a set of matching seeds, both ends are

extended by an ungapped alignment until the minimum pairwise

score falls below the X-dropoff parameter as in BLAST and

BLASTZ [10]. Overlapping collinear anchors are coalesced to

form larger anchors, as in Figure 1.

Because our goal is to find and extend matching seeds, the role

of the hash table is to accelerate the identification of matching seed

sets. FASTA, BLAST, and BLASTZ all rely on hash table-like

indices to find matching seeds in constant time. Mauve uses a

‘‘sorted k-mer list’’ where k-mers (or in later versions pattern

masked k-mers) are stored in a list and sorted. Suffix trees and other

tree-based approaches use some tree-like structure to accomplish

the sorted index task. As described in Previous Work, the strict

one-to-one hash table-like approaches in the FASTA derivatives

limit the size of seeds to log4 M where M is the size of the hash

table. Murasaki uses a hybrid approach mixing hash tables with a

fast comparison based collision resolution mechanism to reduce

the number of comparisons needed to find matching seed sets.

Hashes are generated from seeds such that if two seeds Ki and Kj

match, they necessarily produce the same hash (i.e.,

Ki~Kj[H(Ki)~H(Kj)), therefore all matching seeds will reside

in the same location within the hash table. Collisions are resolved

by either using chaining and a sort or by open addressing.

The algorithm is as follows:

1. Load the input sequences as 2-bit codes.

2. Determine hash parameters and hash function H.

3. For each location L across all input sequences (on both forward

and antisense strands):

(a) Compute a hash h for the seed K at location L based on

the input sequence and hash function H

(b) Store the pair (K ,L) into location H(K) in the hash table.

3. At this point all matching locations (‘‘seeds’’) share the same hash

key and therefore share the same locations in the hash table.

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 3 September 2010 | Volume 5 | Issue 9 | e12651

4. Extract all matching sets of seeds from each entry of the hash

table (i.e., ‘‘invert’’ the hash table).

5. For each set of matching seeds:

(a) Make a new anchor A for each subset of seeds such that

there is exactly one seed from each sequence.

(b) Extend each new anchor A by ungapped alignment.

(c) Coalesce each new anchor with pre-existing existing

anchors.

The hash table inversion and anchor generation steps are

illustrated in Figure 2. Murasaki optionally supports partial

matches, also known as ‘‘islands’’ where some number of sequences

may be missing. In this case L for sequences up to the specified

number of missing sequences are considered anchored at a special

1 location.

It is worth noting at this point that the size of the hash table is a

critical factor. Our hash table size is defined to be exactly 2b where b
is the ‘‘hashbits’’ parameter, describing the number of bits expressed

in hash values. The events where H(vi)~H(vj) and vi=vj are

termed ‘‘hash collisions.’’ While careful selection of a hash function

can reduce the number of hash collisions, the pigeon hole principle

guarantees that some collisions must occur if the number of distinct

seeds is greater than the size of the hash table. Even given a perfectly

balanced hash function, where a seed selected at random has an

equal probability of mapping to any key, the expected number of

collisions per key is
4w

2b
~

22w

2b
~22w{b, where w is the weight of the

pattern. Therefore, increasing the value of b by one is expected to

reduce the number of collisions by half, dramatically reducing the

time required to invert the hash table and extract matching seeds.

This trade-off of memory for speed is common in hash tables and in

data structures overall, but Murasaki is the only existing hash-based

anchoring algorithm to separate the selection of spaced seed

patterns from the data structure used to index the input sequences.

This gives the user separate tunable parameters that allow control of

sensitivity/specificity independent of the memory footprint on the

system.

Parallelization
Murasaki’s approach lends itself to parallelization at several

points. First, the order in which individual seeds are hashed is

irrelevant, and therefore we can devote as many CPUs to hashing

as desired. The storage of locations into the hash table may require

traversing and updating some form of list or tree structure, and

which takes time comparable to that of computing a hash. Only

one CPU can modify a list or tree at a time; however, if the lists are

independent, CPUs can work on independent lists or without risk

of interfering with each other. ‘‘Inverting’’ entries in the hash table

can also occur in any order, and the more CPUs we apply to this

task the faster it will finish. Therefore we divide all available

computational nodes into one of two disjoint sets: ‘‘hasher nodes’’

and ‘‘storage nodes.’’ These nodes function in a ‘‘producer/

consumer’’ model where one set performs one half of an operation

and passes the result to a node in the opposite set. Fundamentally

the parallel algorithm works as follows:

1. All nodes load input sequences as 2-bit codes.

2. Hash parameters and a hash function H are generated.

3. Nodes are assigned a job as either ‘‘hasher’’ or ‘‘storage.’’

4. The input sequence is divided into contiguous segments, one

for each hasher.

5. Storage nodes are assigned a contiguous interval of the hash

table to manage.

6. Each hasher node

(a) computes a hash h for the seed K at location L based on

the hash function H(K).

(b) sends this (K, L) pair to the storage node responsible for K .

7. Meanwhile, each storage node

Figure 1. Anchor coalescing. Here we illustrate an example of how anchor coalescing is processed. In A we show 3 anchors spanning 3 sequences
represented by 3 sets of arrows: red, green, and blue. The green anchor overlaps the red anchor in all sequences, and maintains colinearity, therefore
they can be coalesced. However the overlap of green and blue occurs only in Sequence 1, therefore they cannot be coalesced. B shows the results of
the coalescing of green and red with the resulting anchor shown in yellow.
doi:10.1371/journal.pone.0012651.g001

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 4 September 2010 | Volume 5 | Issue 9 | e12651

(a) receives a (K , L) pair from a hasher node.

(b) stores L into location h within the hash table.

8. Hasher and storage nodes now switch roles, the storage

nodes becoming producers, and the hasher nodes becoming

consumers.

9. Each storage node

(a) inverts one row of the hash table at a time.

(b) sends the each resulting set of matching seeds to an

arbitrary hasher node.

10. Meanwhile each hasher node, now maintaining an

independent set of anchors

(a) receives a set of matching seeds from a storage node.

(b) makes a new anchor A for each subset of seeds such

that there is exactly one seed from each sequence.

(c) extends each new anchor A by ungapped alignment.

(d) coalesces each new anchor with pre-existing anchors.

