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Abstract

DNA replication has a finite measurable error rate, net of repair, in all cells. Clonal proliferation of cancer cells leads therefore
to accumulation of random mutations. A proportion of these mutational events can create new immunogenic epitopes that,
if processed and presented by an MHC allele, may be recognized by the adaptive immune system. Here, we use probability
theory to analyze the mutational and epitope composition of a tumor mass in successive division cycles and create a double
Pölya model for calculating the number of truly tumor-specific MHC I epitopes in a human tumor. We deduce that
depending upon tumor size, the degree of genomic instability and the degree of death within a tumor, human tumors have
several tens to low hundreds of new, truly tumor-specific epitopes. Parenthetically, cancer stem cells, due to the asymmetry
in their proliferative properties, shall harbor significantly fewer mutations, and therefore significantly fewer immunogenic
epitopes. As the overwhelming majority of the mutations in cancer cells are unrelated to malignancy, the mutation-
generated epitopes shall be specific for each individual tumor, and constitute the antigenic fingerprint of each tumor. These
calculations highlight the benefits for personalization of immunotherapy of human cancer, and in view of the substantial
pre-existing antigenic repertoire of tumors, emphasize the enormous potential of therapies that modulate the anti-cancer
immune response by liberating it from inhibitory influences.
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Introduction

DNA replication is arguably central to life, and it occurs with

less than complete fidelity. The imperfection in fidelity leads to a

measurable error rate, net of repair, that is an essential and

inalienable component of any cell division, bacterial or mamma-

lian, normal or malignant. The estimates of the spontaneous

mutation rate vary from 1025 to 1029 per nucleotide per cell cycle,

depending upon the experimental system used [1]; much higher

rates obtain in case of cells with genetic instability [2,3] either

because of deficient DNA repair [4], or chromosomal instability

[5]. The mutations create the substratum for natural selection and

origin of species and malignant cancers alike. Prior mathematical

models for studying the role of genomic instability in tumorigenesis

[6] have relied upon simple compounding models of growth to

estimate the total number of mutations in a fully grown tumor.

We demonstrate here that such mutations can be effectively

captured using a double Pölya urn scheme, and that doing so

allows us the mathematical flexibility to answer important

biological questions. Specifically, we address a facet of the

mutational repertoire of cancers, that has not received mathemat-

ical attention, i.e. the immunological consequences of the

mutational burden of tumors. One of us has previously suggested

that the mutational burden of tumors must inevitably lead to

generation of tumor-specific neo-antigens that must be unique for

each individual tumor because of randomness of the mutational

process [7]. However, no attempt at quantitative modeling of this

important phenomenon has been made by us or others. This is

largely due to two factors: the rules of immunological recognition,

specifically, the recognition of a complex of MHC I with stretches

of amino acids by CD8+ T lymphocytes, are considerably more

intricate, and hence less amenable to modeling than the binary

rules of mutations. Secondly, these rules have become clear only

during the last 10–15 years [8,9,10]. The results of our analyses

reveal that the tumor-specific repertoire of antigens is vast and

individually unique. Indeed, this conclusion was inherent in the

earliest experiments that pointed to the specific immunogenicity of

tumors (see [11] for review). These early studies, carried out with

transplantable but syngeneic tumors showed two distinct phenom-

ena: (i) each tumor could be used to immunize mice (or rats) and

the immunized animals were resistant to subsequent tumor

challenge with the immunizing tumor; (ii) the tumor reistance

was restricted to the tumor that was used to immunize. Mice

immunized to one tumor and resistant to it were still sensitive to

challenge with another tumor, even if the othe other tumor was of

the same histological origin, was induced in the same strain of

mice and by the same carcinogen, as the immunizing tumor. A

rigorous scrutiny of these phenomena using a large panel of

chemically induced tumors [12] still upheld the observations of

individually-specific immunogenicity of tumors initially made with

smaller numbers of tumors. As argued previously [7], these results

could be explained on basis of an antigen repertiore generated by
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random mutations. Our present results provide a mathematical

form to that argument, raise a number of testable questions and

predictions and suggest novel avenues of immunotherapy of

human cancer.

