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Abstract

Nanotechnology produces basic structures that show a significant variability in their individual physical properties. This
experimental fact may constitute a serious limitation for most applications requiring nominally identical building blocks. On
the other hand, biological diversity is found in most natural systems. We show that reliable information processing can be
achieved with heterogeneous groups of non-identical nanostructures by using some conceptual schemes characteristic of
biological networks (diversity, frequency-based signal processing, rate and rank order coding, and synchronization). To this
end, we simulate the integrated response of an ensemble of single-electron transistors (SET) whose individual threshold
potentials show a high variability. A particular experimental realization of a SET is a metal nanoparticle-based transistor that
mimics biological spiking synapses and can be modeled as an integrate-and-fire oscillator. The different shape and size
distributions of nanoparticles inherent to the nanoscale fabrication procedures result in a significant variability in the
threshold potentials of the SET. The statistical distributions of the nanoparticle physical parameters are characterized by
experimental average and distribution width values. We consider simple but general information processing schemes to
draw conclusions that should be of relevance for other threshold-based nanostructures. Monte Carlo simulations show that
ensembles of non-identical SET may show some advantages over ensembles of identical nanostructures concerning the
processing of weak signals. The results obtained are also relevant for understanding the role of diversity in biophysical
networks.
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Introduction

The route to functional nanoelectronics is mined with weak

signals, thermal noise and significant diversity between nominally

identical units. This hardware variability may be undesirable for

most applications. In particular, the threshold voltage mismatch-

ing of individual electronic transistors constitutes a serious problem

in voltage-driven applications [1] and nanoscale threshold

potential transistors are bound to show a significant heterogeneity

in their individual characteristics because of the inherent

fabrication uncertainties [2]. The inability to produce significant

amounts of identical nanostructures is a major concern for recent

developments of silicon-based CMOS circuits [3]. A high

variability deteriorates manufacturing yields and individual device

reliability [4], being considered a source of potential errors. On the

contrary, biological diversity is present in most natural systems [5–

9]. It is thus of great interest to incorporate biomimetic concepts in

alternative information processing schemes based on the integra-

tion of heterogeneous nanoscale devices.

Is it feasible to implement potentially useful information processing schemes

with individually different nanostructures? We show here by means of

numerical simulations that this could still be possible for the case of

nanostructures with different threshold responses that mimic some

of the characteristics of heterogeneous neural populations. It has

recently been noted that natural variability can make noisy

biological networks to function more efficiently by exploiting the

integration of non-identical units in summing arrays [5–7]. The

interplay between noise and neural heterogeneity produces robust

population responses [5,6]. Although neuronal heterogeneity was

originally considered a consequence of biological limitations, the

fact is that it provides a wide range of spiking strategies for coding

[7,10,11]. Intrinsic neuronal diversity can thus be regarded as a

potentially useful strategy and not simply as the result of natural

imprecision [7,10].

Frequency-based signal processing is characteristic of the neural

populations in the brain and concerns the transduction of external

information into patterns of neural activity, discernible rhythms,

and synchronization processes [7,10–14]. The commonly used rate

coding employs the average rates of spikes trains to codify the

external stimuli while the rank order coding is based on assigning an

order to the particular neurons that respond to these stimuli. The

rank order coding should be implemented rather easily in

biological structures being fast enough to account for the reduced

time response of neurons to visual stimuli [13]. Also, the ability of

the brain to modulate the properties of different neuron

populations and adjust their spiking rhythms under an external
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stimulus (synchronization) can be related to natural communication

[14].

We explore here different information processing schemes with

heterogeneous groups of non-identical nanostructures that make

use of the above biological concepts (diversity, rate and rank order

coding, synchronization). To this end, we simulate the integrated

response of ensembles of single-electron transistors (SET) whose

threshold potentials suffer from a high individual variability

[15,16]. A particular experimental realization of a SET is the

nanoparticle-based transistor [17–20] that mimics some of the

spiking properties of biological synapses [15,17,21]. In these

systems, the different shape and size distributions of metallic

nanoparticles protected with organic ligands result in a significant

variability in their threshold potentials [15,22]. Monte Carlo

simulations with these threshold nanostructures have recently

shown that moderate redundancy not only decreases the adverse

effects of variability and but also enhances the processing of weak,

sub-threshold signals by taking advantage of the different

individual characteristics [15,23].

This work builds and extends upon recent studies by us on

signal processing schemes using heterogeneous [16] and identical

[24] nanostructures. We develop further the frequency-based

scheme proposed in a previous letter [16] by comparing the rate

and rank order coding schemes for image processing. The

emerging collective properties of ensembles with heterogeneous

SET are shown to be useful for image reconstruction. Then, we

analyze with detail how the nanostructure variability can improve

the processing of time dependent analog signals. Finally, we extend

our preliminary work on the synchronization of SET ensembles

connected to a common coupling element [24] and discuss the

effects of heterogeneity. Taken together, the three case studies

permit to understand the effects of nanostructure variability in a

broad range of information processing schemes that are also

relevant for neural networks.

