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Abstract

Background: One of the greatest obstacles to moving ecosystem-based management (EBM) from concept to practice is the
lack of a systematic approach to defining ecosystem-level decision criteria, or reference points that trigger management
action.

Methodology/Principal Findings: To assist resource managers and policymakers in developing EBM decision criteria, we
introduce a quantitative, transferable method for identifying utility thresholds. A utility threshold is the level of human-
induced pressure (e.g., pollution) at which small changes produce substantial improvements toward the EBM goal of
protecting an ecosystem’s structural (e.g., diversity) and functional (e.g., resilience) attributes. The analytical approach is
based on the detection of nonlinearities in relationships between ecosystem attributes and pressures. We illustrate the
method with a hypothetical case study of (1) fishing and (2) nearshore habitat pressure using an empirically-validated
marine ecosystem model for British Columbia, Canada, and derive numerical threshold values in terms of the density of two
empirically-tractable indicator groups, sablefish and jellyfish. We also describe how to incorporate uncertainty into the
estimation of utility thresholds and highlight their value in the context of understanding EBM trade-offs.

Conclusions/Significance: For any policy scenario, an understanding of utility thresholds provides insight into the amount
and type of management intervention required to make significant progress toward improved ecosystem structure and
function. The approach outlined in this paper can be applied in the context of single or multiple human-induced pressures,
to any marine, freshwater, or terrestrial ecosystem, and should facilitate more effective management.
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Introduction

Ecosystem-based management (EBM) has moved to the

forefront of efforts to conserve and restore marine species and

ocean ecosystems. Implementing EBM requires quantitative

methods and criteria that can be used to assess overall ecosystem

status, evaluate trade-offs among ecosystem services, and guide

management actions [1]. However, the science of EBM is young

relative to that of single-species management. Practitioners of

single-species management set decision criteria based on well-

vetted stock assessment models [2] and population viability

analysis methods [3], among other approaches. These decision

criteria are measureable quantities, defined in terms of species’

attributes (e.g., abundance, size-structure) or human-induced

pressures (e.g., fishing yields or rates), intended to prompt

management action. Analogous decision criteria with a broader

focus on community- and ecosystem-level attributes and pressures

are only in a nascent stage of development [4–6].

In the context of EBM, a decision criterion is most sensibly set

according to (1) scientific understanding of ecosystem dynamics,

and in particular of ecological thresholds, and (2) the desired

biological, chemical, and physical states and functions (or

processes) in the ecosystem. An ecological threshold is a point at

which small changes in environmental conditions produce large,

and sometimes abrupt, responses in ecosystem state or function

[7]. A classic example of an ecological threshold comes from

studies of freshwater lakes: beyond a critical level of nutrient input,

a clear-water lake can become turbid and dominated by

phytoplankton blooms [8]. In a management context, the

environmental conditions relevant to ecological thresholds will

often be some type of natural (e.g., grazing rate, upwelling

intensity) or anthropogenic (e.g., pollution, harvest) pressure.
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Desired ecosystem states and functions are typically based on

value judgments of stakeholders, and can be used to define utility

thresholds. A utility threshold is a point at which small changes in

environmental conditions produce substantial improvements in

the management outcome [9]. Following the freshwater lake

example, if the desired ecosystem state is characterized by clear

water, and small reductions in nutrient input at the ecological

threshold produce large increases in water clarity, then the utility

threshold may coincide with the ecological threshold. Note,

however, that the existence of an ecological threshold is not a

prerequisite for the identification of a utility threshold. Rather, the

requirement for a utility threshold is only that the ecosystem

response to environmental conditions be nonlinear, so that some

management actions produce greater changes in ecosystem states

or functions than others (cf. [6]). Policymakers may choose to set

the decision criterion, or trigger for management action, at a more

conservative point than the utility threshold in order to reduce risk

[10]. Thus in the freshwater lake example the decision criterion

might correspond to a lower level of nutrient input than the utility

threshold.

In this paper, we introduce a quantitative method for identifying

utility thresholds. We describe how to incorporate uncertainty into

the estimation of utility thresholds, demonstrate how utility

thresholds can be translated into empirically-tractable metrics,

and highlight the value of utility thresholds for understanding

trade-offs among management objectives within an EBM context.

To illustrate the analytical methods, we focus our presentation on

two hypothetical case studies of (1) fishing and (2) nearshore

habitat pressures using a marine ecosystem model for British

Columbia, Canada.

Methods

Quantitative Identification of Utility Thresholds
The first step in a utility threshold analysis is to specify the EBM

objectives in terms of ecosystem attributes and human-induced

pressures. We define ecosystem attributes as aspects of ecosystem

state and function relevant to the EBM goal of maintaining a

healthy, productive, and resilient ecosystem [11]. For instance,

attributes such as ecosystem energetics, nutrient cycling rates, and

a variety of community structure metrics (e.g., diversity, food chain

length, etc.) have deep theoretical or empirical underpinnings

[12–18] and will be important in nearly all management contexts.