Results

The basic model of mutational burden of a tumor
A very small number of admittedly simplistic assumptions are

used to create a basic model into which more realistic components

may be incorporated. The assumptions are: (a) A cancer is clonal

in origin. (b) The mutation rate in the cancer is invariant through

the cancer’s lifetime. Genetic instability including repair deficien-

cies and chromosomal instability, are not modeled in the basic

model, but have been incorporated in its variants. (c) Cancer cells

die at an invariant rate through the cancer’s life time. Selected

variations in death rates during a tumor’s evolution may be added

to the basic model. (d) The mutations are all point mutations, and

no reversions occur. This is perhaps the most simplistic of all

assumptions. The mutational complexity of tumors including

deletions and insertions is fully acknowledged, but not represented

in our models. (e) All mutations are ‘equal’ such that no mutation

confers a survival advantage or disadvantage to the cell harboring

it. This clearly incorrect assumption is made because an

overwhelming majority of mutations indeed are ‘equal’ and are

incidental to survival or malignant transformation. In light of these

simplifications, our model represents a minimal representation of

tumor-associated genetic changes.

The classical formulation of Pölya’s urn problem can be stated

as follows: an urn initially contains r red and b blue marbles. One

marble is chosen randomly from the urn. The marble is then put

back into the urn together with c more marbles (presumably from a

collection stored elsewhere) of the same color. Results computing

the probability of the existence of k red marbles in the urn after t

trials are well-known.

If we model the reproduction of each individual base pair in this

setting, it is immediately evident that c = 0 in this case, since the

size of the genome remains constant. Hence, we get a binomial

distribution over the number of mutations in a cell cycle. This may

be represented as,

Pr n; k; pð Þ~
n

k

� �
pk 1{pð Þn{k ð1Þ

where n is the number of base pairs, p is the probability of faulty

reproduction of a single base pair, and k is the number of

mutations in the entire DNA sequence in the daughter cells.

Now, we must derive an updated equation for the change in the

number of mutations across cell cycles, where the number of

mutations produced in each cycle follow the same generative

model as shown in Eqn. (1). In that case, we can compute the

probability of the existence of k2 mutations, given the existence of

k1 mutations k2§k1ð Þin the previous cell cycle as

Pr k2ð Þ~Pr k1ð Þ|Pr k2{k1ð Þ

Thus, recursively, it follows that the probability of seeing k

mutations in the Tth cell cycle will be

PrT kð Þ~
Xk

i~0

Pr ið Þ|PrT{1 k{ið Þ ð2Þ

Alternatively, we can derive an analytical expression for PrT kð Þ if

we assume that mutation of an already mutated base pair is

statistically irrelevant. This is a completely justifiable assumption,

and allows us to calculate the probability ~pp that a single base pair

will mutate across a series of T cycles as,

~pp~1{ kð ÞT : ð3Þ

Using p~~pp in Eqn (1), we will obtain the probability of the

existence of k mutations in the Tth cell cycle as,

PrT kð Þ~
n

k

 !
1{ 1{pð ÞT
h ik

1{ 1{ 1{pð ÞT
h i� �n{k

~
n

k

 !
1{pð ÞT n{kð Þ

1{ 1{pð ÞT
h ik

ð4Þ

In light of the calculations described above, starting with a diploid

human genome of 66109 bp, and assuming a conservative

spontaneous mutation rate of 561029/bp/cell cycle, the average

number of mutations generated in each cell cycle is simply the mean

of the binomial distribution in Eqn. (1) and is calculated as 30.