11. Once all hasher nodes have finished receiving and building

anchors, hasher nodes have to merge these anchors between

Figure 2. Hash table inversion and anchoring. Here we show a simplified example of how matching seed sets are extracted from the hash table
and converted into anchors. A shows one row (Ti out of T0 . . . TN) of the hash table. Several (K , V) pairs have been inserted into the hash table. V
indicates a position in the input sequences at which K occurs. Because K is necessarily implied by V Murasaki only stores V , however here both K
and V are shown for clarity. Different values of K have also been colored differently to note their difference. First, this row is sorted with the result
shown in B. The extents of each matching seed set can then be found in O(log N) time by binary search. These matching seed sets are extracted into
a series of lists, as shown in C, which are then used to construct anchors, as shown in D.
doi:10.1371/journal.pone.0012651.g002

(a)

(b)

(c)

(d)

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 5 September 2010 | Volume 5 | Issue 9 | e12651

them. This is the ‘‘distributed merge’’ step. Initially all

hasher nodes contain unmerged anchors and are considered

‘‘active.’’

12. Active hashers are broken into ‘‘sender/receiver’’ pairs,

such that hasher 2n receives anchors from hasher 2nz1.

13. Anchors are merged by the receiver into the pre-existing

anchor set, just as new anchors were in the sequential

algorithm.

14. Hashers that have finished sending are deactivated, and the

remaining hashers repeat the process from step 12 until all

anchors reside on a single hasher.

The final ‘‘distributed merge’’ step (11 above) is unique to the

parallel algorithm, and is the only place where additional overhead

for parallelization is introduced. The memory overhead is

minimal, and because the number of active hashers is halved at

each iteration, the distributed merge step requires only qlog2 Nr
(where N is the number of participating hasher nodes) iterations to

complete. The parallel algorithm is summarized in Figure 3.

Most modern workstations and servers used in cluster

environments generally have a limited amount of RAM available.

Therefore, Murasaki’s parallelization scheme presents a useful

advantage in that it that allows the biggest memory requirement,

the hash table, to be broken up across an arbitrary number of

machines. This enables the use of proportionately larger hash

tables and thereby enables fast indexing of larger sequences such

as multiple whole mammalian genomes. Murasaki automatically

exploits this increased available memory by incrementing the

hashbits parameter (doubling the size of the hash table) each time

the number of machines available in a cluster doubles.

Hash function generation
As described above, the choice of hash function determines the

efficiency with which the hash table can be utilized. Therefore, it is

important that the hash function be chosen with care. The

ultimate goal of the hash function is to provide a means of

reducing the number of operations necessary to identify all seeds

matching a given seed Ki. Therefore, we would like each key of the

hash table to be shared by as few seeds as possible. The ‘‘ideal’’

Figure 3. Parallel algorithm overview. Here we show a simplified 8 node example of the parallel Murasaki algorithm. The time axis shows the
progression of steps and is not drawn to scale. At A Each hasher node is assigned an equal part of the sequence data (depicted as yellow-blue line),
and each storage node is assigned a part of the hash table (depicted as a red-blue line). At B nodes have been divided into ‘‘hasher nodes’’ (shown as
blue pentagons) and ‘‘storage nodes’’ (shown as red hexagons). Here hasher nodes act as producers, hashing the input sequence and passing (K , V)
pairs to the storage nodes which store them in the hash table. At C, the producer/consumer roles are switched such that storage nodes extract
matching seed sets from the hash table and send them to hash nodes. Once all matching seed sets have been extracted, the storage nodes are
finished and can be terminated (indicated by the lighter coloring in D). At this point each hasher node has an independent anchor tree. Hasher nodes
are divided into pairs, with one node sending all of its anchors to the other. These anchors are merged using the normal coalescing algorithm. Once a
hasher has finished sending, it can be terminated. Because the number of hasher nodes is halved at each iteration, this merge step finishes in
qlog2 Nr iterations, where N is the number of hasher nodes. At E only one hasher node remains which handles any additional scoring and filtering of
anchors, and outputs the final result.
doi:10.1371/journal.pone.0012651.g003

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 6 September 2010 | Volume 5 | Issue 9 | e12651

hash function provides minimal collisions while requiring only

minimal computation to calculate H(Ki).

To describe our adaptive hash algorithm, first recall that input

sequences in Murasaki are stored with two bits per base. Thus a

‘‘word’’ (the most primitive computational unit on which a CPU

can operate) in a modern 64-bit CPU contains 32 bases, and a 32-

bit word would contain 16 bases; however the algorithm itself

works with any arbitrary word size W . The spaced seed pattern is also

expressed in the same two bits per base format, and therefore

consists of several words P0, P1, . . . , Pn, where n is number of

words required to express the pattern (n is therefore q
l

W
r where l

is the pattern length). An example seed and resulting words are

shown in Figure 4A. Hashing by any of the above algorithms

requires first that the bases ignored by the spaced seed pattern (the

0s) are masked (or eliminated). This can be accomplished for any

given location v in the input sequence by simple bitwise AND

operation. Because this operation will be repeated for each

position in the genome, a pattern-sized buffer (which we call a

window) of n words (I0::n) is prepared to facilitate this calculation.

nz1 words from v are copied into the window and bit shifted to

align v to the initial word boundary. The spaced seed masked

word Si can be computed as the simple bitwise AND of Ii and Pi.

When hashing the whole input sequence, after hashing one

window, the next window can be calculated by again simply bit

shifting each word I0::n and recalculating the bitwise AND for

S0::n.

This provides a framework for running arbitrary hash

algorithms on spaced seeds. However no single one of these

words alone is likely to make a good hash, as the masked bases in

them provide zero entropy, and because the other bases aren’t

expected to be conditionally independent. To maximize the

entropy of the hash, it is useful to combine words from across the

breadth of the pattern. Therefore our adaptive hash algorithm

generator dynamically generates hash functions in terms of a set of

input pairs (i,j) in which i indicates which word of the window to

Figure 4. Hash calculation. Here we show an example hash function and how it is calculated. A illustrates how a seed might be stored in memory
on a 32-bit machine. We show 32 bases of sequence stored in two 32-bit (16 base) words. The spaced seed pattern we’re using as an example here is
32 bases long, with a weight of 16. The last line of A shows the input sequence after being masked by the spaced seed pattern, where the masked
bases have been replaced with. (periods). B1 shows an example hash function, expressed in C terms as a series of words (w [0] or w [1]), in most cases
bit shifted left (%) or right (&), and conjunctively XOR’d together (the ‘ operator). B2 shows the section of sequence being selected by each bit
shifted XOR term. B3 shows the actual XOR calculation that takes place with each bit shifted term expressed both as DNA bases and in binary. The
highlighted regions show positions in the hash affected by the input sequence, with the color indicating the XOR term from which they originated.
The final resulting hash is shown on the bottom line.
doi:10.1371/journal.pone.0012651.g004

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 7 September 2010 | Volume 5 | Issue 9 | e12651

select, and j specifies a bit shift to apply to that word (positive and

negative values indicating right and left shifts, respectively). The

hash itself is computed by XORing the result of Si&j (or Si%{j
if j is negative) of all (i,j) input pairs. This process is illustrated with

a practical example in Figure 4.