In order to proceed with the utility threshold analysis, the values of

the ecosystem attributes under stressed and unstressed conditions

(sensu [13]) should be known, at least qualitatively.

Human-induced pressures (sensu [19]) are direct stressors that

affect the natural environment. These include activities such as

pollution, harvest, and habitat alteration, among many others. It is

critical that specific pressures and a possible range of values for

them are selected so that potentially different responses of (1) a

single ecosystem attribute to alternative pressures, or (2) several

ecosystem attributes to a single pressure, can be quantified

explicitly. The selection of ecosystem attributes and human-

induced pressures on which to focus will be based largely on value

judgments of stakeholders (cf. [20,21]), but it is nonetheless an

essential step toward constraining the analysis that follows.

The second step in the utility threshold analysis is to determine

the relationship between the ecosystem attributes and the

pressure(s) of management concern. This step can be conducted

using empirical data and/or quantitative models, depending on

their availability. Empirical understanding of attribute-pressure

relationships based on spatial correlations, time series, and

experiments (e.g., [5,8,22]), are valuable sources of this informa-

tion. Alternatively, models can be used to understand the effects of

increasing pressure(s) on specific ecosystem attributes (e.g., [23]).

The shape of the relationship between an attribute that responds

to a pressure is likely to resemble qualitatively one of the four

schematics shown in Fig. 1 [5,24].

The relationships between each ecosystem attribute and

pressure should be established formally by confronting the data

(or model output) with alternative mathematical functions and

performing a model selection analysis. The goal of this analysis is

to distinguish linear (Fig. 1a) from nonlinear (Figs. 1b-d) attribute-

pressure relationships. The shape of the attribute-pressure

relationship and the ease with which an objective threshold point

can be defined should drive the choice of which mathematical

functions to consider in the model selection analysis. In Fig. 1, the

linear (Fig. 1a), concave-up piecewise (Fig. 1b), concave-down

piecewise (Fig. 1c), and sigmoidal (Fig. 1d) relationships can be

represented by simple functions with well-known mathematical

properties (Text S1).

The third step in this analysis is to identify the utility threshold

in any attribute-pressure relationship judged to be nonlinear. Here

we discuss the conceptual basis for the location of the threshold

point; further details regarding the mathematical definitions can

be found in Text S1. We propose that a nonlinear relationship

allows the identification of a utility threshold because the value of

Figure 1. Relationships between hypothetical ecosystem attributes and anthropogenic pressures. Attribute values range from
unstressed to stressed (sensu [13]), and the levels of the pressures applied have been scaled relative to a theoretical maximum. A utility threshold
cannot be defined objectively for the linear model (a), but can be defined objectively for the two piecewise models (b and c) and the sigmoidal model
(d). Equations for the models and the location of the utility thresholds are described in Text S1. In (b-d), the threshold pressure is indicated by the
dashed lines.
doi:10.1371/journal.pone.0008907.g001
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the attribute changes rapidly with declines in pressure over a

specific region of parameter space, but changes more slowly

elsewhere. Thus, for a nonlinear attribute-pressure relationship the

potential gains toward achieving EBM goals by reducing a

pressure are greatest where the curve is steepest. Mathematically,

this definition is focused on the derivatives of the nonlinear

functions.

In the case of the piecewise model, the threshold point Pt is

obtained when statistically-fitting the model to the data, and

represents the intersection of two lines, each with a different slope

(or first derivative; Figs. 1b-c). Modifying the pressure in the region

where the absolute value of the slope is large will produce

correspondingly large changes in the value of the attribute,

whereas modifying the pressure elsewhere will have a lesser effect.

Because it allows an objective definition of the utility threshold, the

piecewise model can serve as a convenient approximation for

curvilinear attribute-pressure relationships (resembling Figs. 1b-c)

that continuously accelerate or decelerate (i.e., the second

derivative is never equal to zero). Similar piecewise functions

have been used widely to identify thresholds for biological effects

of contaminants [25], edge effects on ecological communities [26],

phase-dependent dynamics in cyclic populations [27], and density-

dependent mortality in fish populations [28], to name just a few

examples.

In the case of the sigmoidal model, we define the utility

threshold at the point where small changes in the pressure have the

greatest influence on the value of the attribute (i.e., where the first

derivative is minimized) and where the function switches from

concave-down to concave-up (i.e., where the second derivative is

equal to zero). Modifying the amount of pressure near the

threshold (Fig. 1d) will produce much larger changes in the value

of the attribute than will adjustments elsewhere. Theoretical

discussions of ecological thresholds commonly refer to this type of

attribute-pressure relationship, with the idea that the attribute will

tend to diminish with increases in pressure above the threshold

and will tend to rise with reductions in pressure below the

threshold [29,30].