In all cases, we use a mixed continuum-Monte Carlo approach

where the nanostructure ensembles are not modeled as replicates

of the same unit with constant physical properties but as statistical

distributions of physical parameters characterized by average and

width distribution values. A significant novelty with respect to

previous work [16,24] is the effort made to connect the effects of

diversity in biophysical networks with those arisen from the

nanostructure variability, trying to identify the biological concepts

that could be useful for implementing signal processing schemes

with artificial heterogeneous ensembles.

Methodology

Experimental SET
Models describing how neural spike trains convey sensory

information can be relatively complex [12,25]. On the contrary,

SET models are relatively simple, being reminiscent of the

commonly used integrate-and-fire neuron approach [26]. The

simulation procedures described here are based on previous

theoretical and experimental studies [15,17,23,27] showing that

equivalent electrical circuits can be used to model heterogeneous

ensembles of SET and nanowire field-effect transistors. It has been

firmly established [15–17,27] that the dynamic range of these

circuits widens due to the threshold variability of the individual

nanostructures and the non-linear summation process producing

the final output.

In particular, parallel arrays of resistance-single electron

transistors (R-SET) can be used for frequency-based image

processing [16]. The equivalent circuit of the SET consists of a

capacitance Ci arranged in parallel to a tunnel junction resistance

Ri [23]. The resistance ri is connected in series to the SET to form

the R-SET (Fig. 1A). This system can be realized experimentally

by means of ligand-stabilized metallic nanoparticles

[2,18,19,28,29]. The nanoparticle (NP) is functionalized with an

organic ligand acting as a tunneling junction and the single

electron transfers between the NP and the external electrode are

determined by the Coulomb blockade and tunneling effects

[2,18,19,28,29]. These electron transfers lead to measurable

electric potential changes of the order of 100 mV for effective

NP capacitances of the order of 1 aF [2,19,22,28,29]. For

example, the electrochemically determined capacitance of Au225

(diameter 1.8 nm) is 0.6 aF approximately [30] and other particles

like Pd40 (diameter 1.2 nm) show a capacitance as low as 0.35 aF.

The current–voltage curves of a single ligand-stabilized NP

obtained by scanning tunneling spectroscopy can be described

by SET equivalent circuits that give tunneling resistances and

effective capacitances in the range 100 MV – 10 GV and 0.1 – 10

aF, respectively [2,18–20,22,28–30]. A final, potentially useful

characteristic of ligand-stabilized metallic nanoparticles is self-

assembly in approximately defined nanoarchitectures [18,19,28–

30].

All simulations are conducted at non-zero temperature

(T = 5 K). At high temperatures, random electron tunneling

makes it difficult to implement reliable information processing

schemes for the system parameters mentioned above (1 aF for the

NP capacitance and 10 GV for the charging resistance). However,

higher temperatures can be considered by decreasing further the

electrical capacitance, which can be achieved by reducing the NP

size and introducing appropriate organic ligands [2,18–

20,22,29,30]. Recently, Coulomb blockade effects have been

observed up to 160 K in ligand-stabilized Au NP with nanoscale

diameters [2]. Operation at room temperature [19] has been

demonstrated with chemisorbed Au NP of 1.8 nm core diameter

and scanning tunneling spectroscopy techniques. Silicon-based

MOS-SET nanodevices suffering from a significant variability

have also been operated at 300 K [3]. In any case, the threshold

variability effects analyzed here are rather general and should be

observed experimentally regardless of the characteristic tempera-

ture of the particular type of nanostructure considered.

Charging equations of an oscillatory R-SET
The building block i of a R-SET ensemble (Fig. 1A) is composed

of a NP linked to an electrode (ground potential) by a ligand acting

as a tunneling junction. The ligand-protected NP behaves as a

SET and its equivalent circuit consists of a capacitance Ci in

parallel to a tunneling junction of resistance Ri [23]. A high

resistance ri connects the SET to another electrode at potential V

to form the R-SET.

At low temperatures, the Coulomb blockade gives the relaxation

oscillation of Fig. 1A. The time variation of the potential Vi of the

NP i due to the charging process can be described approximately

by the equation [24].

dVi

dt
~

V{Vi

riCi

ð1Þ

and depends on the time riCi and the applied potential V. The

potential Vi of the NP i increases towards V because of the

charging process. The oscillations are observed when V is close

enough to the NP threshold potential Vi,th = e/2Ci, where e is the

elementary charge. For V,Vi,th, the NP potential tends asymp-

totically to V but no oscillation occurs.

Information Processing with Diverse Nanostructures
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Tunneling can be described as a stochastic process of rate [24].