Next we consider the average number of mutations per cancer

cell in a tumor of size 1 cm3 or approximately 109 cells. A cancer

cell would have to undergo approximately 30 cycles to arrive at

that size. As each daughter cell would retain the mutations that it

inherits from its parent, the average cumulative number of

mutations per cell at the end of 30 cycles, shall be 900. With

increasing number of cycles, and increasing tumor mass, an

increasing number of mutations will accumulate linearly per cell

Fig. 1(a). The actual distribution of mutational complexity follows

the probability density defined in Eqn. (4) and is visualized in

Fig. 1(b). As each cycle shall generate random mutations anew, the

various cells in the tumor shall not have a homogeneous

composition, but shall be mosaics of overlapping compositions.

Altogether, this tumor of 109 cells shall harbor ,961011

mutations. If we assume that mutations that occur in less than

10% of the total cells in the tumor are undetectable in the

laboratory, mutations that occur after the fourth cell cycle will be

undetectable. Therefore, the actual number of mutations that we

would expect to find in a tumor of size 1 cm3 under experimental

conditions will be about 1.261011.

Should one assume the presence of a mutator mutation in the

parental cancer cell that enhances the mutation rate one hundred

fold, one similarly arrives at a number of 90,000 mutations per cell

by the time the tumor achieves a size of 109 cells. Under these

conditions, one out of every 60,000 bp shall have undergone a

mutation.

Death rate and the number of mutations
In the scenario envisioned in the previous section, thirty cycles

shall be achieved within a month, assuming no stasis or cell death.

While situations of invariant cell death rates must arise

occasionally in course of evolution of human tumors, it is an

unlikely scenario during genesis of a tumor. A new developing

tumor, or a newly metastatic lesion undergoes successive cycles of

vigorous expansion and cell death depending upon whether or not

it is vascularized, the extent of immunological attack it encounters,

in addition to other inchoate factors. This scenario cannot be

modeled with any degree of accuracy. One can however consider

an invariant and uniform death rate d~1{w, where w is the

Human Tumor-Specific Epitopes
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fractional growth rate of the tumor cell population. We can now

calculate the number of cell cycles required for the tumor to attain

a certain size N using,

T~
logN

log 2{dð Þ , ð5Þ

and use this value of T in Eqn. (4) to estimate the number of

mutations in the cell population. The higher the death rate, the

more cycles a cell would have undergone before achieving a

certain size Fig. 2(a). As more cycles inevitably involve more

mutations, a tumor with a higher death rate would have a larger

number and larger complexity of mutations than a tumor with a

lower death rate Fig. 2(b).

Revising our estimates to account for a steady and random

death rate, we work with a reasonable assumption that it takes 300

cycles (about ten months) for a tumor to grow from a cell to a size

of 1 cm3 which is ,109 cells. In this case, the expected number of

mutations in the grown tumor will multiply ten-fold from the

previous figure of 900 mutations to 9000 mutations per cell.

Calculating the number of experimentally observable mutations

will follow a somewhat different route in this case. We will have to

assume that mutations that occur after the tumor has reached 10%

of its final size will not be detectable. We will now have d&0:9285,

which implies that mutations that occur after T&115 will not be

detectable. Thus, we get an expected value of 3450 experimentally

detectable mutations per cell in a tumor of about 1 cm3 or ,109

cells, assuming a mutation rate of 561029/bp/cell cycle and a

modest death rate. This calculation is valid for tumors of the same

size; number of mutations will be proportionately higher in larger

tumors, or tumors with higher rates of mutations and higher rates

of cell death.

From mutational content to definition of the tumor
immunome

Starting with the deduction that a tumor of 109 cells harbors an

average of 9000 mutations per cell (over 300 cell cycles), and with

the assumption that mutations are distributed randomly between

the coding and non-coding segments of the genome, one can

calculate the number of mutations in the coding genome, at 1.5%

or 135 per cell. Calculating that one third of these mutations shall

fall on each of the three positions of a triplet codon, and further

that mutations in the first and second positions shall be productive,

and those in the third position, silent, one arrives at a number of

90 alterations in the coding sequences of this tumor cell. How

many new antigenic epitopes do these alterations create?

In order to model this, we have chosen to focus on the epitopes

that can be potentially processed and charged onto MHC I

molecules and potentially recognized by CD8+ T lymphocytes.