We have defined utility thresholds in terms of pressures and

attributes, but in practice, it may be difficult to measure the

amount of pressure or the value of the attribute on the scale of the

entire ecosystem. The fourth step in the utility threshold analysis is

to translate the threshold pressure in any nonlinear attribute-

pressure relationship to values of easily-measured indicators

representative of the status or trend in the ecosystem attribute.

The performance and reliability of candidate indicators can be

tested via empirical studies (e.g., time series, spatial contrasts) or

model simulation [18,31–34]. Each utility threshold should be

translated into a value for multiple reliable indicators, and

empirical analysis should be used to judge the current status of

the indicators relative to the corresponding utility threshold values.

A consensus among indicators that a utility threshold has or has

not been breached can in turn inform management decisions.

Case Studies
We present two hypothetical case studies, one related to fishing

pressure and the other to pressure associated with changing

nearshore habitat quality, using an empirically-validated marine

ecosystem model for northern British Columbia, Canada (2000

AD; [35]). This Ecopath with Ecosim (EwE) model consists of 53

trophically-linked functional groups (including 4 marine mammal,

32 fish, 12 invertebrate, 1 seabird, 2 primary producer, and 2

detritus groups). Its dynamics are determined by specified

predator-prey relationships, recruitment processes, fishing rates,

and physical forcing that allow numerical simulation of a mass-

balanced trophic model (for details about EwE, see [36]).

For the sake of illustration, we focus the utility threshold analysis

on four ecosystem attributes: resilience (defined below), the ratio of

net primary production (NPP) to total ecosystem biomass,

Shannon diversity, and mean trophic level (Table 1). (We also

chose these ecosystem attributes because we could determine their

sensitivity to model parameters using the available software).

Following Samhouri et al. [34], we measured resilience as the

degree of biomass reorganization in the ecosystem following a

perturbation. Specifically, the index R describes the difference in

biomass abundances of individual functional groups (Bt,i) prior to

(t1) and following (t2) the application of a pressure. These

differences are expressed relative to the difference in the aggregate

biomass of all functional groups before and after the pressure is

applied:
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A smaller value of R (i.e., farther from zero) indicates lower

resilience because it implies that the aggregate biomass and the

individual functional groups responded differently in magnitude

and direction to a pressure.

Understanding how ecosystem attributes such as these change

in response to increasing anthropogenic pressure can be useful for

examining trade-offs implied by alternative management scenar-

ios. We explored trade-offs among the four attributes and

simultaneously considered two ecosystem service metrics related

to fisheries yield: total landings and total market value. Total

market value was calculated by using the modal gear-specific

market price for each functional group [35], and assumed constant

across varying levels of anthropogenic pressure. To facilitate

comparison of attribute-pressure relationships, we re-scaled the

attributes (so that small values indicated a stressed condition and

large values indicated an unstressed condition) and standardized

them to zero mean and unit variance. We also re-scaled the range

Table 1. Ecosystem attributes measured in simulations of
increasing fishing and nearshore habitat pressure in the
Northern British Columbia Ecopath with Ecosim marine food
web model.

Attribute Definition Reference

Resilience The capacity of an ecosystem to absorb
perturbations while retaining its essential
structure and function, including the
identities of the component species. (see
equation 1)

[16]

NPP / Biomass The ratio of net primary production (NPP)
to total biomass (less detritus and fishery
discards) in the ecosystem; a measure of
ecosystem maintenance costs.

[13]

Shannon diversity Both the number of species and the
evenness of biomass distribution among
species.

[13,14]

Mean trophic level Biomass-weighted average trophic level
of all species in the ecosystem.

[43,63]

doi:10.1371/journal.pone.0008907.t001
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of pressures so that the lowest stress was indicated by zero and the

highest stress by one.

It is impossible to account comprehensively for all potential

sources of uncertainty in an ecosystem model of this complexity

[37]. However, we demonstrate a method to account for

uncertainty that can be applied to a subset of model parameters

for which estimates are believed to be least reliable or for which

ecosystem responses are most sensitive. Specifically, we included

probability distributions for four parameters (biomass, production/

biomass, ecotrophic efficiency, and biomass accumulation rate; see

[36] for parameter definitions) related to each of the six benthic

invertebrate groups in the model (large crabs, small crabs,

commercial shrimp, epifaunal invertebrates, infaunal carnivorous

invertebrates, and infaunal invertebrate detritivores), because in

many systems these data are least reliable and least abundant. We

used the EwE Monte Carlo resampling routine (n = 100 simula-

tions) to generate a distribution of output data at each pressure

level. The Monte Carlo routine chose values for the benthic

invertebrate group parameters from a uniform distribution with a

mean equal to the estimates reported in the published model [35]

and a coefficient of variation equal to 20%.

