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Abstract

The lucrative and highly migratory Atlantic bluefin tuna, Thunnus thynnus (Linnaeus 1758; Scombridae), used to be
distributed widely throughout the north Atlantic Ocean, Mediterranean Sea and Black Sea. Its migrations have supported
sustainable fisheries and impacted local cultures since antiquity, but its biogeographic range has contracted since the
1950s. Most recently, the species disappeared from the Black Sea in the late 1980s and has not yet recovered. Reasons for
the Black Sea disappearance, and the species-wide range contraction, are unclear. However bluefin tuna formerly foraged
and possibly spawned in the Black Sea. Loss of a locally-reproducing population would represent a decline in population
richness, and an increase in species vulnerability to perturbations such as exploitation and environmental change. Here we
identify the main genetic and phenotypic adaptations that the population must have (had) in order to reproduce
successfully in the specific hydrographic (estuarine) conditions of the Black Sea. By comparing hydrographic conditions in
spawning areas of the three species of bluefin tunas, and applying a mechanistic model of egg buoyancy and sinking rate,
we show that reproduction in the Black Sea must have required specific adaptations of egg buoyancy, fertilisation and
development for reproductive success. Such adaptations by local populations of marine fish species spawning in estuarine
areas are common as is evident from a meta-analysis of egg buoyancy data from 16 species of fish. We conclude that these
adaptations would have been necessary for successful local reproduction by bluefin tuna in the Black Sea, and that a locally-
adapted reproducing population may have disappeared. Recovery of bluefin tuna in the Black Sea, either for spawning or
foraging, will occur fastest if any remaining locally adapted individuals are allowed to survive, and by conservation and
recovery of depleted Mediterranean populations which could through time re-establish local Black Sea spawning and
foraging.
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Introduction

Many marine fish species such as anchovy, Engraulis encrasicolus,

and cod, Gadus morhua, are distributed over wide geographic ranges

which include both fully marine and estuarine habitats. Estuarine-

spawning populations of marine fish species usually have evolved

physiologies and life histories to enable successful establishment,

including reproduction, in such habitats. In this study, we consider

the possibility that a large pelagic highly migratory species, bluefin

tuna, has also evolved such adaptations.

Bluefin tuna used to be seasonally common in the Black Sea [1–3]

whose salinity is only half that of the Mediterranean Sea. The species

used to migrate there from the Mediterranean for feeding but no

bluefin tuna has been seen or captured in the Black Sea since the late

1980s [4,5]. The species is now believed to be absent from the area,

but the reasons for its disappearance are unclear. Explanations in the

literature include overexploitation, shipping noise and changed

environmental conditions (e.g., eutrophication); however the

mechanisms by which these factors might have affected bluefin

tuna are obscure, largely undocumented and unquantified [1,4,6].

The Black Sea disappearance is part of a contraction of the overall

range of the species since the 1950s [7,8].

Nevertheless, and regardless of the causes of the disappearance

of this population, the historical ecology of this species in the Black

Sea is poorly understood, and represents a challenge to our

knowledge of the life history and dynamics of this species. Its

presence there is most thoroughly documented based on

commercial fishery data and sightings, but abundances, distribu-

tions, and biological rates (e. g., growth) have never been

quantified [1,2]. Lack of knowledge of its life history and

ecological role in this ecosystem could inhibit the development

of new science-based attempts to manage a reappearance and

recovery of this population. For example, the loss of a local

population may represent a decrease in the population richness

and thus intra-specific biodiversity of this species.
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This would be the case if the species migrated to the Black Sea

for feeding and probably also for reproduction [1,2]. Occupation

of specific habitats for reproduction, and the subsequent develop-

ment of offspring in isolation from those produced in other areas,

is believed to be a mechanism which can lead to the development

of distinctive populations, including those having specific genetic

characteristics [9]. In the context of this paper, we consider a

population as a locally-reproducing group of individuals with

distinguishable characteristics and traits, and which occupies a

specific area across generations for reproduction [9].

Examples of marine fish species containing genetically distinct

populations in different habitats are numerous [10] and include

cod on specific banks on the continental shelf off eastern Canada

[11] and several species across the salinity gradient from the North

Sea into the Baltic Sea [12]. Atlantic bluefin tuna also has

significant genetic population structuring throughout its range and

at more local scales within the Mediterranean Sea [13–15].

Population richness, and the different traits that individual

populations possess, contribute to a ‘‘portfolio effect’’ to promote

successful reproduction throughout the species range under

diverse conditions [16–18]. A decline or loss of a population with

specific adaptations to local conditions could therefore increase the

risk that the species will decline further.

In this study, we investigate the possibility that bluefin tuna used to

spawn in the Black Sea, and evaluate some of the adaptations that

the species must have had for this reproduction to have been

successful. We focus on buoyancy – density interactions between

bluefin tuna eggs and the hydrographic conditions in spawning

areas. This interaction is likely critical for successful reproduction in

the Black Sea because it is a relatively fresh environment with colder,

anoxic water in deep layers [6]. We hypothesize that conditions in

the Black Sea differ sufficiently from those in other areas where

bluefin tunas spawn (Atlantic T. thynnus, Pacific T. orientalis

Temminck & Schlagel 1884, and southern: T. maccoyii Castelnau

1872; Figure 1), that if spawning did occur in the Black Sea, the

population would have been adapted to produce eggs whose

buoyancy could allow eggs to survive the local hydrographic

conditions.