These hash functions themselves are simple and fast to compute;

however the number of possible hash functions is extreme. For any

given spaced seed pattern of length l, there are q
l

W
r choices of

word, and 2(W{1) choices of shifts for each hash input pair, and

therefore 2l(W{1)=q
l

W
r possible pairs. Because input pairs are

combined by XOR, applying the same input twice is equivalent to

not applying it at all. Therefore there are exactly 22l(W{1)=q l
Wr or

O(2l) possible hash functions. The vast majority of these hash

functions are undesirable as they use an excessive number of inputs

or leave some parts of the hash underutilized. Therefore finding the

‘‘good’’ hash functions is a nontrivial problem. Our adaptive hash

generator solves this problem by using a genetic algorithm to

iteratively explore the space of possible hash functions. In this

approach, we create a population of (initially random) hash

functions, and each cycle they are evaluated for ‘‘fitness’’ based

on their expected entropy and computation cost (method described

in Materials S1). The highest scoring third of hash functions are

randomly combined and mutated to generate new hash functions,

and the lowest scoring third are eliminated. By default we start with

100 hash functions, and repeat for at least 1000 cycles or until the

marginal improvement of the best hash function drops below a

given threshold.

Results

Experiment Design
Because Murasaki focuses solely on multisequence anchor

identification, it is difficult to identify a ‘‘drop-in replacement’’

from existing toolchains against which to compare Murasaki.

Murasaki has already been used in several projects including

orthologous segment mapping [21], and a study of Pseudomonas

aeruginosa that revealed the occurrences of large inversions in

various P. aeruginosa chromosomes [29]; so it is known empirically

to be a useful tool. To quantitatively test accuracy and efficiency of

Murasaki we evaluated Murasaki’s performance under several

controlled scenarios with respect to speed and accuracy. Our tests

focus on either whole genomes, or when the whole genome would

be cost-prohibitive, just the X chromosome for expediency. The

concerns that we address in our testing include:

1. Comparison to existing methods

2. Adaptive hash algorithm performance

3. Parallelization and scalability in cluster-computing environments

4. Performance on large inputs

Lacking a perfect drop-in replacement for an existing method,

we chose to work with BLASTZ [10] to generate pairwise anchors

and TBA [22] to combine BLASTZ’s anchors into multisequence

anchors when needed. BLASTZ is widely used as another Swiss-

army knife of homology search, and provides options to return

anchors at the ungapped-alignment stage similar to Murasaki. We

cannot force BLASTZ to use longer spaced seed patterns, and

recognize this is not BLASTZ’s intended use, but it can be made to

fulfill the same basic anchor finding functions. The combination of

BLASTZ with TBA is consistent with the intended use of TBA.

We use blastz.v7 with options ‘‘C = 3 T = 4 M = 100 K = 6000’’

to run BLASTZ with pattern settings similar to Murasaki. The

‘‘C = 3’’ parameter skips the gapped extension and chaining steps,

outputting only HSPs (‘‘high scoring pairs’’), effectively anchors

just like those of Murasaki. The ‘‘K = 6000’’ score threshold was

selected based on existing studies using BLASTZ on mammalian

genomes [10]. For TBA, we used tba.v12 with default parameters

and TBA’s all_bz program to run BLASTZ with the above

specifications. Murasaki’s parameters, primarily ‘‘–scorefilter =

6000’’ and ‘‘–mergefilter = 100’’, approximate the BLASTZ

settings. ‘‘Mergefilter’’ prevents generating anchors from seeds

which would incur more than the specified number of anchors,

tagging these regions as ‘‘repeats’’. Additionally repeat masked

sequences [30] were obtained from the Ensembl genome database

[31]. Although the Murasaki ‘‘mergefilter’’ option provides some

robustness against repeats, for mammalian genomes using repeat

masked sequences reduces the amount of sequence that must be

hashed and stored in memory by approximately one half (see

Materials S1).

Comparison to existing methods
We applied both Murasaki and the BLASTZ+TBA approach

described above to the X chromosomes of eight mammals:

human, mouse, rat, chimp, rhesus, orangutan, dog, and cow. We

compared every combinatorial choice of two species, then every

choice of three species, and so on. For the final case of eight

species, we repeated the test five times to account for variability in

computation time. For Murasaki we used the 24 base spaced seed

pattern 101111110101110111110011 to have a pattern close to

the BLASTZ level of sensitivity (the method used to choose that

pattern is explained in Materials S1).

First we show that Murasaki and TBA have comparable

accuracy. Because Murasaki is using different spaced seeds than

BLASTZ and requires that seeds match in all input sequences

(unlike TBA where less similar matches are introduced during

progressive multiple alignment), a direct comparison of individual

anchors between Murasaki and TBA is not helpful as we would

not expect them to find the same anchors. However, we would

expect that both Murasaki and TBA should accurately anchor

areas of significant similarity such as orthologous genes, and that

both Murasaki and TBA would find anchors in same vicinity

regardless of gene content (i.e., anchoring the same orthologous

segments). We use those two ideas as the basis for our comparison.