While other aspects of the immune system play important roles in

immunological resistance to cancer, the MHC I -restricted,

antigen-specific response plays a central role. In order to

determine the number of MHC I epitopes that shall be generated

by the 90 productive mutations per cell, we wanted to identify the

possible number of sites in the coding genome which were one

amino acid ‘short’ of a consensus HLA I motif, and which

therefore could be converted into a perfect motif by a single point

mutation. However, no such super-motif exists. We have

approached the problem by narrowing our calculations to HLA

A2, one of the more common allele and one for which a well-

defined motif - (a 9-mer peptide with small and aliphatic residues

ATSVLIMQ in the B pocket and aliphatic and small hydrophobic

residues ALIVMQ in the F pocket) -exists [9].

To compute the number of HLA A2 alleles that will arise as a

consequence of random mutations, we follow a simple line of

probabilistic argument, outlined below,

1. We have calculated that the average number of productive

mutations in the coding region of the genome of a tumor of a

cell mass of 109 cells is about 90/cell.

2. The coding region of the genome is taken to comprise of about

1.5% of the total sequence ,96107 base pairs, translated to

,36107 [13].

3. Since 9-mers can overlap, the total number of possible 9-mers

can also be taken to be ,36107.

4. Recall that A2 motifs are characterized by the combined

presence of one of 8 residues in the B pocket and one of 6

Figure 1. Modeling the numbers of accumulating mutations in dividing cells using a probabilistic model. (a) Prediction of average
number of accumulated mutations per diploid human cell as a function of numbers of cell cycles. The model assumes a diploid DNA content of
66109 bp and a number of possible mutation rates (1029,561029,1028,561028 per bp per cell cycle) as indicated. (b) The numerical profile of
mutations in a clonally derived cell population of approximately 109 cells (after 30 division cycles). A spontaneous mutation rate of 561029 is
assumed.
doi:10.1371/journal.pone.0006094.g001
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residues in the F pocket. To compute the probable number of

HLA A2 motifs in the coding region, we therefore use a

combinatorial construction viz.,

p A2 motifð Þ~p 2 incorrect orderð Þ|p two from 9ð Þ

|p constrained at two locationsð Þ

~
1

2
|

1

36
|

207|8|6

209

~1:6667|10{3

The total number of A2 motifs in the coding region of the

genome will then be,

1:6667|10{3|3|107&50000

5. We now must find the number of motifs that are one mutation

away from being recognized as A2 motifs. For a motif to be one

mutation away from being recognized as A2, it must already

have a compatible residue in either the B or the F pocket and

an incompatible one in the other. Therefore, to find the

probable number of motifs one mutation away from A2, we use

a combinatorial construction as above to compute the

probability of each of these two exclusive cases individually

and then add them. This is calculated as,

p one from A2ð Þ~ 1

72
|

207|12|6

209
z

207|8|14

209

� �

~6:4|10{3

The total number of epitopes one mutation away from A2 will

then simply be,

6:4|10{3|3|107&191670

6. We know, from previous calculations the number of active

mutations in the coding region of the genome. Operating

under the assumption that these mutations occur randomly, we

can compute the average value for the number of such ‘false

positive’ incidences in the genome. This comes out to be,

90

3|107
|191670&:575:

Thus, we conclude that the total number of 9-mer motifs that

can mutate and be recognized as HLA A2 motifs is of the order

of 0.6 epitopes per cell, in a tumor that has arisen from 300

division cycles. (Parenthetically, these calculations assume that

the mutations are neutral with respect to their effects on

proteasome cleavage and transport of peptides through

transporters associated with antigen processing.) This number

will clearly increase as the tumor undergoes more cell cycles

Fig. 3(a). With a total of 6 MHC I alleles, and assuming that the

frequency of other alleles is similar to A2, there may be up to

3.6 total new tumor-specific MHC I epitopes per tumor cell at

this stage. The number of such epitopes shall clearly increase in

a tumor that is larger, or that has a higher mutation rate as a

result of genomic instability, or one that has undergone a larger

number of cycles for any reason,including a higher death rate

Fig. 3(b). Thus, in the not uncommon scenario of a tumor with

a hundred fold higher mutation rate, one may expect 360 new

tumor-specific MHC I epitopes per tumor cell. Clearly, the

actual number of new epitopes may be anywhere between 3.6

and 360 per cell depending upon the mutation rate. While this

manuscript was under preparation for submission, we became

aware of the study by Segal et al. [14] where the authors have

actually analyzed in silico the number of possible tumor-

specific HLA A201 epitopes based on known partial sequences

of tumor transcripts; they calculate individual breast and colon

cancers to have between 7 and 10 new epitopes. These

numbers are clearly consistent with our theoretical predictions.

Figure 2. Modeling the numbers of accumulating mutations in dividing cells as a function of rates of cell death using a probabilistic
model. Rate of cell death is defined as the fraction of cells dying in each generation. As an example, if a single cell divides into two, and only 1.6 of
these two cells survive, the death rate is denoted as 0.4. (a) Number of cell cycles required for a tumor to grow from a single cell to 109 cells (<1 cm3)
as a function of rates of cell death. The higher the death rates, the more times the cells have to divide to create the same size of tumor. Note on the
right vertical axis, that the number of accumulating mutations per cell also rises with the number of cell divisions undergone; the numbers are
plotted with an assumed mutation rate of 561029 per bp per cell division cycle. (b) The region of (a) denoting death rates between 0.8 and 1 is
magnified; death rates between 0.8 and 1 represent the most realistic scenario for a tumor growing in vivo. Note that the vertical axis is plotted on a
logarithmic scale.
doi:10.1371/journal.pone.0006094.g002
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Discussion

Summary of results
Our study models the size of the repertoire of tumor-specific

MHC I epitopes in a tumor, starting from first principles of

genetics. We hasten to emphasize that the modeling here is

restricted to truly tumor-specific epitopes, that may not be present

in normal tissues. An extensive database that documents the

repertoire of MHC I epitopes that are shared between normal

tissues and tumors (such as differentiation antigens, cancer testes

antigens etc) exists [15,16], and is not the subject of this analysis.

Our analyses show that (a) each cell of a relatively small human

tumor of 1 cm3 harbors approximately 900 individual mutations,

assuming a spontaneous mutation rate of 561029/bp/cell cycle. If

one factors in the presence of mutator mutations, or other

mechanisms of genetic instability, a proportionately higher

number of mutations is obtained. Corresponding numbers of

mutations can be derived for other mutation rates, higher and

lower. Accepting that a mutation must exist in at least 10% of the

cells in order to be detectable by DNA amplification methods, one

would detect *120 mutations per cell in this tumor at the basic

mutation rate. (b) If the modeling takes into account the fact that a

significant proportion of cancer cells die even as the cancer

progresses, the number of mutations in a tumor varies directly with

the death rate; the higher the death rate during the tumor’s

progression, the higher the number of mutations; (c) Translation of

the spontaneous mutations at the basic rate of 561029/bp/cell

cycle to the changes in amino acid composition of the proteome

suggests that a human tumor of 1 cm3 shall harbor *4 new

tumor-specific epitopes per tumor cell. In a larger tumor, and in

tumors with higher mutation rates due to genetic instability, or

tumors with certain death rates, a substantially higher number of

new MHC I epitopes is generated, such that a clinically detectable

tumor may harbor hundreds of tumor-specific epitopes.

This model has a number of limitations. The number of all

potential A2 epitopes calculated is based on the assumption that

each of the possible twenty amino acids can occupy any position in

a protein. This is clearly not so, and corrections for this factor shall

alter the final numbers to a minor degree. Secondly, not all

potential epitopes may be generated due to constraints in

processing, the half life of proteins and other factors [17,18].

Hence, the number of actual as opposed to potential epitopes may

be as low as 10% of the modeled number. Conversely, the model

only considers point mutations, and thus ignores considerable

sources of additional genetic and hence immunogenic alterations.