We compared the relative fits of a linear, piecewise, and sigmoidal

model to the attribute-pressure relationships generated from each

Monte Carlo data set using Akaike’s information criterion corrected

for small samples (AICc; [38]). For each attribute, the model with the

lowest AICc value for the most data sets was selected as the best, and

confidence intervals for the model parameters (and the utility

threshold for nonlinear relationships) were obtained using a

nonparametric bootstrap resampling procedure (n = 10,000 for

each Monte Carlo data set). These analyses and those that follow

were conducted using the nonlinear regression (nls) routine in R

v2.8.1 [39] and the bbmle [40] package.

To illustrate the fourth step of the utility threshold analysis, we

tested for correlations (Spearman rank, rs) between a single

candidate indicator and the ecosystem attributes with significant

utility thresholds in each Monte Carlo data set. In practice,

however, a suite of indicators that describes a variety of ecosystem

attributes should be used [18,31–34]. We report the median value

of the indicator-attribute correlations, along with their 95%

confidence intervals. Similar to the attribute-pressure relation-

ships, we compared the relative fits of linear, piecewise,

exponential, and parabolic models (see Text S1 for details) to

the relationships between the indicators and pressures generated

from each Monte Carlo data set using AICc. Confidence intervals

for the model were obtained using a nonparametric bootstrap

resampling procedure (n = 10,000 for each Monte Carlo data set).

We used spider plots to visualize trade-offs among the four

ecosystem attributes and the two fisheries yield metrics under three

different levels of anthropogenic pressure. The pressure levels

corresponded approximately to a minimum-impact scenario in

which none of the utility thresholds were breached, a threshold

scenario in which the simulated pressure matched that of the

lowest utility threshold, and a maximum-impact scenario repre-

senting the maximum pressure considered. In all plots the

attributes and fisheries metrics were re-scaled so that the values

were relative and fell within the interval [0,1], where zero

corresponds to a stressed condition and one corresponds to an

unstressed condition.

Results

Case study 1: Fishing pressure
Overfishing is a pervasive threat throughout the global ocean

[41]. We ran a series of 50-year simulations in which fishing

pressure for all commercially-targeted functional groups in the

northern British Columbia ecosystem spanned zero to ten times

the estimated baseline value (n = 15 simulations at 0, 0.2, 0.4, 0.6,

0.8, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 times the baseline fishing pressure).

Fishing pressure was sustained at a constant level throughout each

simulation. Deterministic simulations at each pressure level

showed that all functional groups and ecosystem attributes had

reached constant values by the end of 50 years, and these final

values were used in the analyses that follow.

Resilience, the NPP/Biomass ratio, Shannon diversity, and

mean trophic level all declined with increasing fishing pressure

(Fig. 2a-d). This finding is congruent with the hypothesized

behavior of these ecosystem attributes [13,42–45] and the effect of

fishing on these attributes corroborates previous predictions made

using the British Columbia model [35]. A piecewise function

provided the best fit to the most Monte Carlo data sets for all four

relationships (Table 2). Interestingly, the utility thresholds (median

[95% confidence interval]) for resilience (0.41 [0.13, 0.66]),

Shannon diversity (0.33 [0.13, 0.42]), and mean trophic level

(0.34 [0.27, 0.40]) were relatively similar in magnitude. We did not

interpret as significant the utility threshold for the NPP/Biomass

versus fishing pressure relationship because the other three

parameters in the best-fit model were statistically indistinguishable

from zero (Table 2).

We chose to evaluate the potential for sablefish (Anoplopoma

fimbria) to serve as an ecosystem indicator because this species is a

valuable component of commercial and recreational fisheries, of

conservation interest, amenable to conventional monitoring

techniques, and already subject to regular stock assessments

[46]. Across the 15 fishing pressure simulations, adult sablefish

biomass strongly correlated with each of the 3 ecosystem attributes

shown to have significant utility thresholds (resilience rs = 0.93

[20.35, 0.99], Shannon diversity rs = 0.99 [0.98, 1], mean trophic

level rs = 0.99 [0.99,1]; Figs. 3a-c). Though in practice sampling

error or other sources of variation would likely reduce the strength

of these model-generated correlations, and it would be more

appropriate to analyze multiple indicators, for the purpose of

illustration we focus only on adult sablefish biomass as a robust

indicator of these ecosystem attributes.

The exponential model provided the best fit to the sablefish-

fishing pressure data (Table 3), and also showed good predictive

value (R2.0.99; Fig. 3d). We used the bootstrapped parameter

estimates and the exponential model (Table 3) to predict adult

sablefish biomass at the median utility threshold for Shannon

diversity (the lowest fishing pressure threshold: Pt = 0.33). The

rather precise estimate for the adult sablefish biomass (median

[95% confidence interval]) corresponding to the Shannon diversity

utility threshold was 0.155 t km22 [0.147, 0.163] (Table 3).