These ideas are evaluated by deriving and comparing spawning

site ‘‘climatologies’’ for all known areas in the global ocean where

bluefin tunas spawn, comparing the sea water densities with those

of bluefin tuna eggs, and modelling the sinking rates of bluefin

tuna eggs spawned in the Black Sea.

Methods

The study is based on a literature review and analysis of existing

hydrographic and egg buoyancy data, and a modelling exercise.

The study consists of the following sub-topics:

i) evaluation and synthesis of literature evidence of spawning

in the Black Sea;

ii) extraction, compilation and presentation of hydrographic

data for bluefin tuna spawning areas around the world;

iii) modelling the sinking speed of bluefin tuna eggs;

iv) compilation of egg buoyancy data for marine fish species

spawning across wide salinity ranges.

Literature Evidence of Bluefin Tuna Spawning in the
Black Sea

We compiled literature describing spawning and reproduction

of bluefin tuna in the Black Sea. The literature we considered was

based on ichthyoplankton, adult migration and gonadal develop-

ment data. The ichthyoplankton data are summarized in reviews

[1,2,19] and we accessed original Ukrainian and Russian language

literature cited by [1,6,20] for further details of the findings. We

also considered the migration and reproductive data that have

been compiled from commercial fisheries sources [21]. The

commercial catch data can provide information about the

seasonality, direction and location of spawning migrations, as well

as the reproductive status of individual fish (i. e., gonads in a

sexually mature, but pre-spawning, ripe or spent state). In some

cases when eggs were captured, authors measured and reported

sizes (diameters) of eggs and the oil globule. Since marine fish

species which spawn in low salinity habitats often produce larger

eggs due to higher water content than populations which spawn in

higher salinity environments [22–26], we noted and compared

these sizes; we hypothesized that the bluefin tuna eggs produced in

the Black Sea are (were) larger than those produced in other

regions.

Construction and Comparison of Bluefin Tuna Spawning
Site Climatologies throughout the Global Ocean

We compared the long-term hydrographic conditions in bluefin

tuna spawning areas in the Black Sea with those in other well-

documented spawning areas of the Mediterranean Sea (Levantine

Sea north of Cyprus, south of Sicily, southern Tyrrhenian Sea,

south of Balearic Islands). Spawning areas and times (Figure 1,

Table 1) were extracted from the literature and based on

collections of eggs and larvae at sea and the appearance of

spawning bluefin tuna. In addition, we included in our comparison

the spawning areas for the western Atlantic population of this

species located in the Gulf of Mexico [1,27], and for the two other

bluefin tuna species, T. orientalis, in the western Pacific near Japan

[28,29], and T. maccoyii (northern Australia-Indonesia; [30]).

Hydrographic data for these areas were retrieved from the

World Ocean Atlas database 2009 [31] which was accessed during

Nov. 2010 – July 2011 (http://www.nodc.noaa.gov/OC5/

WOD09/pr_wod09.html). We used raw historical oceanographic

profiles for temperature, salinity and dissolved oxygen taken by

different instruments at discrete depth over the period 1880–

present. A simple quality control and filtering procedure was then

applied to exclude spikes and nonsense data, and to include only

casts with (at least) temperature and salinity observations measured

together. To exclude nonsense data (wrong depth, unphysical

values, etc) specific casts showing extreme values were individually

checked for consistency. This procedure excluded on average

,3% of the data with the value for the Black Sea ,,1%.

We used in the analysis only data for the upper 150 m of

salinity, temperature, and oxygen concentration during the

months of peak spawning (Table 1). Measures of practical salinity

(psu) were converted into absolute salinity (g/kg) and in-situ density

profiles were calculated using the international thermodynamic

equation of seawater [32,33]. Oxygen data were extracted to

evaluate whether bluefin tuna eggs and larvae would encounter

low oxygen concentrations at depths of neutral buoyancy. The

profiles for each variable were plotted for all years to visualize their

shapes; a mean profile with 95% confidence limits was estimated

using General Additive Modelling as implemented in the MGCV

package of R software (www.r.org), and using depth as predictor

variable. The GAM analysis used a Gaussian log-link function and

lowess smoother [34,35]; degrees of freedom for smoothing were 8

for density and salinity profiles, and 4 for temperature and oxygen

profiles. The GAM analyses for this investigation were only

conducted to derive long-term mean profiles and confidence

limits, rather than developing best-fit models and identifying

sources of variation within and among areas.

Bluefin Tuna Spawning in the Black Sea
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Bluefin Tuna Egg Buoyancy Data
No study has yet measured the vertical distribution and in situ

buoyancy of bluefin tuna eggs in any of its spawning areas in the

world. However, ichthyoplankton sampling and capture of bluefin

tuna larvae in the Mediterranean Sea has been successful in the

upper 70 m [36], and upper 70–100 m [37]. Some limited

measurements of buoyancy of bluefin tuna eggs from maricultured

(caged) adults in the Mediterranean are available [38], and we

have used these in our analyses. However, due to the few

measurements of the specific gravity of bluefin tuna eggs in the

Mediterranean, we also use laboratory data for the related species

Pacific bluefin tuna T. orientalis [39] and assume as a first-order

approximation that the buoyancy of its eggs and larvae are

reasonably comparable to those of T. thynnus.

We then considered the depths at which bluefin tuna eggs might

be buoyant in the Black Sea. The depth of neutral buoyancy of a

fish egg generally is a complicated function of egg size, water and

dry matter content, external salinity during ovary development

and hence adult blood osmality, and the possibility that adults

have adapted to the local salinity conditions [23–25,40–43].