First, we evaluated the precision and recall of Murasaki and

TBA in terms of anchors found in orthologous genes. Sets of

orthologous genes were used as defined in [21] and retrieved from

the SPEED ortholog database [32]. Here ‘‘recall’’ and ‘‘precision’’

are defined in terms of ‘‘consistency’’ such that each anchor

overlapping a known ortholog is classified as either ‘‘consistent’’ or

‘‘inconsistent,’’ and anchors not overlapping any known ortholog

are neither. An anchor is counted as ‘‘consistent’’ if and only if it

overlaps each member of the orthologous gene set. Likewise an

anchor is ‘‘inconsistent’’ if and only if it overlaps at least one

member of an orthologous gene set but fails to overlap at least one

of the other orthologous genes. ‘‘Recall’’ is then defined as the

ratio of orthologous gene sets correctly detected by at least one

consistent anchor compared with the total number of orthologous

gene sets. ‘‘Precision’’ is defined as the ratio of consistent anchors

to the number of anchors either consistent or inconsistent. As a

combined overall score, we compute the F-score which is defined

as the harmonic mean of precision (P) and recall (R):

F~2(PR)=(PzR)

As shown in Figure 5, both Murasaki and TBA are similar terms

of both precision and recall. For Murasaki, that recall drops off as

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 8 September 2010 | Volume 5 | Issue 9 | e12651

more sequences are added; however, precision increases signifi-

cantly. The same trend is visible in TBA; however, the effect is

more pronounced in Murasaki where the increase in precision is

far more significant, resulting in a significantly higher overall F-

score, as shown in Table 1. The primary reason for this difference

in performance characteristics is that Murasaki anchors are

calculated across multiple genomes simultaneously rather than

progressively, decreasing the number of erroneous matches at the

cost of some sensitivity.

Second, we used the anchors produced by each algorithm to

predict orthologous segments. Orthologous segments refer to an

uninterrupted region of collinear homology between several

genomes; that is segments unlikely to have undergone genomic

rearrangement from their common ancestor [21]. There are a

number of algorithms for identifying orthologous segments, the

most simple of which is GRIMM-Synteny [33] where anchors at

distances less than a user-specified threshold are merged into

‘‘syntenic blocks.’’ In this study, we chose to use OSfinder [21]

because it uses Markov chain models to find optimal parameters

by maximizing the likelihood of the input dataset. This approach

provides an anchor algorithm agnostic means to predict

orthologous segments using anchors from either Murasaki or TBA.

We compared the orthologous segments from OSfinder in terms

of the extent to which the resulting orthologous segments overlap

Figure 5. Ortholog consistency in multiple genome comparison. This graph examines the consistency of anchors with known orthologs
when comparing varying numbers of multiple mammalian X chromosomes (from 2 to 8 different species), using both Murasaki and TBA. Consistency
is evaluated in terms of recall (the percent of known orthologs anchored), and precision (the percent of anchors incident on known orthologs to
correctly include the other known orthologous set members). The solid line represents the median of all tests for that number of species, while the
dashed lines represent the first and third quartiles. In this graph it can be seen that as the number of species increases, both precision and recall
decline with both Murasaki and TBA, however Murasaki’s precision remains significantly higher than TBA.
doi:10.1371/journal.pone.0012651.g005

Table 1. Multiple X chromosome test results.

BLASTZ+TBA Murasaki

Species Time (s) Recall Precision F-Score Time (s) Recall Precision F-Score

2 154 0.981 0.936 0.956 349 0.981 0.931 0.954

3 459 0.972 0.869 0.916 457 0.969 0.888 0.924

4 906 0.967 0.824 0.890 587 0.960 0.866 0.910

5 1489 0.964 0.788 0.869 806 0.951 0.856 0.899

6 2276 0.961 0.766 0.852 961 0.941 0.852 0.892

7 3215 0.957 0.730 0.828 1133 0.934 0.843 0.889

8 4437 0.955 0.712 0.816 1516 0.924 0.834 0.877

This table shows the median statistics from the multiple X chromosome test. Median total computation time, recall, precision, and F-score are shown for each number of
species compared using both Murasaki and BLASTZ+TBA. The BLASTZ+TBA computation time includes only the BLASTZ portion of the calculations.
doi:10.1371/journal.pone.0012651.t001

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12651

as measured in base pairs, and again in terms of orthologous gene

recall and precision as confirmation. As shown in Figure 6, the

orthologous segments detected via both Murasaki and TBA share

over 90% of the same bases for multiple alignments and, and over

99% at in pair-wise comparisons. To confirm that OSfinder’s

orthologous segments are accurate when using either algorithm,

we evaluated the orthologous segments as before in terms of

consistency with known orthologous genes. In terms of ortholo-

gous gene consistency, there was no significant difference between

orthologous segments using Murasaki and TBA as shown in

Figure 7.

Finally we compare computation time. We are only concerned

about time spent on anchor computation. Because in TBA we

cannot separate its time spent generating progressive alignments

from time spent generating multigenome anchors, we ignore the

computation time from TBA and report only BLASTZ time.

Consequently this slightly underreports the actual time required to

generate multigenome anchors using BLASTZ and TBA, but if

Murasaki is faster than the BLASTZ computation portion alone,

then it is necessarily faster than BLASTZ and TBA combined;

therefore, this comparison is sufficient for our purposes. The

resulting computation times are shown in Figure 8. For pair-wise

comparisons, BLASTZ is faster; however, when anchoring three

or more sequences, Murasaki is significantly faster than BLASTZ.

Because using TBA requires each pair-wise comparison, the

computation time increases quadratically with each additional

sequence under comparison. On the other hand, Murasaki’s

computation time increases at approximately an N log N rate

(however for these cases with only two to eight mammalian

genomes, only the linear N term is apparent). This is because all

matching seeds are found simultaneously after being entered in the

hash table together; therefore because Murasaki’s runtime is

bounded by the total input length N, not sequence number. The

difference between Murasaki and pair-wise methods increases

dramatically as the number of sequences increases. The compu-

tation times for these tests are shown in Table 1.