The trade-off analysis revealed that under the minimum-

impact, no-fishing scenario, resilience, NPP/Biomass, Shannon

diversity, and mean trophic level attained maximum values, while

total landings and total market value of the fisheries were at

minima (Fig. 4a). The four ecosystem attributes and the two

fisheries yield metrics all reached 30–60% of their maximum

values in the scenario corresponding to the lowest utility threshold

(Shannon diversity; Fig. 4b). In the maximum fishing pressure

scenario (ten times the baseline pressure), total landings and total

market value of the fisheries attained maxima, whereas the 4

ecosystem attributes showed just the opposite response (Fig. 4c).

Case study 2: Nearshore habitat pressure
Nearshore habitat pressure is ubiquitous throughout the world’s

coastal marine ecosystems [47]. The loss of canopy-forming algae

along temperate rocky coastlines is particularly widespread, and is

Thresholds for EBM
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thought to be caused by a number of factors, including

urbanization effects (such as eutrophication, sedimentation, and

oil spills) and the overharvesting of sea urchin predators [48–51].

We ran a series of 50-year simulations in which we varied

nearshore habitat pressure by altering the production forcing

function for the ‘‘macrophytes’’ functional group in the northern

Table 2. Best-fit models and parameters for attribute–pressure relationships generated through fishing pressure (n = 15) and
nearshore habitat pressure (n = 14) Monte Carlo simulations (n = 100 at each pressure level).

Attribute Best-fit function Model parameters

Fishing pressure

Resilience Piecewise (40/100) Pt = 0.41, b1 = 1.22, m1 = 23.88, m2 = 21.51

NPP / Biomass Piecewise (37/100) Pt = 0.34, b1 = 1.42, m1 = 26.15, m2 = 20.71

Shannon diversity Piecewise (93/100) Pt = 0.33, b1 = 1.37, m1 = 25.58, m2 = 21.22

Mean trophic level Piecewise (100/100) Pt = 0.34, b1 = 1.39, m1 = 26.01, m2 = 20.22

Nearshore habitat pressure

Resilience Sigmoidal (46/100) c0 = 1.34, c1 = 0.007, c2 = 0.004, c3 = 13.39, Pt = 0.41

NPP / Biomass Sigmoidal (45/100) c0 = 1.87, c1 = 0.123, c2 = 0.081, c3 = 7.80, Pt = 0.32

Shannon diversity Linear (63/100) b0 = 1.48, m0 = 22.95

Mean trophic level Linear (100/100) b0 = 20.25, m0 = 0.51

For each attribute, linear, piecewise, and sigmoidal models were compared using AICc. The model that was judged superior for the most Monte Carlo data sets was
selected as the best-fit function and subjected to a nonparametric bootstrap procedure (n = 10,000 for each Monte Carlo data set) to determine parameter values and
significance (bold indicates that 95% CI do not overlap zero). The units for the utility thresholds (Pt) are relative, and are contained within the range [0, 1]. NPP = net
primary production. See Text S1 for model and parameter definitions.
doi:10.1371/journal.pone.0008907.t002

Figure 2. Model-generated relationships between 4 ecosystem attributes and increasing ecosystem-wide fishing (a-d) or nearshore
habitat (e-h) pressure. The ecosystem attributes are resilience, NPP/Biomass, Shannon diversity, and mean trophic level. Open triangles indicate
median values calculated from Monte Carlo simulated Ecopath with Ecosim data (n = 100), and error bars denote 95% confidence intervals. The solid
lines represent best-fit functional relationships and the dotted lines designate significant utility thresholds estimated using a nonparametric bootstrap
resampling procedure (n = 10,000 for each Monte Carlo data set) (parameter values and significant utility thresholds listed in Table 2). NPP = net primary
production. In this and following figures, the ecosystem attributes (y-axes) have been re-scaled so that larger values are considered unstressed rather
than stressed. The pressure values have been re-scaled relative to the maximum simulated pressure, and are contained within the range [0, 1].
doi:10.1371/journal.pone.0008907.g002
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British Columbia ecosystem model (primarily the kelps Nereocystis

leutkeana and Macrosystis integrifolia). The pressure range we

considered spanned zero to 1.3 times the estimated baseline value

(n = 14 simulations at 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,

1.1, 1.2, and 1.3 times the baseline macrophyte production rate).

In the analyses that follow, the highest nearshore habitat pressure

corresponds to the lowest macrophyte production rate (zero times

the baseline), while the lowest nearshore habitat pressure

corresponds to the highest macrophyte production rate (a 30%

increase over the baseline). As in the fishing pressure simulations,

nearshore habitat pressure was sustained at a constant level

throughout each model run. Deterministic simulations at each

pressure level showed that all functional groups and ecosystem

attributes had reached constant values by the end of 50 years, and

these final values were used in the analyses that follow.