Generally however, after the egg has been fertilized, their densities

are relatively insensitive to salinity of external seawater [42,44,45].

In this case, it is possible to estimate the approximate depth

at which bluefin tuna eggs and larvae might have been neutrally

buoyant in the Black Sea during former spawning periods, if

Black Sea tuna produced eggs with similar buoyancies as bluefin

tuna in the Mediterranean Sea (e. g., near Cyprus or Sicily).

Furthermore given those depths, it is also possible to estimate

the ranges of temperature, salinity and oxygen concentration to

which the eggs would have been exposed, and the consequences

of that experience on successful egg fertilisation, development

and hatching. Those abiotic conditions can then be compared

Figure 1. Map showing spawning areas for bluefin tuna species throughout the world, as estimated from ichthyoplankton surveys
and gondal development of adults. Atlantic bluefin tuna T. thynnus: 1) Black Sea, 2) Levantin Sea, 3) Sicily Channel, 4) Tyrrhenian Sea, 5) Balearic
sea, 6) Gulf of Mexico; southern bluefin tuna T. maccoyii: 7) northern Australia - Indonesia; Pacific bluefin tuna T. orientalis: 8) Japan Sea. Latitude and
longitude coordinates for each area are available in Table 1.
doi:10.1371/journal.pone.0039998.g001

Table 1. Spawning times and areas for bluefin tuna species, T. thynnus, T. orientalis and T. macoyii, compiled from literature.

Region and species Time Reference Location

Black Sea; T. thynnus June-July [1,19] 44–45.6 N; 32.1–34 E;
44–45.33 N; 34–39.5 E

Balearic; T. thynnus June-July [1,126]; 38–41 N; 0–6 E

Levantine Sea, Cyprus; T. thynnus May-June [70,71] 35–37 N; 30.5–36 E

Sicily Channel; T. thynnus June-July [1] 35–38 N; 11–15.5 E

Tyrrhenian Sea; T. thynnus June-July [1] 38–40 N; 11–16 E

Gulf of Mexico; T. thynnus Mid-April-June [1,27] 24–28 N; 85–97.5 W

Western Pacific; T. orientalis April – June [28,29,127] 20–27 N; 122–130 E

Australia-Indonesia; T. macoyii September-April [30] 7–20 S; 102–124 E

doi:10.1371/journal.pone.0039998.t001

Bluefin Tuna Spawning in the Black Sea

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e39998



with the hydrographic conditions in other geographic areas and

with the ranges that bluefin tuna eggs and larvae need in order

to develop successfully. Alternatively, and assuming that bluefin

tuna did indeed spawn in the Black Sea, they may have

produced eggs with lower specific gravity than in other higher

salinity areas. Such eggs would have higher buoyancy in the

Black Sea and would allow them to float higher in the water

column. As will be shown below, fish species with geographic

ranges whose spawning sites include low salinity areas often

produce eggs which are more buoyant in low salinity areas than

in high salinity areas. These issues will be addressed further in

the Discussion.

Modelling the Vertical Transport of Bluefin Tuna Eggs in
the Black Sea

If there is a density difference between the eggs and the

surrounding water, the eggs will rise or sink until they reach a

depth at which they are neutrally buoyant. We estimated whether

eggs would remain in the oxygenated, warm part of the water

column of the Black Sea if they were spawned in the surface, and if

they had a density similar to those produced by Mediterranean

Sea bluefin tuna.

The vertical distribution of fish eggs and larvae can be described

by a transport equation which balances particles buoyancy and

vertical mixing [41,46,47]. Excluding the effects of mortality and

the velocity of the fluid, the concentration of bluefin tuna eggs (C)

in a mono-dimensional water column can be described as:

LC

Lt
z

L WCð Þ
Lz

~
L
Lz

Kz

LC

Lz

� �
ð1Þ

which expresses the rate of change of C as function of the

divergence of the eggs vertical flux [46]. The model is a two

parameter advection diffusion equation where the vertical velocity

(W) depends only on the buoyancy of the eggs while the diffusion

coefficient (Kz) is related to the vertical structure and mixing of the

water column.

Introducing moving coordinates the convective terms in Eq. 1

can be eliminated reducing it to a simple diffusion equation (e.g.

[48]). Assuming uniform and constant values for W and Kz and an

instantaneous particle release at z = z0, an analytical solution of

Eq. 1 can be obtained for an infinitive deep water column:

C z,tð Þ~ C0ffiffiffiffiffiffiffiffiffiffiffiffi
4pKzt
p exp {

z{z0{Wtð Þ2

4Kzt

" #
ð2Þ

The value of W depends on the balance between gravity and

drag forces around the sinking particle. Estimates of the terminal

velocity, W, are mainly provided by empirical relations of particles

size (S), density (rS) and shape [49] and depend on the

surrounding water density (rW) as well as the hydrodynamic

regime at which particles are exposed. Different expressions of W

have been suggested for different ranges of Reynolds number (Re):

Stokes formula W~
S2g rS{rWð Þ

18m
Rev0:5 ð3aÞ

Dallavalle formula W~
aS0 rS{rWð Þ2=3

m1=3
0:5vRev5 ð3bÞ

where Re = rW WS/m is the Reynolds number, m the dynamic

molecular viscosity (m= 1023 Pa s, at 20uC), g the gravitational

acceleration constant (g = 9.81 m s22) and a an empirical constant

(a= 0.08825). Combining Eq. 3a with Re = 0.5, the maximum

size (Smax) at which the Stokes formula holds can be derived:

S3
max~

9m2

rwg rs{rwð Þ ð4Þ

Then the corrected size to be used in Eq. 3b can also be defined as

S0 = S 2 0.4?Smax (e.g. [46]).