These limitations, in either direction, should be borne in mind in

interpreting the physiological consequences of our model.

Comparison with previous results
Tomlinson et al. [6] have estimated 1250 mutations per

adenocarcinoma cell (in a cancer that has grown over 1000 cell

cycles), assuming a mutation rate of 561029 per bp per cell cycle.

The results of our calculations lead us to qualitatively similar

results. Our estimates are also generally consistent with the

number of 10,000 mutations per cell arrived at experimentally by

Stoler et al. [19] They are also concordant with the range of

frequency of ‘‘passenger’’ somatic mutations observed by Green-

man et al. in an array of cancer genomes [20]. Our model operates

at the level of probabilities of mutations at the level of single

nucleotides, as opposed to the geometric series used by Tomlinson

et al. The probabilistic approach, while harder to implement,

allows resolution of questions not addressable by the geometric

progression approach. The modeling of the size of the epitope

repertoire, as performed here, is one such question. No previous

study has modeled the number of new tumor-specific epitopes

generated as a result of tumor progression, and hence such a

comparison is not possible. However, a comment regarding the

estimates regarding the total number of A2 epitopes present in

normal proteome is instructive. We calculate as *50,000 the total

number of such epitopes. Intestingly, Assarson et al [17]. calculate

that the number of A2 epitopes in a 100 amino acid stretch of the

vaccinia virus genome to be about 2.5. If the total human

proteome consisting of 107 amino acids were to follow similar

rules, it may be expected to contain *250,000 A2 epitopes by

Figure 3. Modeling the numbers of accumulating tumor-specific HLA A2-restricted neo-epitopes in dividing human cancer cells
using a probabilistic model. (a) Prediction of average number of accumulated A2-restricted epitopes per cell as a function of numbers of cell
cycles. The model assumes a diploid DNA content of 66109 bp and a number of possible mutation rates (1029,561029,1028,561028 per bp per cell
cycle) as indicated. The higher mutation rates are more representative of human cancers. (b) The expected numbers of A2-restricted tumor-specific
neo-epitopes in tumors (<1 cm3 size) with varying inherent rates of cell death. The higher the death rate, the higher the number of cell cycles
required for a tumor to grow to a certain size (as shown in Fig. 2), and the higher the number of tumor-specific neo-epitopes. This figure assumes a
mutation rate of 561029 per bp per cell division in the tumor.
doi:10.1371/journal.pone.0006094.g003
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their calculation. The modeled number of A2 epitopes per our

calculations is about 20 percent of that calculated by Assarson et

al., and thus significantly, but not qualitatively different. The most

pertinent calculations for us are those made by Segal et al [14];

these authors applied in silico-based epitope prediction algorithms

on 1152 peptides containing missense mutations in breast and

colorectal cancers and calculated that individual cancers have

between 7 and 10 new tumor-specific HLA 0201 epitopes. These

numbers are quite close to those arrived at in our calculations.

Testable predictions on molecular genetics of human
tumors

A number of predictions have been made regarding the

numbers of mutations in human cancers. While the human

genome of two human individuals has been sequenced, the

complete sequence of a human, or a murine tumor genome

remains to be determined. Considering the sliding costs of

sequencing, it is now well within the realm of possibility that

one or more tumor genomes shall be sequenced in short order.

Such an analysis, preferably carried out along with the non-tumor

genome of the same individual, shall be enormously informative

with respect to the models generated here and in other studies. It is

worth re-emphasizing here that our present model only considers

point mutations, and not the other more significant forms of

genetic modifications including chromosomal instability, deletions

etc. As such, our models present a minimal picture of the genetic

changes associated with carcinogenesis. The other aspect that is

implicit in our model is that of uniqueness of the genetic signature

of each individual cancer. As the mutations are assumed to be

random, the non-malignancy associated mutations, and these are

presumably the most of them, would be unique to each tumor.

This prediction shall also be put to test by the sequencing efforts.