We used a simple linear mediation function to model the non-

trophic, positive effect of macrophytes on several functional groups

that use the structural complexity of these habitat-forming

organisms as a refuge from predation. We included a strong

mediation effect for juvenile herring, juvenile Pacific ocean perch,

juvenile piscivorous rockfish, and juvenile planktivorous rockfish, a

moderate mediation effect for inshore rockfish, and a weak

mediation effect for adult lingcod, shallowwater benthic fish, and

small crabs. The mediation functions caused the vulnerability of

these groups to their predators to increase/decrease by up to 90%

(strong), 50% (moderate), or 25% (weak) as macrophyte

Figure 3. Correlations between indicators and attributes with significant utility thresholds, along with indicator-pressure
relationships. The indicators are sablefish and jellyfish biomass for the fishing (a-d) and nearshore habitat (e-g) pressure simulations, respectively.
Open circles (a-c, e-f) and triangles (d, g) indicate median values calculated from Monte Carlo simulated Ecopath with Ecosim data (n = 100 for each
pressure level), and error bars denote 95% confidence intervals. The solid lines in (d) and (g) represent best-fit functional relationships estimated
using a nonparametric bootstrap resampling procedure (n = 10,000 for each Monte Carlo data set) (parameter values listed in Table 3). rs = median
spearman rank correlation across the Monte Carlo data sets (bold indicates 95% CI did not overlap zero), NPP = net primary production.
doi:10.1371/journal.pone.0008907.g003

Table 3. Best-fit models and parameters for indicator–pressure relationships generated through fishing (n = 15) and nearshore
habitat pressure (n = 14) Monte Carlo simulations (n = 100 at each pressure level).

Pressure
Best-fit function for
indicator Model parameters Utility threshold

Indicator value
[95% CI]

Fishing Neg. exponential (100/100) a0 = -0.03, a1 = 0.52, a2 = 23.15 Shannon diversity 0.155 [0.147,0.163]

Nearshore habitat Piecewise (71/100) Pt = 0.60, b1 = 3.13, m1 = 20.11, m2 = 0.0003 NPP / Biomass 3.10 [3.00,3.18]

Indicator values corresponding to the utility thresholds for Shannon diversity and NPP/Biomass are shown for the fishing and nearshore habitat pressure simulations,
respectively (also see Pt values in Table 2). Linear, negative exponential, piecewise, and parabolic models were compared using AICc. The model that was judged
superior for the most Monte Carlo data sets was selected as the best-fit function and subjected to a nonparametric bootstrap procedure (n = 10,000 for each Monte
Carlo data set) to determine parameter significance (bold indicates that 95% CI do not overlap zero). The value of the indicator (median 695% CI) corresponding to the
utility threshold was also derived from the Monte Carlo simulated data sets and bootstrap procedure. NPP = net primary production. See Text S1 for model and
parameter definitions.
doi:10.1371/journal.pone.0008907.t003
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production declined/increased. In EwE models, vulnerability

represents the maximum allowable increase in the predation

mortality for each predator-prey interaction when predator

biomass is high [52].

Resilience, the NPP/Biomass ratio, and Shannon diversity

declined with increasing nearshore habitat pressure, whereas mean

trophic level did not change in a consistent manner with nearshore

habitat pressure (Figs. 2e–h). The sigmoidal model provided the

best fit to the most Monte Carlo data sets for resilience and NPP/

Biomass, whereas the linear model was judged best for Shannon

diversity and mean trophic level (Table 2). The utility thresholds

(median [95% confidence interval]) for the two attributes best-fit

by a nonlinear model were relatively similar in magnitude, with

the resilience threshold equal to a nearshore habitat pressure of

0.41 [0.34, 0.45]) and the NPP/Biomass threshold equal to a

nearshore habitat pressure of 0.32 [0.07, 0.41] (Table 2).

In this case study, we chose to evaluate the potential for pelagic

cnidarians and ctenophores (the carnivorous jellyfish group;

hereafter, jellyfish) to serve as an ecosystem indicator because

accumulating evidence suggests that human-induced pressures

may be enabling their proliferation worldwide [53,54]. Clearly, in

a real application of this approach, testing of multiple indicators

would be warranted in order to identify those that are most

sensitive to changes in particular attributes, but for the sake of

simplicity we focus on only one here. Across the 14 nearshore

habitat pressure simulations, jellyfish biomass showed strong but

variable Spearman rank correlations with the two ecosystem

attributes characterized by significant utility thresholds (resilience

rs = 0.76 [20.96, 0.95], NPP/Biomass rs = 0.87 [0.76, 0.95];