We conducted simulations using different combinations of egg

densities as reported in the literature and spawning depths.

Moreover, we used a mixed layer numerical ocean model [50] to

simulate the dispersion of negatively buoyant particles in a water

column with an initial density profile similar to that obtained for

the Black Sea (Figure S1). The vertically varying velocity W(z) is

dynamically calculated from Eq. 3b while the diffusivity, Kz(z), is

obtained from a k-e turbulence model [51] imposing a light wind

stress on surface (t= 1 N m22 ) and a minimum dissipation rate

e= 1028 m s23 (Figure S1). After 3 days of this wind, we released

50,000 numerical particles and followed them for a further 2 days

using a Lagrangian particle random walk algorithm [52]. For the

sake of generality we randomly released the particles between 0

and 10 m to account for a large range of bluefin tuna spawning

depths. We assumed that spawning depth (i. e., depth where eggs

were released from females) was located at a depth range whose

temperature and oxygen conditions were most likely to promote

egg fertilisation, development and hatching. Egg densities were the

mean and lower limits of measured ranges.

A final model simulation was a sensitivity analysis of the time

required for eggs of different densities to sink out of the upper

10 m of the water column. In this case we used both the long-term

average density profile in the Black Sea and a higher density

profile (1 standard deviation). This simulation was conducted to

estimate the range of densities that bluefin tuna eggs should have

in order to have high probability of remaining within a layer of

water with sufficient oxygen and temperature conditions for

successful development.

Evaluation of Among-population Variability in Egg
Density for Other Species

Many marine fish species have evolved to reproduce in

continental shelf regions and estuaries where salinities are much

lower than in fully marine conditions. To evaluate the range of egg

specific gravities among populations of different species, and thus

the possible range of adaptation to local salinities among those

populations, we compiled from the literature and compared egg

specific gravities for several other fish species which spawn

naturally over wide ranges of salinities (e. g., cod).

Egg densities were usually measured in a density water column

[53]. Eggs were usually obtained by stripping from spawning

females. Density measurements were most often performed on

fertilised eggs. Fertilisation was usually done at the local salinities

where adults were captured. In cases where density was measured

at several ages during egg development, we used only the

measurements during the first 1–2 days to avoid introducing

additional variability associated with ontogenetic changes in

density [39,54]. We included density measurements for unfertil-

ized eggs since densities of fertilized and unfertilized eggs are

similar during early stages of development [43,55].

Bluefin Tuna Spawning in the Black Sea
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In a second group of studies, authors conducted experiments to

investigate the influence of non-native salinity on egg density. One

type of experiment involved capture of adults and then transfer to

lower or higher salinity for several weeks, months or even 1–2

years while the ovaries developed. Eggs produced by the exposed

adults were then used for density measurements. A second type of

experiment involved capture of adults and fertilisation of eggs at a

range of salinities, including those which were typical and atypical

for the capture habitat. A third type of experimental study

involved collection of eggs at sea and their transfer onboard to

different salinities to estimate buoyancy responses; water of

different salinity was created by dilution with freshwater or

addition of sea salt.

A third group of studies which provided data to our study

involved ichthyoplankton sampling of eggs from the sea. Densities

of these eggs where then measured onboard in a density column.

The measured density of the eggs for a given population was

then compared with the salinities at which: i) the eggs were

fertilized, (ii) the adults were held during gonadal development, or

iii) the eggs were captured. Egg densities for all populations of a

species were plotted together vs. salinity for visual comparison. We

then evaluated in a meta-analysis the general hypothesis that

populations and species which spawn in waters of different

salinities produce eggs whose buoyancies are positively related to

local salinities. This hypothesis was evaluated using linear

regression of egg buoyancy vs. local salinity for all populations

and species. We conducted a second and similar meta-analysis of

egg buoyancy measurements made in nonlocal salinities; these

data were derived from experimental data involving transfer of

adults or eggs captured in situ to different salinities, or fertilisation

and/or subsequent incubation of eggs at nonlocal salinities. This

analysis evaluated the extent to which eggs retained the density

characteristics of local populations even when exposed to atypical

salinity (i. e., egg buoyancy is hypothesized to be independent of

the salinity experienced by transferred adults, or during fertilisa-

tion or incubation). Differences in slopes between the two egg

buoyancy vs. salinity regressions therefore indicate the extent to

which local populations retain their egg buoyancies when

confronted with nonlocal salinities, and thus how strongly egg

buoyancy can be considered to be a population-level trait.

The data we extracted from each study were group means for

individual sampling sites or experimental trials within studies. In

some cases, standard deviations or ranges of densities were given,

and these have also been extracted and plotted to illustrate the

variability in egg density within sites or treatments. The

corresponding salinities were usually given as averages and ranges;

in cases where eggs were sampled from the field and where salinity

profiles were given in the report, we extracted the mean or range

midpoint of salinities at the depths were eggs were collected. We

estimated some egg buoyancies from vertical distributions of eggs

within stratified water columns; in these cases we assumed that egg

vertical distributions were relatively unaffected by vertical mixing

processes and that mean sea water density for the depth range of

capture was indicative of the density of egg neutral buoyancy. In

some reports, egg vertical distributions could be extracted but no

hydrographic data were provided; in these cases, we searched the

literature for estimates of hydrographic conditions which could be

used to derive densities using seawater equations of state, or

extracted long-term mean density profiles from international

hydrographic databases (e. g, ICES, World Ocean Atlas) for the

season and location when/where eggs were captured.