C i~
1

e2Ri

{DEi

1-exp(DEi=kT)
ð2Þ

when the tunneling junction resistance Ri is much higher than the

quantum resistance Rh = h/2e, where h is the Planck constant, k is

the Boltzmann constant, and

DEi~e Vi{Vi,thð Þ ð3Þ

is the change in electrostatic energy because of the electron

tunneling. This tunneling event makes Vi to decrease by -2Vi,th

and, subsequently, the charging-tunneling process is resumed. Eqs.

(1) – (3) describe the charging–tunneling process of R-SET i.

According to the above section, typical values of the R-SET

parameters are Ci = 1 aF, Ri = 10 MV, and ri = 10 GV, so that the

time constant for the charging process is of the order of

riCi = 10 ns. The charging resistance is much higher than the

tunneling resistance, ri&Ri, to ensure a relatively stable charging

period.

Figure 1. Data processing with an ensemble of R-SETs. The basic
information processing unit is an ensemble of N R-SET The spherical,
ligand-protected metallic nanoparticle (NP) is connected in series to a
charging resistance (left) linked to an electrode at potential V. The NP
consists of a capacitance and a tunnel junction (right) linked to a
grounded electrode through a ligand [15]. The potential Vi(t) of NP i
shows an oscillatory behavior at sufficiently high input potentials. The
average frequency of the R-SET oscillations (spike rate) can be used to
process an image (A). Average spike rate in homogeneous (d = 0) and
heterogeneous (d = 0.25) ensembles of N = 64 R-SET as a function of the
applied voltage. The main plot corresponds to a processing time of
30 ns and the inset to 120 ns. The shadow region shows the maximum
and minimum values obtained in the simulations (B). The legal guardian
has given written informed consent, as outlined in the PLOS consent
form, to publication of the photograph in Figs. 1 and 2.
doi:10.1371/journal.pone.0053821.g001

Figure 2. Rate and rank order image processing. Processing of a
grey image by homogeneous (d = 0) and heterogeneous (d = 0.25)
ensembles of R-SET using the rate coding (left) and the rank order
coding (right) schemes. The rate coding employs the spike frequency
calculated as the number of spikes divided by the time window (the
spike frequency is 6 spikes in 120 ns or 50 MHz in the example of the
figure). This coding assigns a grey level to the average spike frequency
of the ensemble. On the contrary, the rank order coding uses a 0/1
response, where 0 indicates that no spike occurred while 1 indicates
that a single spike occurred in the time window (30 ns in the example
of the figure). This coding assigns a grey level to the number of R-SETs
that spiked (response 1).
doi:10.1371/journal.pone.0053821.g002
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To simulate the charging–tunneling process, a mixed continu-

um–Monte Carlo approach is used [24]. Initially the NP potential

is set to zero (Vi = 0) and the NP charging progresses according to

Eq. (1). At a fixed time step, DEi is estimated using Eq. (3) and a

Metropolis algorithm is used to evaluate the probability of the

electron tunneling from the ground electrode to the NP. From this

probability, a decision is made. If tunneling occurs, then the NP

potential is decreased by -2Vi,th and the charging process is

resumed. The tunneling event is considered to be instantaneous

with respect to the average charging time. The periodic sequence

of charging-tunneling events produces the electrical potential

spikes of Fig. 1A which are reminiscent of those found in the

integrate-and-fire neuronal models [17,21,24].

Nanostructure variability in heterogeneous ensembles
The simulations take into account the experimental fact that

nanostructures show statistical distributions of physical parameters

characterized by their experimental average and width distribu-

tion values. Our objective is to obtain the integrated response of an

ensemble of R-SET showing a significant heterogeneity in the

individual physical properties. The nanostructure variability is

incorporated by considering random distributions of relative width

d for the NP capacitances and the charging resistances [15] (the

effects of considering different distributions have recently been

analyzed in Ref. [31]). The central values of these distributions are

1 aF and 10 GV, respectively. From previous studies, the relative

variability d = 0.25 is considered to be representative of the

experimental threshold-potential nanostructures [2,3,15,18,19].

Thus, the capacitance of the NP assumes random values between

0.75 aF and 1.25 aF while the charging resistance of the R-SET

takes random values between 7.5 GV and 12.5 GV. The collective

response of a homogeneous ensemble with N identical R-SET

(d = 0) is also evaluated to show the effects of variability.

Processing an image
The frequency of tunneling events (the spikes of Fig. 1A) is

related to the charging resistance, the NP capacitance, and the

applied potential which allows a frequency-dependent image

processing using an ensemble of R-SET [16]. First, every pixel of

an image with 256 grey levels is translated into an input potential

V = Vblack + ginVwhite (Fig. 1A), where gin is the grey level of the

pixel (gin = 0 for black and gin = 1 for white), Vblack is the potential

for a black pixel, and Vblack + Vwhite is the potential for a white

pixel. This input potential is then applied to the array of parallel

R-SET of Fig. 1A where each nanostructure i follows periodic

charging-tunneling processes for V.Vi,th. The frequency of the

spikes generated by this particular R-SET is proportional to the

input potential V (and then to the grey level) common to all R-SET

in the array [15,16]. An average frequency characteristic of the

ensemble as a whole can be obtained by dividing the total number

of spikes generated by the R-SET ensemble of Fig. 1A by the time

t assigned to the processing of each pixel (Fig. 1B).