Figs. 3e-f). Somewhat surprisingly, the correlations with these

attributes were positive because jellyfish biomass, like resilience

and NPP/Biomass, declined with increased nearshore habitat

Figure 4. Spider plots depicting trade-offs among four ecosystem attributes and two fisheries yield metrics. The three different fishing
(a-c) and nearshore habitat (d-f) pressure levels corresponded approximately to a minimum-impact scenario in which none of the utility thresholds
were breached (a, d), a threshold scenario in which the simulated pressure matched that of the lowest utility threshold (median value; see Table 2) (b,
e), and a maximum-impact scenario representing the maximum pressure considered (c, f). Note that for each type of pressure, all attributes have
been re-scaled so that values are relative and fall within the interval [0,1], where zero corresponds to a stressed condition and one corresponds to an
unstressed condition.
doi:10.1371/journal.pone.0008907.g004
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pressure (Fig. 3g). However, jellyfish are predominantly detriti-

vores in this British Columbia model, and macrophytes contribute

substantially to the detrital pool. Thus, increased nearshore habitat

pressure caused a decline in a major component of the jellyfish

diet, reducing their biomass.

At each level of nearshore habitat pressure, jellyfish biomass

showed a considerable amount of variability (Fig. 3g). Nonetheless,

we decided to treat jellyfish biomass as an ecosystem indicator in

order to illustrate how such variability would influence an

indicator’s usefulness in detecting utility thresholds. The piecewise

model provided the best fit to the jellyfish-nearshore habitat

pressure data (Table 3), and showed good predictive value

(R2.0.99; Fig. 3g). We used the bootstrapped parameter estimates

and the piecewise model (Table 3) to predict jellyfish biomass at

the median utility threshold for NPP/Biomass (the lowest

nearshore habitat pressure threshold: Pt = 0.32). The estimate for

the jellyfish biomass (median [95% confidence interval]) corre-

sponding to this threshold covered a wide range of values with a

median equal to 3.10 t km22 [3.00, 3.18] (Table 3).

In all three scenarios examined in the trade-off analysis, total

landings and total market value of the fisheries were relatively

unaffected (Figs. 4d-f). Under the minimum-impact scenario (in

which macrophyte production was enhanced by 30% relative to

the baseline), resilience, NPP/Biomass, and Shannon diversity

attained maximum or near-maximum values, while mean trophic

level reached an intermediate value (Fig. 4d). All four ecosystem

attributes achieved 70–100% of their maximum values in the

scenario corresponding to the lowest utility threshold (NPP/

Biomass; Fig. 4e). In the maximum nearshore habitat pressure

scenario (corresponding to no macrophyte production), the four

ecosystem attributes were minimized (Fig. 4f).

Discussion

One of the great challenges of transforming EBM from a

philosophical approach to a set of executable management actions

is the development of an appropriate toolkit [33,55,56]. Deciding

which attributes to track in order to capture ecosystem-scale

changes in status and contextualizing the values of measured

attributes relative to desired ecosystem states and functions is

fundamental to EBM [1,4]. This context can be provided in a

number of ways (e.g., by reference to historical baselines

[41,43,50]), but here we introduce an approach based on utility

thresholds.

We took advantage of the mathematical properties of nonlinear

relationships between several ecosystem attributes and human-

induced pressures to derive utility thresholds. As we use the term

and define it mathematically, a utility threshold distinguishes

modifications in pressure that have a large effect on an attribute’s

value from changes that have a much smaller influence [9]. For

instance, in our case study of the northern British Columbia

marine ecosystem, adjusting fishing pressure from 35% to 25% of

the maximum produced a 20-fold greater improvement in

Shannon diversity than a shift from 45% to 35% of the maximum

pressure. In this example, policymakers might decide to set

decision criteria so that management actions were sure to operate

in the region of high return (in terms of attribute condition) on

investment (in terms of changes in human-induced pressure), i.e.,

to the left of the utility thresholds identified in the attribute-

pressure relationships. This interpretation presumes that the

desired state of the ecosystem attributes is a less stressed condition,

but in practice, that decision would be left to stakeholders and

policymakers. Indeed, our analyses show that reducing fishing

pressure causes clear sacrifices in fisheries yield. Such a trade-off

may or may not be acceptable to decision makers. In other cases,

as in the nearshore habitat pressure simulations, trade-offs will

occur among ecosystem attributes but produce essentially no costs

in terms of reduced fisheries yield. This outcome poses the difficult

question of which ecosystem attributes are most important, but in

so doing, it provides an explicit accounting of the impacts of

alternative management actions.

As we have presented it, the utility threshold approach makes

two key assumptions regarding ecosystem dynamics. First, it

implicitly assumes that the qualitative form of an attribute-pressure

relationship is stationary. However, in some systems this

assumption may be invalidated by a change in the primary

production regime or other environmental conditions (e.g., PDO,

ENSO, etc.). Provided the effects of those changes on the

ecosystem are understood sufficiently well (e.g., a climatic regime

shift leads to predictable changes in species distributions, in turn

affecting the relationship between diversity and a pressure; [57]), it

would remain useful to identify multiple utility thresholds for each

attribute-pressure relationship under alternative sets of environ-

mental conditions. However, if such shifts are not anticipated, we

caution that our method could provide misleading information

about how reductions in human pressures will affect ecosystem

attributes of concern.