The focus of this compilation was on the comparison of egg

densities for multiple populations within species and to support our

interpretation of possible adaptation to low salinity spawning in

the Black Sea by bluefin tuna. The compilation is therefore

indicative of biogeographic differences in egg buoyancies within

and among species, although there are many more egg buoyancy

data in the literature or which could be derived than are

represented in our dataset. For example, we excluded egg

buoyancy measurements for species where egg buoyancy data

were available for only one population in one hydrographic

situation, and egg buoyancy estimates from well-mixed regions (e.

g., tidal zones) because of the strong role that mixing would have

on egg distributions.

The entire database (Table S1) compiled from the literature is

available as an online Supplement spreadsheet file or from the

authors.

Results

Bluefin Tuna Reproduction in the Black Sea
Existing literature suggests that bluefin tuna reproduced in the

Black Sea [1,2] (Table 2). Bluefin tuna would migrate into this sea

in late spring-early summer to spawn and then emigrate again in

late summer and autumn. One purpose of the migration was for

feeding [1,2,21]. However the timing of the immigration and

emigration is also consistent with a spawning migration. This is

supported by some limited gonadal development data collected

when bluefin tuna entered and exited the Black Sea. Bluefin tuna

captured while immigrating to the Black Sea contained gonads

which were in a developing or near fully ripe state, whereas gonads

of bluefin tuna captured late in the year during emigration were

spent [1,21].

Early ichthyoplankton sampling captured bluefin tuna eggs and

larvae in the Black Sea during the 1930s-1950s [1,19,56–58]. Most

of these eggs were captured in the north-central part of the Black

Sea in July-August [19,56,58]. The sampling locations are not

described in detail in this literature but most sampling was done in

waters south of the Crimea peninsula as part of ichthyoplankton

sampling to describe spawning times for the entire fish community

and to identify species of fish which reproduced in this region.

Most sampling was done within 30–100 m of the shore although

some stations were located 10 nautical miles offshore [59]. It is

unknown whether ichthyoplankton sampling has been conducted

in this time period in the southern half of the Black Sea. Several

eggs captured at sea have been incubated until hatching and up to

8 days of larval life afterwards to confirm taxonomic assignment

[1,59]. The timing of the capture of the eggs corresponds to the

timing of immigration and emigration, and seasonal change in

gonadal development that has been reported from historical catch

data in the Sea of Marmara [1,21]. The sampling depths were

usually 0–3 m [19,59]; for example 5 eggs were captured in the

neuston (upper 1 m) in 1957 [19].

The sizes of eggs captured in the Black Sea were ca. 0.98–

1.10 mm (Figure S2), and mean size of the oil globule was

0.28 mm. Egg sizes of naturally spawning bluefin tuna in other

regions are not available for comparison. However, bluefin tuna

eggs collected from various sea-ranching operations in the

Mediterranean or Japan in which adults were fed artificial diets

and sometimes hormonally-stimulated to spawn produced eggs

which were somewhat smaller [60] or approximately the same size

[38,61].

The identification of eggs captured in the earlier studies has

been questioned by some later investigators [36,62]. An ichthyo-

plankton survey in the Black Sea for bluefin tuna eggs and larvae

in the early 1990s failed to capture any specimens; however by this

time, bluefin tuna had already disappeared from the region [4,5].

Bluefin Tuna Spawning in the Black Sea
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Geographical Comparison of Vertical Profiles of
Hydrographic Variables in Bluefin Tuna Spawning Areas

Vertical profiles of temperature, salinity, oxygen concentration

and density for the different areas where bluefin tuna spawn in the

global ocean show some difference among areas, and as expected

the Black Sea differs most (Figure 2; Figures S3, S4, S5, S6). In

most areas, temperature in the upper 30 m is ca. 23–26uC, salinity

is 36–38 g kg21, and dissolved oxygen concentration is 4–5 ml l21.

However regional differences are evident.

Temperatures in Mediterranean spawning habitats are ca. 3–

5uC lower in the upper 40–50 m than in the Gulf of Mexico, west

Pacific and Austral-Indonesian areas, notably reflecting the

latitudinal gradient from more temperate to more tropical areas.

Black Sea temperatures are the lowest among all bluefin tuna

spawning habitats. The vertical gradient of temperature was

greatest in the Black Sea, followed by Mediterranean sites and the

remaining sites. Notably, in the Black Sea, there is a strong decline

of temperature from ca. 23 to 12uC throughout the upper 40 m,

after which temperatures are nearly constant to 150 m.

Salinity conditions also differed among areas in a pattern

analogous to that seen for temperature. The Mediterranean (excl.

Black Sea) salinities as a group were all higher than other spawning

areas; differences were ca. 2–4 g kg21 depending on which areas

are compared. In all areas, salinity was homogeneous with depth.

The Black Sea salinity profile differed substantially and was much

lower (ca. 50% of salinities in other areas); its vertical shape also

differed because salinities gradually increased with increasing

depth (Figure 2, S2).

Due to the higher salinity in the Mediterranean areas (range

37.3–38.8 g kg21 compared with 35–36.5 g kg21 in other areas),

Mediterranean density profiles were also on average higher than

profiles from other areas. The Black Sea density profile differed

most from all other areas; the Black Sea density range is 1011.5–

1017 kg m23, whereas densities in all other areas are .1022 g

kg21 at all depths considered here. As the salinity profiles in all

these areas are nearly vertically homogeneous, vertical differences

in density are primarily due to thermal differences among regions.