Two methods have been considered to process the grey level

image differing in the processing times allowed. The first method is

reminiscent of the rank order coding previously used in neuronal

models [13] and assigns an output grey level which is proportional

to the number of R-SET in the ensemble that have produced a

spike. The processing time must be short enough to restrict the

number of spikes per individual R-SET to be one at most.

Alternatively, the second method (rate coding) assigns an output

grey level proportional to the average frequency of spikes [16].

The processing time is now high enough to allow each R-SET to

spike up to Ngrey times on average for the maximum input

potential (V = Vblack + Vwhite), where Ngrey is the number of grey

levels used to reproduce the image.

Processing a time dependent input signal
We consider heterogeneous and homogeneous ensembles of R-

SET processing the sinusoidal input signal

V (t)~V0zV1½1z sin (2pt=t1)�=2 ð4Þ

where V0 is the minimum applied potential and V1/2 and t1 are

the amplitude and the period of the signal, respectively. The

ensemble output is obtained by dividing the processing time into

time bins of 30 ns and counting the total number of spikes

produced in the ensemble for every time bin. This procedure is

followed for different input signal frequencies to better show the

differences between the heterogeneous and homogeneous ensem-

bles.

The ensemble response to V(t) is influenced by dynamic

(thermal) and static (threshold diversity) noises. The thermal noise

acts as a white noise whose amplitude is proportional to

temperature (see Eq. (2)). This noise is incorporated in the Monte

Carlo algorithm used in the simulations and, at the low

temperatures used here, has a small effect compared with the

threshold diversity. The input potential of Eq. (4) is noiseless

because we wish to concentrate on the system diversity. The effect

of adding a noise directly to the input potential was considered

previously in Ref. [31].

Synchronization of SET ensembles with heterogeneous
nanostructures

Neuronal activity in the brain involves the synchronization of

neuronal ensembles as a response to a common input signal. We

study here the synchronization of ensembles with identical and

non-identical R-SET coupled by a common resistance rc. When a

coupling resistance rc is incorporated between the electrode at

potential V and the charging resistances of the N R-SETs in the

ensemble, the charging process of the NP i is coupled to those of

the other NP according to the equation [24].

XN

j~1

ridijzrc

� �
Cj

dVj

dt
~V{Vi ð5Þ

where dij is the Kronecker delta and V is the input potential V. The

coupling strength is characterized by the dimensionless parameter.

Kc:
rc

r0
;

1

r0
~
XN

i~1

1

ri

ð6Þ

The synchronization of the R-SET ensemble is characterized by

the in-phase oscillations of the different NP potentials. We define

the oscillation phase of NP i by first identifying the times

ti,1,ti,2,ti,3,::: corresponding to the local maxima of the NP

potential. The time between two consecutive maxima,

ti,kƒtvti,kz1, allows evaluating the phase as

hi(t):2p(t{ti,k)=(ti,kz1{ti,k). Note that the time periods

Ti,k:ti,kz1{ti,k are not equal for all the oscillations of the R-

SET i because of the coupling with the other R-SET and the

thermal noise.

Information Processing with Diverse Nanostructures
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The complex order parameter

z(t):
1

N

XN

i~1

exp jhið Þ ð7Þ

where j:
ffiffiffiffiffiffiffiffi
{1
p

characterizes quantitatively the synchronization of

the ensemble and it is determined by the coupling strength

parameter of Eq. (6). The modulus DzD of the order parameter tends

to 1 for full synchronization and to 0 for a large number (N??)

of uncorrelated oscillators [24].

Results and Discussion

Processing an image
Fig. 1B shows the spike rate (average frequency of the

oscillations) obtained with heterogeneous and homogeneous

ensembles having the same number N = 64 of R-SET (Fig. 1 A)

as a function of the applied voltage. The curves show the average

spike rates calculated from 100 simulations with the different

ensembles whereas the shadow region shows the maximum and

minimum values obtained in these simulations. When the

processing time is as low as 30 ns, typically only one spike per

R-SET occurs (note that the charging time riCi<10 ns) regardless

of the nanostructure variability. The heterogeneous and homoge-

neous ensembles of nanostructures show a significantly different

response in Fig. 1B [16]. For identical R-SET (d = 0) a binary-like

response with a sharp transition is observed: none of the R-SET

spikes for low (sub-threshold) potentials while all of them spike for

high (supra-threshold) potentials. The transition region with

smoothing corners around the threshold potential (80 mV

approximately) is due to the thermal fluctuations. Contrarily, a

graded response is obtained for d = 0.25 because of the diversity in

the threshold potentials of the R-SET in the ensemble. When the

processing time is increased to 120 ns, the ensemble of non-

identical R-SET shows a qualitatively similar behavior, but the

ensemble of identical R-SET exhibits then a stair-like response

because the increase in the processing time allows each R-SET to

complete several charging-tunneling cycles [16].