Implications for immune responses to cancers
Our model has several novel implications. It suggests that a

growing tumor is not immunologically recognizable because at the

very early stages, it does not have any truly tumor-specific

immunogenic epitopes! In the simplest scenario in our model, a

tumor without genetic instability and without significant rates of

cell death may easily grow to a size of 1 cm3 and may have only a

single immunogenic epitope, if that, at that stage. This provides a

perfect mechanism for tumors to grow un-detected under the

immunological radar. As they grow larger, they of course shall

become more immunogenic, and hence more visible. Very

interestingly, Gatenby et al [21]. have reached a similar conclusion

purely on information-theoretic grounds. They conclude that the

Fisher information of a tumor is very low in the early stages of its

growth, resulting in an error of at least 30% in the best possible

estimate of its time of origin. We find it gratifying that our

probabilistic treatment of nucleotide mutation predicts the same

result. With the time that it takes tumors to achieve larger sizes,

they shall also have had more opportunity to develop an immuno-

subversive armamentarium. The tumors that fail to develop such

immuno-evasive mechanisms, which indeed may be a substantial

proportion of them, possibly regress and are never detected

clinically. The phenomenon of regressor tumors in mice [22], the

increased incidence of cancers in immunologically suppressed

patients [23], and the recent evidence affirming the role of

immunological surveillance against tumors in mice [24], all

indicate that this might indeed be the case. The phenomena of

immune editing and immune evasion [25] must therefore be

considered central to development of malignancy.

Our model is consistent with the fact that a number of true

tumor-specific mutations have been identified in human and

mouse tumors, and that these are individually tumor-specific

[26,27,28,29,30,31,32,33,34,35,36,37,38,39]. In fact, in almost

every instance where immune response can be correlated to tumor

rejection, the immune response is directed to these true tumor-

specific mutations [26,31,33,34]. However, only a relatively small

number of individually specific mutations have been detected and

structurally defined. We suggest that at least two reasons for this

possible discrepancy; one, that the epitopes establish a hierarchy

such that only the dominant epitopes are identified. Assarson et al

[17]. estimate that 10 percent or fewer potential epitopes may be

detected for this reason. Secondly, the methodological logistics of

identifying epitopes of tumors are heavily biased towards detection

of shared, and not true tumor-specific epitopes.

Our results have an important bearing on the immunogenicity

of cancer stem cells. Regardless of the merits of the evidence

supporting their existence [40], our results suggest that cancer

stem cells shall harbor few mutations due to their asymmetric

proliferative properties, and hence shall be inherently poorly

immunogenic. They may also therefore be poorly responsive to

immunotherapy.

Implications for immunotherapy of human cancers
Our results suggest that human tumors of even clinically modest

sizes harbor significant numbers of true tumor-specific epitopes

generated as a result of the spontaneous mutations that are

inalienably associated with cell division. These tumor-specific

epitopes are predicted to be unique to each individual tumor

because of the randomness of the mutation process. These

considerations suggest a renewed emphasis on individualized

immunotherapy of human cancer. Preliminary positive results

from randomized Phase 3 clinical trials where autologous tumor-

derived heat shock protein-peptide vaccines - which are based on

the individually specific immunogenicity of cancers, are consistent

with our model [41,42]. The most extreme form of individuali-

zation of immunotherapy would of course consist of sequencing of

the entire genome of each patient’s tumor, followed by listing of

the unique tumor-specific epitopes and immunization against a

panel of such epitopes [43]. Our modeling predicts that the

number of such epitopes shall not be inordinately large. With the

rapid and continuing decline in the cost of sequencing, such

approaches are not beyond the bounds of possibility in the near

future. Further, considering that tumors already harbor a

substantial immunogenic repertoire, a renewed effort towards

dis-inhibition of immune responses, such as through blocking

antibodies to CTLA4 [31,44] or other such molecules, or through

disruption of T regulatory networks [45], in combination with

individualized vacci-therapy, may offer the best chance of success.
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