Oxygen conditions at the surface (upper 5–10 m) in all areas

except the Black Sea were similar, but profiles through the water

column differed. Oxygen conditions increased with depth in the

Mediterranean and then decline, but generally remain higher by

1–2 ml l21 at all depths than concentrations in the other 3 areas.

The Black Sea oxygen profile differs greatly from all other areas.

Oxygen concentration in the Black Sea surface layer is highest

among all areas and increases down to ca. 60 m; concentrations

then decline and with depth until 125 m and reach hypoxic levels

(#2 ml l21).

As we are primarily interested in long-term conditions we

focussed on the mean shapes and magnitudes of the profiles.

However inter-annual and other sources (e. g., within-region

spatial) of variability is evident in the profiles. This variability is

seen in the 95% confidence limits provided for all profiles in all

regions in Supporting Information figures.

The density of Atlantic bluefin tuna T. thunnus eggs (Figure 3, 4)

spawned in captivity by adults from the northwest Mediterranean

Sea is 1017 kg m23 [38]. The variability or range of the reported

density was not reported, and no information about ontogenetic

changes in egg density was presented, nor was the stage of

development of the eggs used for density measurements stated.

The reported density is at the lower limit of the range of density

(1018–1020 kg m23) measured for eggs of Pacific bluefin tuna T.

orientalis in early stages of development [39], and produced by

adult Mediterranean bluefin tuna fed artificial diets in a sea-

ranching operation; as eggs approached hatching, density

increased to 1020–1028 kg m23. Densities of bluefin tuna eggs

captured in the upper 25 m of the Ionian Sea, Mediterranean Sea

[63] can be estimated to be 1026–1027 kg m23 (Figure 3, 4).

Modelled Vertical Distribution of Bluefin Tuna Eggs in the
Black Sea

Bluefin tuna eggs are typically S = 1 mm in diameter (e.g.

[60,64]) and measurements of specific gravity [38,39,65] provide

density estimates typically ranging between 1017 kg m23 and

1020 kg m23 (Figure 3); we initially use the range midpoint, rS

= 1019 kg m23 from the experimental measurements in simula-

tions, although field sampling suggests that bluefin tuna eggs from

the Mediterranean are much denser than this range [63]. Our

data on the summer water density of the Black Sea range between

rw = 1011–1017 kg m23 (Figure 2) yielding Smax between 0.5–

0.8 mm which indicates that Eq. 3b should be applied in this case.

Hence the terminal velocity relevant for sinking of bluefin tuna

eggs in the Black Sea is W = 1–3 mm s21.

Solving Eq. 2 for a single instantaneous release at z0 = 5 m in a

relatively low turbulent environment (Kz = 561024 m2 s21) and

with a conservative value of terminal velocity W = 1 mm s21 we

find that most of the eggs sink below 50 m after only 18 hours and

they reach the bottom (150 m) after 48 h (Figure 5). On the other

hand, at the lower end of egg density (rS = 1017 kg m23), the eggs

are neutrally buoyant at the depth of 150 m for the long-term

averaged profile (Figure S3), while they are neutrally buoyant at

Table 2. Summary of ichthyoplankton studies which have sampled bluefin tuna eggs in the Black Sea (no egg concentrations
were given in the studies).

Reference Area/region Sampling years
Depth range
of sampling Presence/absence

[56] Near Sevastopol 1933 Not stated Present

[57] Sampled near Karadag region (located on Crimea near
Simferopol’ and Yalta). Author states that results were similar
to those seen near Sevastapol and Novorossiisk so author
considered results from all 3 areas to be representative
for NE part of Black Sea.

Not stated Not stated present

[58] Northern Black Sea 1948–51 Not stated present

[1,59] NW Black Sea (Mys Meganom and
Cape Tarkhankut, Ukraine)

1957 0–1 m present

[62] Southern Black Sea 1993 0–120 m absent

doi:10.1371/journal.pone.0039998.t002
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115 m and 65 m when the 68% and 95% confidence intervals are

considered.

We tested unusual density conditions (using the mean +1 SD

density profile) and the effects on egg dispersion with a more

realistic numerical model, where wind mixing, turbulence

diffusion and egg buoyancy are directly estimated from first

principles (Figure 6). Using rS = 1019 kg m23, after 5 h, most

particles are distributed at 30–50 m and after 18 h at 90–110 m

while .55% accumulated at the bottom after 32 hours (Figure 6a).

There are no eggs suspended in the water column after 38 h or in

the first 10 m (the spawning interval depth) after 9 h.

Assuming egg density rS = 1017 kg m23, all the eggs sink from

the upper 10 m after 10 h and are distributed within a narrow

range at 120 m depth after 48 h (Figure 6b). Finally, assuming that

the variability (i. e., range) of density of Mediterranean bluefin

tuna eggs was similar to that for early-stage Pacific bluefin tuna

eggs (difference between minimum and maximum = 0.0025) and

that the mean is approximately the range midpoint, then an

estimate for the lower range of egg density for Mediterranean

bluefin tuna would be 1017–2.5/2 = 1015.7 kg m23. When eggs

having this density throughout ontogeny are released in the upper

10 m, all eggs sink out of the upper 10 m after 19 h (Figure 6c).