Fig. 2 shows the image processing with the above nanostructure

ensembles using two different coding schemes. In both cases, the

256 grey levels in the pixels of the image (Fig. 1A) are linearly

transformed to input potentials and applied to an ensemble of

N = 64 R-SET. The response of the ensemble is then followed

during a processing time t for every pixel. The rate coding

transforms the input potentials of the different grey levels into

average spike rates. These rates are evaluated for a sufficiently long

processing time allowing several spikes per R-SET in the

ensemble. This scheme has been studied recently [16] and it is

presented here for comparison with the rank order coding. In our

implementation, the rank order coding evaluates how many of the

R-SET in the ensemble have spiked during a relatively short

processing time (compared with that of the rate order coding). The

grey levels of the output image are now recovered according to the

number of nanostructures in the ensemble that have spiked (a no

spike/one spike response is obtained for every R-SET because of the

relatively short processing time allowed in this case). This

implementation of the rank order coding differs from that of

Ref. [13] which is based on the order of firing in the cells rather

than on the number of the nanostructures that have produced a

spike.

The results obtained with the two coding schemes are shown in

Fig. 2 for the same number N = 64 of non-identical and identical

R-SET. The ensemble average values of the charging resistance

(10 GV) and NP capacitance (1 aF) are the same as those of

Fig. 1B. We take Vwhite = 100 mV and Vblack = 60 mV, except for

case of the rate coding by identical R-SET (d = 0) where we

change Vblack to 75 mV in order to avoid the potential region

where the ensemble shows no response (between 50 mV and

65 mV in the inset of Fig. 1B). The processing time allowed for

each pixel is different in the two schemes. The rate coding takes a

long time (330 ns) to allow the homogeneous ensemble to gather

enough information to process the image. Note that the average

spike rate for an ensemble of identical R-SET follows the stair-like

dependence with the voltage of Fig. 1B. A long processing time

allows for a large number of steps in the stair and this fact results in

a large number of grey levels in the processed image. In Fig. 2, the

selected time allows for Ngrey = 16 grey levels in the processed

image out of the 256 levels in the original image. The processing

time allowed in the rank order coding (only 30 ns) is shorter than

in the rate order coding because a no spike/one spike response for

every R-SET in the ensemble is needed.

Fig. 2 shows that the rate coding can process the image for both

d = 0 and d = 0.25 although a close inspection reveals a better

image reconstruction in the case of the heterogeneous ensemble

(d = 0.25) [16]. The graded response of the heterogeneous

ensemble with the input potential gives an extended dynamic

range (Fig. 1B) and this result is advantageous here. However, it is

in the rank order coding where the difference between homoge-

neous and heterogeneous ensembles becomes obvious. The rank

order coding is a limiting case of the rate order coding and,

because all the nanostructures in the ensemble behave similarly

when they are identical (d = 0), the output image contains only full

white and black pixels (there is some small grading due to the

thermal fluctuations at non-zero temperature). On the contrary,

the different individual thresholds of the non-identical R-SET in

the heterogeneous ensemble allow a better image reconstruction

even in the limiting case of no spike/one spike response. The image

processing is also improved when a larger ensemble is used or a

longer time is allowed (the latter case would eventually transform

the rank order coding into the rate order coding).

The oscillating phenomena observed in R-SET ensembles are

reminiscent of those found in models of integrate-and-fire neurons

[16,26]. Although the ensembles of nanostructures considered

here lack the complex characteristics of neuronal networks (in

particular, the synaptic weights producing different levels of neural

actuation) [12,13], the results of Fig. 2 clearly suggest that the

diversity of sensing units constitutes an important advantage for

processing weak analog signals [7,10]. In particular, the diversity

of threshold potentials should allow for a rapid but still reliable

image reconstruction in the case of the rank order coding with

heterogeneous ensembles. The approximate but fast recognition of

an input image may constitute a survival strategy in a rapidly

changing environment [32] and it has been cited that human

visual processing is too fast to be based on rate coding algorithms

involving the long time collection of many individual firing rates

[13]. More efficient ways of encoding an image with only a few

spikes have been proposed (e.g., the order of firing in the cells of

the visual system [13]). In this sense, exploiting the variability

inherent to threshold potential nanostructures (Figs. 1 and 2) can

be considered a biologically-inspired strategy.

Processing a time dependent input signal
To better understand the effects of nanostructure variability on

signal processing, Figs. 3 and 4 show the different response of

heterogeneous (d = 0.25) and homogeneous (d = 0) ensembles to a

time dependent signal. We take Eq. (4) as the input voltage and

introduce V0 = 60 mV. We consider two different periods

Information Processing with Diverse Nanostructures
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(t1 = 300 ns and 120 ns) and amplitudes (V1 = 100 mV and

V1 = 18 mV) in Eq. (4) to allow for slow and fast variations in

the supra-threshold and sub-threshold regimes, respectively (note that

the average threshold potential is 80 mV approximately).