Adaptive hash algorithm performance
To evaluate the performance of our adaptive hash algorithm,

we compared it with the standard cryptographic SHA-1 and MD5

hash algorithms, and the First-N approach. Being designed for

cryptographic use, we expect SHA-1 and MD5 hash algorithms to

provide near-random utilization of the key space while being more

computationally expensive. To test this, we ran Murasaki on

Human and Mouse X chromosomes using five different patterns,

over different hashbits settings, repeating each trial four times. We

then compared the number of unique keys produced by each hash

function to the median number of keys produced by the adaptive

hash algorithm, as shown in Table 2. Our adaptive hash algorithm

performs within %0.05 of the cryptographic hash functions, while

the naive First-N approach lags 32% behind any of the others. We

find that as hash keys are used, fewer collisions require less work to

invert the hash table, resulting in faster extraction times, as shown

in Table 2. Table 2 also shows the computational time required to

hash the input sequences under each hash function. As expected,

the cryptographic functions were significantly (between 52% and

80%) slower. It is worth noting that hash computation times

required by our naive First-N hash function exceeded even the

cryptographic MD5 and SHA-1 hash functions. Even though

calculation of our naive First-N hash function is conceptually

extremely simple, it is computationally inefficient compared to

hash functions that incorporate spaces using the pattern optimized

Figure 6. Orthologous segment agreement across multiple X chromosomes. This graph shows the result of comparing othologous
segments as identified by OSfinder using anchors from Murasaki and TBA. The quantities shown here are the percent of base pairs in each
orthologous segment shared by the other. The solid line represents the median of all tests for that number of species, while the dashed lines
represent the first and third quartiles. For example, with anchors generated from all 8 species, 94% of the base pairs in the orthologous segments
generated from TBA’s anchors were also identified as part of an overlapping orthologous segment by anchors from Murasaki.
doi:10.1371/journal.pone.0012651.g006

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e12651

Figure 7. Orthologous Segment Ortholog Consistency Across Multiple X Chromosomes. This graph shows the result of evaluating the
orthologous segments returned produced by anchors from Murasaki and TBA with OSfinder. The solid line represents the median of all tests for that
number of species, while the dashed lines represent the first and third quartiles. The precision and recall are calculated as described in Comparison to
existing methods. The orthologous segments produced using both TBA and Murasaki are nearly identical in terms of recall, however Murasaki
outperforms TBA in terms of precision in our comparisons of large numbers of species. We note however that both Murasaki and TBA perform very
well with all precision and recall scores above 90%.
doi:10.1371/journal.pone.0012651.g007

Figure 8. Computation time for multiple mammalian X chromosomes. This graph compares the computational time required to compare
multiple X mammalian X chromosomes using Murasaki and the BLASTZ component of TBA. Because TBA requires all pairwise comparisons of the
genomes under alignment, the time required for TBA grows quadratically, while Murasaki’s time is near linear. The solid line represents the median of
all tests for that number of species, while the dashed lines represent the first and third quartiles.
doi:10.1371/journal.pone.0012651.g008

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 11 September 2010 | Volume 5 | Issue 9 | e12651

approach used in the adaptive and cryptographic hash functions.

The combined effect of hash time and extraction time is apparent

in Table 2, showing the total processing time required using each

hash function. Overall run-time using the adaptive hasher was

15% to 20% faster than the cryptographic hashers, and 23% to

30% faster than the naive approach. Percentages of key utilization,

and times for extracting and hashing are shown relative to our

adaptive hasher in Figures S1, S2, and S3.

We also tested Murasaki on Human and Mouse X chromo-

somes using different random patterns of lengths from 48 to 1024

at multiples of 16. Five random patterns were generated for each

length, and each pattern had a weight 75% of its length. Each test

was repeated three times to reduce the variability in timing. As

shown in Figure 9, the adaptive hash functions consistently

outperformed MD5 in hashing time while maintaining an

extraction time almost identical to MD5. The stair-step appear-

ance of the hash times of MD5 is due to the way that MD5

processes input in blocks, and when input lengths roll over such a

block boundary, a new round of calculations is incurred. In

contrast the hash time for the adaptive hash algorithm grows very

slowly with regard to pattern length, because estimation of the

expected hash function entropy allows Murasaki to predict the

point at which adding additional inputs no longer provides

significant gains for the current hash key size. The percentages of

keyspace used with these long patterns is shown in Figure S4.

Scalability in cluster-computing environments
Based on the parallel algorithm design, we expect the peak

efficiency of the parallel computation to vary depending on the

interconnect speed of the nodes; however because the computa-

tionally intensive tasks can be split into independent sets and

divided evenly between nodes, we expect the execution time to

decrease by a multiple of the number of active nodes. In other

words, for p processors and a given input, where Murasaki finish in

time T(p), we expect the speedup S(p) to grow linearly with p as

in S(p)~c|
T(1)

T(p)
for some constant c.

To test Murasaki against this hypothetical performance, we

used Murasaki to anchor Human and Mouse chromosomes using

between 2 and 40 processors across 10 machines. We used

OpenMPI on Torque as our MPI implementation, and each CPU

was a dual core Opteron 2220 SE, with two CPUs per machine (ie.

4 cores per machine) and had between 16GB and 32GB of RAM

available. In fact, because the amount of RAM available for use as

a hash table grows with the number of machines used, the actual

speed-up may be greater than linear for large inputs and large

numbers of processor elements. To test the scalability of Murasaki

Table 2. Total computational time by hash algorithm and
hashbits.

Hash algorithm

Statistic measured Adaptive MD5 SHA-1 First-N

Hash Time (s) 124.908 188.449 208.954 218.202

Extract Time (s) 200.554 197.254 196.82 218.334

Total Time (s) 325.798 386.706 405.385 437.65

Hash keys used 1 1.00018 1.00018 0.71606

This table shows the median total computational time, along with separate
times to hash and extract anchors required by different hash algorithms when
anchoring human and mouse X chromosomes. The final line shows the median
number of hash keys used by each hash algorithm relative to the number used
by the Adaptive hash algorithm.
doi:10.1371/journal.pone.0012651.t002

Figure 9. Hash and extraction times using Adaptive and MD5 hash algorithms with very long patterns. This graph shows the hash and
extract computation time required to compare human and mouse X chromosomes using very long patterns, and the difference between MD5 and
Adaptive hash algorithms. The difference between MD5 and Adaptive in hash time grows significantly with pattern length, whereas the difference in
extraction time is minuscule compared with the overall time required.
doi:10.1371/journal.pone.0012651.g009

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 12 September 2010 | Volume 5 | Issue 9 | e12651

on large inputs, we ran our tests using and the whole human and

mouse genomes across the largest number of CPUs we had

available.