The sensitivity analysis of egg sinking time for different egg

densities showed that a large fraction of eggs with densities

#1012 kg m23 could remain within the upper 10 m of the water

column for sufficiently long period to hatch at local temperatures

(Figure 7). Eggs with slightly higher densities (1013 kg m23) might

also experience sufficient temperature in some years (given the

inter-annual variability in historical data; Figure S5), but eggs with

progressively higher densities will sink to depths where tempera-

tures and oxygen concentrations (Figures 3, S5, S6) would inhibit

development. However bluefin tuna eggs with such low densities

have not been reported, while densities in the range 1007–1010 kg

m23 have been measured [20] (Figure 7) and can be inferred from

depth-specific sampling of many other fish species spawning in the

Black Sea [66,67].

Among-population Variability in Egg Density for Other
Species

Egg density data were found for multiple populations of 16

species (Figure 3, 4). These data show two broad patterns. First,

densities of neutral buoyancy for eggs measured in ‘‘native’’ (local)

salinities for the population which provided the eggs (i. e., salinity

at fertilisation similar to the salinity usually experienced in nature

by the adults during gonadal and egg development) usually

increased with the salinity at fertilisation. This pattern is evident

for most species for which measurements from several populations

are available (e. g., cod, sprat, anchovy). For example, cod eggs

produced and fertilized in the eastern Baltic Sea (salinity range 7–

Figure 2. Long-term averaged vertical profiles of density, salinity, temperature and oxygen concentration in bluefin tuna spawning
habitats (Black Sea, Levantine Sea, south of Sicily, southern Tyrrhenian Sea, south of Balearic Islands, Gulf of Mexico, Japan,
northern Australia - Indonesia) during peak spawning periods (Table 1) in different regions. Data source [31]. Each line is a statistical fit
to 100s of data points using General Additive Models (Table S2). See all observed data with GAM fits and 95% confidence intervals in site-specific
vertical profiles for each variable in Supporting Information (Figures S3, S4, S5, S6).
doi:10.1371/journal.pone.0039998.g002
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Figure 3. Seawater density of neutral buoyancy for populations of 16 marine fish species inhabiting habitats with different
salinities, compared with the natural local salinity at fertilisation or capture. Fish eggs for most populations and species were obtained by
stripping eggs and fertilisation in the laboratory or onboard research vessels (denoted as lab-fertilised below) or were captured at sea in
ichthyoplankton surveys (denoted as field-captured below). One study [44] involved capture of live eggs and transfer to different salinities for
buoyancy measurements; numerical codes for these data are shown with a ‘‘T’’ in panels. Symbols represent different populations within following
species: Cynoscion nebulosus, spotted seatrout (lab-fertilised) [69]: 1– Matagorda Bay, Texas; 2– Upper Laguna Madre, Texas; Enchelyopus cimbrius,
fourbeard rockling (all eggs captured at sea): 1 = Baltic Sea, Gotland Basin [104], 2 = Baltic Sea, Kiel Bay (field-captured and transfered) [44], 3 =
Conception Bay, Newfoundland, Canada [105], 4 = Placentia Bay, Newfoundland, Canada [106] with hydrographic data from [107], 5 = Tracadie Bay
offshore, Gulf of St. Lawrence, Canada [108]; Engraulis encrasicolus, anchovy, (all eggs captured at sea): 1– Bay of Biscay [109,110]; 2– Black Sea
[20,111] with hydrographic data from [112], 3 - Gulf of Lyons [54]; 4– NW Africa-Morocco [113], 5– Po River plume, northern Adriatic Sea [114]; Gadus
morhua, cod: 1– Arcto-Norwegian cod: Lofoten (lab-fertilised) [25]; 2 - eastern Baltic (lab-fertilised) [24,26]; 3– Baltic Sea, Gotland Basin (lab-fertilised)
[25,26]); 4 and 4-T –Baltic Sea, Kiel Bay (field-captured and transferred) [44], 5– Baltic Sea, ICES SD 23 (lab-fertilised) [26], 6– Baltic Sea, ICES SD 24 (lab-
fertilised) [26], 7– Baltic Sea ICES SD 25 (lab-fertilised) [26], 9– Baltic Sea, ICES SD 26 (field-captured) [104], 10– Conception Bay, Newfoundland, Canada
(field-captured) [105], 11– Gulf of St. Lawrence, Canada (field-captured) [115], 12– Grand Banks, Newfoundland, Canada (field-fertilised) [116], 13–
Gullmarenfjord, Kattegat, western Sweden (lab-fertilised) [26], 14 - inshore Newfoundland, Canada (lab-fertilised) [116], 15– Norwegian coastal cod (lab-
fertilised) [23]; 16– Norwegian coastal cod, Helgeland, Norway (field-captured) [117], 17- Norwegian coastal cod, Øygården, Norway (field-captured)
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15 PSU) have lower densities of neutral buoyancy than cod eggs

from higher saline regions such as the Skagerrak, Norwegian fjords

or on Grand Bank, Newfoundland, Canada (Figure 3, 4).

Similarly, anchovy eggs captured at sea in different salinities

within a region (e. g., Bay of Biscay) and or across regions show an

increase in density of neutral buoyancy as salinity increases

(Figure 3, 4). Meta-analysis linear regression showed that density

of neutral buoyancy significantly increased with local salinity

(Figure 4) for all populations and species considered in this

analysis.