The second crucial assumption of our approach is that the

pathway to recovery for ecosystem attributes is the reverse of the

one that created the stressed condition in the first place (i.e., there

is no hysteresis). In the case study we presented, the EwE model

did not predict hysteresis. However, because the basis of EBM is

interactions between multiple human sectors [11], each of which

causes pressure on an ecosystem, it is unlikely that the sequence

and extent of management actions geared toward recovery will

consistently mirror the pathway that led to the current state.

Furthermore, a sound understanding of hysteresis exists in only a

handful of cases (e.g., lakes, coral reefs; [23,29]), suggesting a real

need for additional empirical and theoretical study of ecosystem

recovery pathways. Ecosystem models like EwE can be used to

understand the disparate effects of increasing versus decreasing

human pressures on ecosystem attributes if the hysteresis is caused

by trophic interactions [58]. However, other modeling frameworks

may be more appropriate in some cases (e.g., [23]), and such

alternative models and/or empirical data will be required if

hysteresis is caused by physical variables (e.g., nutrients; [29]).

Prior to applying a utility threshold approach in other systems, we

encourage researchers to quantify functional relationships for the

effects of both increasing and decreasing pressure on ecosystem

attributes [29].

Other aspects of the utility threshold analysis presented here are

less critical to its interpretation. There are many nonlinear models

besides the piecewise and sigmoidal functions we considered that

might be used to determine the general shape of the attribute-

pressure relationship [59]. Similarly, there are alternative

mathematical definitions for utility thresholds that may be more

appealing for some audiences than those presented here. For

instance, a utility threshold could be defined as a point on an

attribute-pressure curve distinguishing a region with slope equal to

zero from a region with slope unequal to zero (e.g., similar to the

Lowest Observed Adverse Effect Level (LOAEL) threshold used in

ecotoxicology [25]). Any definition of the utility threshold point,

using any set of nonlinear models, can be integrated with our

overall method provided that the best-fit model and the threshold

definition allow the objective identification of a point where the

derivative of the attribute-pressure function shifts markedly.

Though we have outlined the utility threshold analysis

procedure using one specific class of marine ecosystem model
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(EwE), the method is transferable to any other modeling

framework. To be prescriptive in a specific ecosystem, our

approach for quantifying utility thresholds should be implemented

by examining empirical attribute-pressure, attribute-indicator, and

indicator-pressure relationships (e.g., [5,8,15,18,22,60,61]) and

generating multiple predictions about the form of such relation-

ships using an ensemble of ecosystem models (e.g., in the same vein

as climate projections produced by the Intergovernmental Panel

on Climate Change). Multi-model inference techniques [38] can

be used to achieve consensus about the functional form of

attribute-pressure relationships, the precise location of utility

thresholds, and indicator-pressure relationships. Similarly, it is

particularly important to develop a suite of indicators that reliably

tracks ecosystem attributes of interest in order to achieve

confidence in the status of an ecosystem relative to utility

thresholds [18,31–34]. Finally, note that because we focus on

attributes common to all ecosystems [13,14,16,17], this approach

is applicable to non-marine environments as well.

This type of analysis relies on a certain degree of subjectivity in

the sense that stakeholders first must agree to focus their efforts on

a potentially arbitrary set of attributes and pressures. However,

public engagement and subjectivity are common to most

conservation and management situations (e.g., [21,62]) and,

following these initial decisions, the approach we outline is entirely

objective. It demonstrates quantitatively that all EBM actions are

not created equal: the identification of utility thresholds reveals the

relative ecological benefits of alternative policy decisions [6].

Further, the utility threshold approach provides a means to

scientifically define, visualize, and operate along trade-offs among

ecosystem attributes so that managers can make informed choices

about the costs and benefits of alternative policies [2].

Our paper amplifies the notion that the answer to the question,

‘‘how much management action is enough?,’’ is ‘‘it depends’’. It

depends on management objectives and societal values since it is

from these that the relative worth of different ecosystem attributes

emerges [21,33]. For any policy scenario, an understanding of

utility thresholds helps to determine the amount of management

intervention required to effect substantial improvement in various

aspects of ecosystem structure and function. However, given

conflicting demands on the ecosystem, it is up to policymakers to

determine whether or not to breach a particular utility threshold in

favor of some other objective. Ultimately, a thresholds-based

approach lays bare the consequences of management actions, and

we trust that such transparency will improve the ability of

managers to protect and restore marine ecosystems.

Supporting Information

Text S1 Models for attribute-pressure and indicator-pressure

relationships, along with utility threshold definitions.

Found at: doi:10.1371/journal.pone.0008907.s001 (0.07 MB

DOC)
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