Figure 10A shows the resulting decrease in wall clock time

required as the number of processors increases, and the

coressponding speedup value. Because the whole genome

Figure 10. Parallel computational wall time, speedup, and efficiency of complete human and mouse genomes comparisons. These
graphs illustrate the computational time required for a comparison of human and mouse genomes using different numbers of processors. In A the

wall clock time is shown in red using the left axis with the corresponding ‘‘speedup’’ (S(p)~c|
T(1)

T(p)
) shown in green using the right axis. Least-

squares regression lines have been fitted to each dataset, highlighting the near perfectly linear speedup and inversely decreasing wall clock times. In

B the parallel computation ‘‘efficiency’’ (E(p)~
T(1)

pT(p)
~

S(p)

p
) is reported. Again a least-squares regression line is fitted to the data. Here the

increasing least-squares regression line highlights the fact that on average the increase in speedup is greater than would be expected if S(p)~p.
doi:10.1371/journal.pone.0012651.g010

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 13 September 2010 | Volume 5 | Issue 9 | e12651

comparison requires too much memory for any single machine in

our cluster, T(1) is estimated to be 4|T(4). We have fitted least-

squares linear regression lines to each set of values, and found the

speedup constant c to be 1:000368 with R2~0:9984. While the

T(1) value is available only as an estimate, the close fit to a linear

model shows that the algorithm scales favorably. Critically the

parallel efficiency (E(p)~
T(1)

pT(p)
~

S(p)

p
) shown in Figure 10B

appears to increase with respect to the number processors, the

most desirable yet elusive pattern in parallel algorithms. This

increase in efficiency is due in part to the increasing hash table

size; however all tests with p§10 have access to all the machines’

memory and utlize the same 232 entry hash table, therefore we

speculate that the remaining increase likely relates to improved

scheduling and cache performance as each nodes’ work becomes

increasingly localized.

Performance on large inputs
To test the scalability of Murasaki for full multiple genome

comparisons, we repeated the comparison to existing methods test

on eight mammals (human, mouse, rat, chimp, rhesus, orangutan,

dog, and cow), however this time using the whole genome rather

than just the X chromosomes. Again, for BLASTZ and TBA we

measure only the computational of BLASTZ alone. We used the

same pattern and other settings as before; however, this time we

ran Murasaki in parallel across 10 machines using 40 cores as in

the scalability test above, using a fix hash bits setting of 29. We

report the total median CPU time used by Murasaki and BLASTZ

along with recall, precision, and F-score statistics in Table 3 for all

combinations for each number of sequences. The scalability cost of

the BLASTZ+TBA combination is even more striking in this case

as BLASTZ is unable to compare input whole genomes, requiring

the user to compare each chromosome combination (Human-1

and Chimp-1, Human-1 and Chimp-2, etc.) for each species

combination (Human and Chimp, Human and Rhesus, etc.).

Consequently the resulting graph of these times shown in Figure 11

makes Murasaki appear nearly constant by comparison to

BLASTZ. When evaluated against gene orthology dataset as in

the test cases above, the overall first, second, and third quartile F-

Scores from all combinations of these whole genomes are 0.832,

0.861, and 0.896 respectively, leading us to believe that these

anchors are approximately as accurate as those found in the X

chromosome tests above.

The eight species comparison anchors (drawn using GMV

[34]) are shown in Figure 12. All of these comparisons are

available for download and interactive browsing with GMV

[34] from the Murasaki website (http://murasaki.dna.bio.keio.

ac.jp).

Discussion

Choice of comparison algorithm
Because BLASTZ is optimized for pair-wise comparisons, it can

be expected to do well on a small number of inputs. However,

because all-by-all comparisons are required to generate multiple

alignments, the time required is expected to grow quadratically

with the number of input sequences. In contrast, Murasaki is

designed to compare an arbitrarily large number of genomes

simultaneously, and assuming a linearly bounded number of

anchors, the computation time for Murasaki is expected to be

approximately O(NlogN) for a total input length of N.

It might then seem that rather than BLASTZ, a better

comparison of Murasaki would be to a natively ‘‘multiple’’

alignment program like Mauve; however it is important to note

that Murasaki performs a fundamentally different function than

Mauve in that Mauve aligns whole collinear regions bounded by

unique anchors. While these anchors are in some ways analogous to

Murasaki’s anchors, the requirement of ‘‘unique anchors’’ puts

Mauve in a fundamentally different arena, where its strength lies

in alignment rather than anchoring. Also, while Mauve is well

suited to bacterial genomes, it is not well suited for mammalian

scale genomes (it is reportedly not impossible [4], but this use is not

recommended, it does not work without applying some undocu-

mented options to perform the necessary out of core sort, and we

could not replicate or verify the results).

We also tested another alternative from the TBA package called

Roast which appears to implement the method described in [23]

which builds a multiple alignment based on pairwise comparisons

between a reference sequence and all other sequences, thus in

theory requiring time linear with respect to the number of

sequences, similar to Murasaki. However due to an apparent bug

in the implementation, Roast actually is actually worse than TBA

in some cases. Even assuming that the were fixed, however, the

fragmentation required to compare sequences via BLASTZ results

in time requirements which grow several times faster than

Murasaki at whole genome scales. The results from our fixed

version of Roast and the native Roast comparison are included

and discussed in Materials S1 (see Figures S5 and S6).

Bottlenecks in parallelization
Under the parallel algorithm, when hasher nodes send seeds to

storage nodes, the choice of storage node is determined by the

hash key. This means that balance and contention between storage

Table 3. Mammal whole genome comparisons.

Species TBA-BLASTZ CPU Time (days) Murasaki CPU Time (days) Recall Precision F-Score

2 0.632 0.991 0.971 0.910 0.925

3 1.901 0.780 0.953 0.863 0.900

4 3.808 0.741 0.922 0.832 0.867

5 6.351 0.864 0.887 0.807 0.840

6 9.534 0.951 0.855 0.790 0.818

7 13.328 1.093 0.824 0.768 0.797

8 17.796 1.180 0.790 0.764 0.777

This table shows median computation times and accuracy for mammal whole genome comparisons with respect to each number of species under comparison. Recall,
precision, and F-Score were calculated from Murasaki anchors only.
doi:10.1371/journal.pone.0012651.t003

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 14 September 2010 | Volume 5 | Issue 9 | e12651

Figure 11. Computational time required to anchor multiple mammalian whole genomes. This graph shows the median CPU time in days
required to anchor different numbers of mammalian whole genomes using TBA and Murasaki. The times for TBA include only the time spent on
pairwise BLASTZ comparisons. The solid line represents the median of all tests for that number of species, while the dashed lines represent the first
and third quartiles.
doi:10.1371/journal.pone.0012651.g011