The effect of threshold distributions in the optimization of

information transmission with ensembles of noisy elements

through suprathreshold stochastic resonance has been studied

previously by McDonnell, Stocks, Pearce, and Abbott. [33]. In

particular, the relevance of this effect for neural population coding

was emphasized [33]. Also, different models in which suprathresh-

old stochastic resonance occur, together with the exploitation of

the resonance in particular designs concerning distributed sensor

networks, nano-electronics, and biomedical applications, have

been discussed with detail recently [34].

Fig. 3A and B correspond to an input potential which is over the

average threshold value of the R-SET ensembles. On the contrary,

Fig. 4A and B correspond to an input potential which is

significantly lower than the above threshold value. The average

values for the NP capacitance and the charging resistance are

those of Figs. 1 and 2 while the number of R-SET in the

processing ensemble has been reduced to 10 in Fig. 3 (supra-

threshold regime) and increased back to 64 in Fig. 4 (sub-threshold

regime).

To illustrate the different individual responses of the R-SET in

the ensembles, Figs. 3 and 4 include the time variations of the NP

with the minimum (Vmin) and the maximum (Vmax) number of

spikes obtained during the processing time (see the two central

rows). In the case of non-identical nanostructures, these curves

correspond to the highest and the lowest threshold potentials in the

ensemble, respectively. Finally, Figs. 3 and 4 (bottom figure) show

the collective response of the R-SET ensembles obtained by

dividing the processing time t = 600 ns into time bins of 30 ns and

counting the total number of spikes produced in the ensemble for

every time bin.

The shaded regions in Figs. 3 and 4 indicate the time periods

when the input potential is lower than the individual threshold

potentials. Spikes are more likely observed outside these regions.

As expected, in Fig. 3B the potential Vmax (R-SET with the

minimum threshold potential) spikes more often than the potential

Vmin (R-SET with the maximum threshold potential). Because

identical nanostructures have the same threshold potential, the

differences between Vmax(t) and Vmin(t) are small in Fig. 3A and can

be ascribed to the thermal noise.

If we compare the time dependence of the total number of

spikes (Fig. 3, bottom panel) with the input potential V(t) (Figs. 3,

top panel), the heterogeneous ensemble (Fig. 3B) allows for a better

reconstruction of the input signal than the homogeneous ensemble

Figure 3. Processing analog signals in the supra-threshold regime. The responses of ensembles with N = 10 identical (A) and non-identical
(B) R-SET to a sinusoidal input potential (top panel, V1 = 100 mV) that is higher than the average threshold potential Vth<80 mV for most of the time
(supra-threshold regime). The histograms show the distribution of threshold potentials for the nanostructures. The middle panels correspond to the
potentials Vmin(t) and Vmax(t) of the NP in the two R-SET that show the minimum and maximum number of spikes, respectively. The grey bars in the
middle panels indicate the time regions where the input potential is lower than the particular threshold potential of the R-SET. The bottom panel
shows the total number of spikes in the ensemble for time bins of 30 ns. Note that although all R-SETs have the same threshold potential when d = 0
(A), the potentials of two individual NP in the ensemble can still be slightly different because of the thermal noise.
doi:10.1371/journal.pone.0053821.g003
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(Figs. 3A) in the supra-threshold regime. This result is a

consequence of the threshold variability producing different

individual responses that are finally combined to give the collective

response of the ensemble (Fig. 3B, bottom panel). While the R-

SET with minimum threshold potential spikes most of the time,

the R-SET with maximum threshold potential spikes only when

the input potential attains sufficiently high values. The different

individual responses allow for a more reliable reproduction of the

analog input signal in the case of the heterogeneous ensemble

compared with the homogeneous ensemble (Figs. 3A and B,

bottom panel).

When the frequency of the signal is increased (Fig. 3A, top

panel) the ensemble with d = 0 only shows two states which

correspond to the peaks and valleys of the input signal (Fig. 3A,

bottom panel). In this case, only the frequency (not the shape) of

the input signal can be detected. This problem is not so apparent

for the ensemble with d = 0.25 (Fig. 3B, bottom panel) where the

diversity of individual responses allows for more intermediate

states.

Fig. 4 corresponds to the sub-threshold regime where the

amplitude of the input signal is reduced to only V1 = 18 mV and

the number of R-SET in the ensemble has been increased to 64 to

improve the resolution (the rest of parameters have the same

values as in Fig. 3). The weak input signal deteriorates the response

of the ensemble with identical R-SET (Fig. 4A, bottom panel), as it

is clearly shown by the potentials Vmin(t) and Vmax(t) of the NP with

minimum and maximum number of spikes (Fig. 4A, middle panel).

In this case, many of the R-SET do not spike because their NP

potentials are significantly lower than the threshold potential. The

ensemble of identical nanostructures is unreliable in terms of

inferring information about the input signal (Fig. 4A, top and

bottom panel).

The situation changes dramatically when we consider the

heterogeneous ensemble. Although the individual responses of R-

SET are still unreliable (Fig. 4B, middle panel), the collective

output of a sufficiently large ensemble closely reproduces the sub-

threshold input signal (Fig. 4B, bottom panel). Indeed, the

heterogeneous ensemble gives a response for sub-threshold signals

(Fig. 4B, bottom panel) which is similar to that obtained for supra-

threshold signals (Fig. 3B, bottom panel) provided that we increase

the number of R-SET from 10 to 64. The increase in the number

of basic units of the ensemble (system redundancy) not only

compensates for the decreased output response due to the diversity

but also permits to extend the dynamic response of the

heterogeneous ensemble with respect to that of the homogeneous

ensemble. This result, which is based on the variability of the

individual responses, provides some clues of why the nervous

system uses diversity in detection cells (see in particular Fig. 2 of

Ref. [10]) and suggests that intrinsic neuronal variability serves a

function and is not merely a reflection of biological imprecision

[7].

Synchronization of SET heterogeneous ensembles
The dynamic formation of ensemble synchronized states can

also be used as a temporal coding mechanism because firing

synchrony is a collective characteristic which is robust to individual

Figure 4. Processing analog signals in the sub-threshold regime. The same problem shown in Fig. 3 but now for N = 64 and V1 = 18 mV, so
that the ensemble operate most of the time in the sub-threshold regime. Although the total number of spikes in Fig. 4B is larger than in Fig. 3B, the
average number of spikes per R-SET is smaller in Fig. 4 (N = 64) than in Fig. 3 (N = 10), as it should be expected.
doi:10.1371/journal.pone.0053821.g004
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failures. Synchronization could then be used to detect particular

events and process temporal data series. Therefore, it is useful to

compare the synchronization and desynchronization processes in

two ensembles of N = 20 identical and non-identical nanostruc-

tures (Fig. 5A) with a coupling resistance that changes with time as

shown in Fig. 5B. The coupling parameter increases from Kc = 0 to

a maximum value Kc = 20 (Figs. 5C and 5E) or 40 (Figs. 5D and

5F) and back again to Kc = 0. The synchronization and desyn-

chronization processes of two ensembles of 20 identical (Fig. 5C

and D) and heterogeneous (Fig. 5E and F) nanostructures with the

average values for the NP capacitance and charging resistance of

Figs. 3 and 4 are also shown. The synchronization is evaluated

using the modulus of the order parameter z [24]. The real and

imaginary parts of z are shown in the insets of Fig. 5C-F for some

regions where the initial desynchronization process occurs and the

high synchronization state is established.

The degree of synchronization is evaluated from the phases of

the individual oscillators that can be calculated from the time

between two consecutive maxima (Figs. 1 and 3). This period

depends on the charging resistance and the NP capacitance of

each individual R-SET (Eq. (1)). The NP potentials of all R-SET

are set to Vi = 0 initially, so that the nanoscillators are synchro-

nized at t = 0. The desynchronized state is only observed when a

small interaction between the R-SET of Fig. 5A is allowed (Kc

increases from zero, Fig. 5B). The desynchronization process also

occurs at the end of the coupling strength cycle where Kc tends to

zero again (Fig. 5B). A clearly different behavior for the ensembles

of identical (Figs. 5C and D) and non-identical (Figs. 5E and F)

nanostructures is observed in the initial time region (20 ns) with

Kc = 0 (Fig. 5B). When d = 0, the thermal noise is the only factor

that may drive the desynchronization process. This process is then

so slow that DzD&1 after 20 ns. On the contrary, in the

heterogeneous ensemble (d = 0.25) the variability in the individual

parameters of the R-SET drives quickly the initial desynchroni-

zation process (Figs. 5E and F).

Synchronization occurs over a central time window which is

more extended for the identical (Fig. 5C and D) than for the non-

identical (Fig. 5E and F) nanostructures. Although the diversity

makes more difficult the synchronization of the heterogeneous

ensemble (i.e., a higher value of the coupling strength is needed for

Figure 5. Synchronization of R-SET ensembles. Synchronization of R-SET ensembles for an applied potential V = 120 mV (A). The coupling
resistance rc (and then the coupling strength Kc) changes with time following a triangular signal (B). The modulus of the order parameter DzD
describing the synchronization shows different time variations for identical, d = 0 (Fig. 5C and D), and non-identical ensembles, d = 0.25 (Fig. 5E and
F). The low and high synchronization states are highlighted in the insets showing the imaginary and real parts of z. A high degree of synchronization
is achieved by increasing the maximum value of Kc from 20 (Fig. 5C and E) to 40 (Fig. 5D and F). We assume that the ensembles are initially (t = 0)
synchronized and desynchronize because of the thermal noise and the initial zero value of the coupling strength (Fig. 5B). Synchronization is
established when the coupling strength reaches sufficiently high values. Finally, the ensembles desynchronize again when the coupling strength
decreases back to zero (Fig. 5B).
doi:10.1371/journal.pone.0053821.g005
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d = 0.25 than for d = 0 to achieve the same degree of synchroni-