Figure 12. Anchors between 8 mammalian whole genomes. This figure shows the resulting anchors from our comparison of 8 mammalian
genomes (from top to bottom): rhesus, chimp, human, orangutan, cow, mouse, rat, and dog. Anchors are drawn as colored lines from one sequence
to the next. The color is determined by the anchor’s position in the first (rhesus) genome, making it easier to see rearrangements and where the other
genomes are related. Chromosomes are denoted by the number shown between c and b symbols along each genome. The sex chromosomes are
shown at the right end (e.g., 23 (X) and 24 (Y) for human).
doi:10.1371/journal.pone.0012651.g012

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 15 September 2010 | Volume 5 | Issue 9 | e12651

nodes is, ultimately, determined by the input sequences. For

example a sequence containing only one type of base (e.g., 4 Gbp

of AAAAA) would necessarily all get sent to the same storage node,

causing a less than optimal distribution of storage and heavy

contention for that node. This is in fact the worst case, and highly

improbable with real-world genomes, but similar factors can

unbalance the load between storage nodes. This problem is

mitigated by the near uniform random output of Murasaki’s hash

functions, making it approximately equally unlikely that any two

given seeds share the same node, but it does not help the worst

case. A modification to the hash table data structure might allow

storage nodes to dynamically update their active hash table region,

and redirect overexpressed seeds to less heavily loaded storage

nodes. This would of course require some additional overhead.

Parallel overhead
While adding machines to a cluster can increase the amount of

available RAM indefinitely, the storage of the input sequences

themselves in memory incurs a constant cost per machine added.

Shared memory is used to mitigate this cost by loading only one

copy per machine (rather than per processor), and input sequences

are stored 2 bits per bp. However, as the size of the input sequence

grows, at some point merely loading all the sequences into

memory exhausts the system’s memory. Thus the smallest memory

machine in the network effectively limits the maximum input size

of Murasaki. For example loading all 3:1|109 bp of the human

genome takes about 738MB. Comparing ten mammals requires at

least 7GB per machine, and that is not including any space for the

hash table.

Conclusions
We have shown that our anchoring algorithm Murasaki

produces accurate anchors across multiple genomes with a

computational efficiency significantly greater than existing meth-

ods. Its adaptive hash function generation algorithm provides an

efficient method to use arbitrary spaced seeds of any length with

collision rates close to pseudorandom one-way cryptographic hash

algorithms at a fraction of the computational cost. Additionally,

our method is highly scalable, allowing whole computer clusters to

be fully utilized for large-scale multiple genome comparison.

We have shown that our anchoring algorithm Murasaki

produces accurate anchors across multiple genomes with a

computational efficiency significantly greater than existing meth-

ods. Its adaptive hash function generation algorithm provides an

efficient method to use arbitrary spaced seeds of any length with

collision rates close to pseudorandom one-way cryptographic hash

algorithms at a fraction of the computational cost. Additionally,

our method is highly scalable, allowing whole computer clusters to

be fully utilized for large-scale multiple genome comparison.

Availability and requirements
Project name: Murasaki

Project home page: http://murasaki.sourceforge.net

Operating system(s): Any POSIX compatible OS (e.g., Linux,

FreeBSD, MacOS X).

Programming language: C++ and Perl.

Other requirements: Boost and zlib libraries.

License: GPLv3.

Supporting Information

Figure S1 Hash keys used in comparison by SHA-1/MD5 hash

algorithms in comparison to adaptive hashing at different hashbit

values. This graph doesn’t include First-N in order to examine,

and adaptive hash results to examine the minute difference

between Adaptive, SHA-1, and MD5. Only for large hash keys

(high values of hashbits) does adaptive diverge significantly from

SHA-1 and MD5, and even then the difference is minuscule.

Found at: doi:10.1371/journal.pone.0012651.s001 (0.05 MB TIF)

Figure S2 Extract time required by each hash algorithm

compared to the adaptive hash algorithm. This graph shows the

relative time required to extract matching seed sets from the hash

table under different hash functions compared to the median time

required our adaptive hash function. The solid line shows the

median of all trials, while the dashed lines show the first and third

quartiles.

Found at: doi:10.1371/journal.pone.0012651.s002 (0.06 MB TIF)

Figure S3 Time required to hash human and mouse X

chromosomes using different hash functions at various hashbits

settings compared to Adaptive. Here, we examine the difference in

time required to compute hashes, store each (K,V) pair at different

hashbits settings, again compared to our adaptive hash method.

It’s interesting to note that the naive First-N approach performs

more poorly than even the slowest cryptographic hasher.

Found at: doi:10.1371/journal.pone.0012651.s003 (0.05 MB TIF)

Figure S4 Comparing keyspace usage of Adaptive and MD5

hash functions for very long patterns. This graph shows the

percent of possible hash keys produced by Adaptive and MD5

hash functions when hashing human and mouse X chromosomes.

The number of hash keys possible increases with pattern length,

because the number of observed unique seeds increases. Our

adaptive hash algorithm keeps up with MD5 even for extremely

long patterns.

Found at: doi:10.1371/journal.pone.0012651.s004 (0.05 MB TIF)

Figure S5 Computational time required to anchor multiple

mammalian whole genomes. This graph shows the median CPU

time in days required to anchor different numbers of mammalian

whole genomes using TBA, Murasaki, and the patched and

unpatched versions of Roast. The times for TBA and Roast

include only the time spent on pairwise BLASTZ comparisons.

The solid line represents the median of all tests for that number of

species, while the dashed lines represent the first and third

quartiles.

Found at: doi:10.1371/journal.pone.0012651.s005 (0.05 MB TIF)

Figure S6 Computation time for multiple mammalian X

chromosomes. This graph compares the computational time

required to compare multiple X mammalian X chromosomes

using Murasaki and the BLASTZ components of TBA, Roast, and

our patched version of Roast. Because TBA requires all pairwise

comparisons of the genomes under alignment, the time required

for TBA grows quadratically, while Murasaki’s time is nearly

linear. The solid line represents the median of all tests for that

number of species, while the dashed lines represent the first and

third quartiles.

Found at: doi:10.1371/journal.pone.0012651.s006 (0.06 MB TIF)

Materials S1 Additional detail on the implementation of hash

functions, data structures, hash function fitness evaluation, pattern

selection, runtime parameters, and our comparison with Roast.

Found at: doi:10.1371/journal.pone.0012651.s007 (0.39 MB

PDF)

Author Contributions

Conceived and designed the experiments: KP HT YO YS. Performed the

experiments: KP. Analyzed the data: KP. Contributed reagents/materials/

analysis tools: KP HT YO YS. Wrote the paper: KP HT YS.

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 16 September 2010 | Volume 5 | Issue 9 | e12651

References

1. Smith TF, Waterman MS (1981) Identification of common molecular

subsequences. Journal of Molecular Biology 147: 195–197.
2. Pearson, Lipman (1988) Improved tools for biological sequence comparison. In:

Proc. Natl. Acad. Sci. volume 85. pp 24444–24448.
3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local

alignment search tool. J Mol Biol 215: 403–410.
4. Darling AC, Mau B, Blattner FR, Perna NT (2004) Mauve: Multiple Alignment

of Conserved Genomic Sequence With Rearrangements. Genome Res 14:

1394–1403.
5. Brudno M, Do CB, Cooper GM, Kim MF, Davydov E, et al. (2003) LAGAN

and Multi-LAGAN: Efficient Tools for Large-Scale Multiple Alignment of
Genomic DNA. Genome Res 13: 721–731.

6. Bourque G, Pevzner PA (2002) Genome-Scale Evolution: Reconstructing Gene

Orders in the Ancestral Species. Genome Res 12: 26–36.
7. Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, et al. (2004)

Ultraconserved Elements in the Human Genome. Science 304: 1321–1325.
8. Delcher A, Kasif S, Fleischmann R, Peterson J, White O, et al. (1999) Alignment

of whole genomes. Nucl Acids Res 27: 2369–2376.

9. Ohlebusch E, Kurtz S (2008) Space efficient computation of rare maximal exact
matches between multiple sequences. J Comput Biol 15: 357–377.

10. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, et al. (2003) Human-Mouse
Alignments with BLASTZ. Genome Res 13: 103–107.

11. Ma B, Tromp J, Li M (2002) Patternhunter: faster and more sensitive homology
search. Bioinformatics 18: 440–445.

12. Preparata FP, Zhang L, Choi KW (2005) Quick, practical selection of effective

seeds for homology search. J Computational Biology 12: 1137–1152.
13. Tabus I, Korodi G (2008) Genome compression using normalized maximum

likelihood models for constrained markov sources. In: Information Theory
Workshop, 2008. ITW ’08. IEEE. pp 261–265. doi:10.1109/ITW.2008.4578663.

14. Farach M, Noordewier M, Savari S, Shepp L, Wyner A, et al. (1995) On the

entropy of dna: algorithms and measurements based on memory and rapid
convergence. In: SODA ’95: Proceedings of the sixth annual ACM-SIAM

symposium on Discrete algorithms. Philadelphia, PA: Society for Industrial and
Applied Mathematics. pp 48–57.

15. National Institute of Standards and Technology (NIST) (2002) Fips-180-2:
Secure hash standard. Available: http://www.itl.nist.gov/fipspubs/.

16. Rivest R (1992) The md5 message-digest algorithm. Available: http://tools.ietf.

org/html/rfc1321.
17. Quinlan S, Dorward S (2002) Venti: A new approach to archival storage.

Available: http://lsub.org/sys/doc/venti/venti.pdf.
18. Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, et al. (2002)

Initial sequencing and comparative analysis of the mouse genome. Nature 420:

520–562.

19. Dewey CN, Huggins PM, Woods K, Sturmfels B, Pachter L (2006) Parametric

alignment of Drosophila genomes. PLoS Comput Biol 2: e73.

20. Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, et al.

(2004) Genome sequence of the brown norway rat yields insights into

mammalian evolution. Nature 428: 493–521.

21. Hachiya T, Osana Y, Popendorf K, Sakakibara Y (2009) Accurate identification

of orthologous segments among multiple genomes. Bioinformatics 25: 853–860.

22. Blanchette M, Kent WJ, Riemer C, Elnitski L, Smit AF, et al. (2004) Aligning

Multiple Genomic Sequences With the Threaded Blockset Aligner. Genome

Research 14: 708–715.

23. Miller W, Rosenbloom K, Hardison RC, Hou M, Taylor J, et al. (2007) 28-way

vertebrate alignment and conservation track in the UCSC Genome Browser.

Genome Res 17: 1797–1808.

24. Liolios K, Mavromatis K, Tavernarakis N, Kyrpides NC (2008) The Genomes

On Line Database (GOLD) in 2007: status of genomic and metagenomic

projects and their associated metadata. Nucleic Acids Res 36: D475–479.

25. Kemena C, Notredame C (2009) Upcoming challenges for multiple sequence

alignment methods in the high-throughput era. Bioinformatics 25: 2455–2465.

26. Kish LB (2002) End of moore’s law: thermal (noise) death of integration in micro

and nano electronics. Physics Letters A 305: 144–149.

27. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, et al.

(2008) Accurate whole human genome sequencing using reversible terminator

chemistry. Nature 456: 53–59.

28. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, et al. (2009) ABySS: A

parallel assembler for short read sequence data. Genome Research 19:

1117–1123.

29. Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish JM, et al. (2008)

Dynamics of Pseudomonas aeruginosa genome evolution. Proceedings of the

National Academy of Sciences 105: 3100–3105.

30. Smit A, Hubley R, Green P (2004) Repeatmasker open-3.0. Available: http://

www.repeatmasker.org.

31. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, et al. (2002) The

Ensembl genome database project. Nucl Acids Res 30: 38–41.

32. Vallender EJ, Paschall JE, Malcom CM, Lahn BT, Wyckoff GJ (2006) SPEED: a

molecular-evolution-based database of mammalian orthologous groups. Bioin-

formatics 22: 2835–2837.

33. Pevzner P, Tesler G (2003) Genome Rearrangements in Mammalian Evolution:

Lessons From Human and Mouse Genomes. Genome Res 13: 37–45.

34. Osana Y, Popendorf K, Sakakibara Y (2010) GMV: Interactive rendering of

multiple alignments. Available: http://murasaki.dna.bio.keio.ac.jp.

Murasaki: Parallel Anchoring

PLoS ONE | www.plosone.org 17 September 2010 | Volume 5 | Issue 9 | e12651

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