zation), synchronization is also possible even for significantly

different nanostructures (Figs. 5E and F). As expected, synchro-

nization is enhanced by increasing the maximum value of the

coupling strength from Kc = 20 (Fig. 5C and E) to 40 (Fig. 5D and

F). On the contrary, when the coupling strength maximum is

decreased to Kc = 10 (data not shown), full synchronization is not

achieved.

Full synchronization (DzD~1) is achieved when one particular R-

SET dictates the potential phase of the whole ensemble. This

occurs when this nanostructure becomes the commanding R-SET

and sets the ensemble synchronous period to be equal to its

particular charging–tunneling time [24]. A high degree of

synchronization is obtained when the coupling strength takes the

maximum value although some fluctuations are still apparent

because a particular R-SET may experience tunneling at a

charging time different to that of the commanding R-SET [24].

It is tempting now to relate some of the above results with those

found in biophysical networks. Synchronization of neural networks

is usually analyzed using integrate-and-fire models that incorpo-

rate coupling schemes more complex than that considered here

[35]. The dynamic formation of synchronized neuron clusters has

been proposed as a temporal coding mechanism [32] that could be

used to detect particular events and analyze temporal data series.

There is also some evidence that both positive and negative

changes in the degree of synchronization can be relevant signals

for neuronal information processing [14].

However, synchronized states may constitute stable attractors

difficult to reset [36] which should be undesirable for the efficient

processing of rapidly changing environmental conditions [14].

Fig. 5C and D show indeed that homogeneous ensembles are

rapidly synchronized when the coupling strength Kc increases but

they are also difficult to desynchronize again when Kc decreases. If

the reset function is not easily implemented, a rapid transition

between the different ensemble states is not possible, and this fact

makes difficult to follow the time dependent input signals. This

characteristic of the homogeneous ensemble is thus a serious

limitation for information processing. On the contrary, the

heterogeneous ensemble permits rapid transitions between the

synchronized and desynchronized states because of the effects of

the nanostructure variability and the thermal noise on the

collective response. High synchronization degrees could be present

in some pathological states of neural networks [8]. Although

clusters of coupled neurons in the brain show transient synchro-

nization patterns that are certainly much complex than those

observed here for R-SET nanostructures, the results of Fig. 5

provide some clues on the crucial role of biophysical diversity and

noise in biological networks.

Conclusions

Nanotechnology is bound to produce ensembles of structures

that show a significant variability in their individual physical

properties. This fact constitutes a serious problem because

nominally identical units are required in many practical applica-

tions. In particular, this is the case of information processing.

However, the results obtained in Figs. 1, 2, 3, 4, 5 clearly show that

the reliable processing of weak signals is still possible using

heterogeneous groups of non-identical threshold potential nanos-

tructures provided that some conceptual schemes typical of

biological networks are invoked.

A possible experimental realization of a SET is the nanopar-

ticle-based transistor that mimics some of the spiking character-

istics of neurons. We have simulated the integrated response of

ensembles of SET that suffer from a high individual variability.

The ensembles are not modeled as replicates of the same

nanostructure with constant physical properties but as statistical

distributions of physical parameters characterized by some average

and width distribution values. We consider simple but general

information processing schemes to draw conclusions that should

be of relevance for other threshold-based nanostructures. Monte

Carlo simulations suggest that ensembles of heterogeneous

nanostructures whose physical parameters follow statistical distri-

butions approximately controlled could be more efficient than

those with identical units because of the extended dynamic

response. The integrated ensemble response is based on collective

phenomena robust to individual failures and variability.

The three case studies considered here permit to understand the

effects of nanostructure variability in a broad range of information

processing schemes that could also be relevant for biophysical

systems. In particular, the neural variability and its functional

significance, together with the role of stochastic resonance and

noise in the nervous system, have been discussed recently [5–

11,37]. Heterogeneous ensembles of nanostructures can process

weak, sub-threshold signals, permit rapid transitions between

different synchronization states, and display some of the charac-

teristics previously observed in neural networks. The results of

Figs. 1, 2, 3, 4, 5 suggest that the role of neural diversity in the

complex cognitive tasks of brain could constitute a possible source

of inspiration for the design of simple information schemes with

artificial threshold nanostructures showing a high variability.
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22. Garcia-Morales V, Mafé S (2007) Monolayer-protected metallic nanoparticles:

limitations of the concentric-sphere capacitor model. J Phys Chem C 111: 7242–

7250.
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