However a second pattern shows that if eggs from a given

population are fertilised at atypical (non-local) salinities or if adults

are transferred to non-local salinities for gonadal and egg

development, the eggs usually retain neutral buoyancy which is

nearly characteristic of their local salinity. For example, when cod

eggs from the eastern Baltic Sea (local salinity = ca. 7 PSU) were

fertilized and incubated at 15 or 35 PSU, their neutral buoyancies

were nearly the same as for eggs measured at 7 PSU (Figure 3, 4).

Similar and even more striking patterns are evident for Baltic

sprat, whose eggs retain a neutral buoyancy density typical for the

Baltic salinity range 7–15 PSU even when exposed to salinity

= 20–35 PSU (Figure 3, 4). In contrast, sprat eggs captured at sea

in fully marine conditions (English Channel; [68]) had a much

higher density of neutral buoyancy (Figure 3, 4). Moreover, sprat

eggs have been captured at sea in the upper 3 m of the Black Sea

water column [20], where salinity was probably ca. 18 PSU

(Figure 2); sprat egg density in the Black Sea was therefore also

considerably lower than in fully marine situations.

A large number of transfer experiments with Baltic flatfish

species (flounder, plaice, dab) show the adaptability of egg

buoyancy to local conditions [22,43]. For example, exposure of

Baltic adult flounder or plaice to higher salinities has relatively

little influence on density of neutral buoyancy for the eggs

(Figure 3, 4). Similarly, if flounder from a high salinity location (35

PSU) are exposed to lower salinities (15 or 5 PSU), the density of

neutral buoyancy still remains much higher than for eggs

produced by Baltic flounder at the same low salinities (Figure 4).

Spotted seatrout from two estuaries with different salinities also

showed similar patterns in transfer experiments [69]: the

population exposed to lower salinity still produced eggs of lower

density of neutral buoyancy than the population adapted to higher

salinity when both populations were exposed to high salinity

(Figure 3, 4). Lastly, exposure of sea-captured eggs in the western

Baltic Sea to nonlocal salinities [44] had relatively little influence

on egg buoyancy among four fish species (Figure 3).

Bluefin tuna egg buoyancies have only been measured at one

salinity (37 PSU) and there are few depth-stratified collections of

bluefin tuna eggs in the literature [63]; comparisons among

populations are therefore limited by data availability. However

Zaitsev’s (1959) collection of bluefin tuna eggs in the upper 1 m of

the Black Sea suggests high buoyancy; given the long-term mean

temperature and salinity measured there (22uC; 17.5 PSU;

Figure 3), these eggs would have had a neutral buoyancy of

1011 kg m23, and therefore been considerably more buoyant than

in other spawning areas (Figure 3, 4).

These results for individual species with multiple populations

are general across all species and populations considered. Meta-

analysis linear regression of the density of neutral buoyancy vs.

salinity for measurements conducted at nonlocal salinities showed

that egg density varied independently of the experimental salinity

(P = 0.14; Figure 4).

Discussion

A Comparative Climatology of Bluefin Tuna Spawning
Habitats around the World

This analysis and synthesis of hydrographic data includes all the

known spawning areas for bluefin tunas. However the full spatial

extent of spawning may perhaps not yet be known, as shown by

recent discoveries of new spawning areas. For example, the

spawning area for T. thynnus near Cyprus has only been confirmed

in the early 2000s [70,71]. More recent ichthyoplankton sampling

(2009) indicates that Atlantic bluefin tuna probably also spawns in

the western Carribbean Sea [72]. Moreover, data-storage tagging

studies indicate that some adult Atlantic bluefin tuna do not

occupy the known spawning areas at times of year corresponding

to known spawning times [73,74]. These observations suggest that

bluefin tuna might be using presently undocumented spawning

areas or times, or skipping spawning in some years [74]. In

addition, spawning areas used could perhaps change during the

lifetime of the species [71]. These observations indicate that the

full extent and fidelity of habitats presently and formerly occupied

by spawning bluefin tuna are still uncertain (at least for T. thynnus),

and that our knowledge of reproductive biology, including

hydrographic conditions experienced by eggs and larvae, in the

wild is incomplete.

[117], 18 - Norwegian coastal cod, Porsanger, Norway (field-captured) [117]; 19– Norwegian coastal cod, Tysfjord, Norway (field-captured) [117], 20–
Tracadie Bay offshore, Gulf of St. Lawrence, Canada (field-captured) [108]; Hippoglossoides platessoides, American plaice: 1– Conception Bay,
Newfoundland, Canada (field-captured) [105], 2 - Tracadie Bay offshore, Gulf of St. Lawrence, Canada (field-captured) [108], 3– Trinity Bay,
Newfoundland, Canada (field-captured) [118]; Limanda limanda, dab: 1– Baltic Sea, Kiel Bay (field-captured and transferred) [44] and (lab-fertilised) [40],
2– Baltic Sea, ICES SD 23 (lab-fertilised) [43], 3 Baltic Sea, ICES SD 24 (lab-fertilised) [43]; 4 - Baltic Sea, ICES SD 25 (lab-fertilised) [43]; 5– Bergen, Norway
(lab-fertilised) [40]; Platichthys flesus, flounder (all are lab-fertilised except eggs captured at sea at site 7): 1– Baltic Sea, ICES SD 23 [43], 2 - Baltic Sea, ICES
SD 24 [22,40,43], 3 - Baltic Sea, ICES SD 25 [43], 4 - Baltic Sea, ICES SD 28 [43], 5– Baltic Sea, Tvärminne, Finland [22,40,45]; 6 -Bergen,Norway [22,45]; 7 -
Black Sea [20] with temperature data from [6]; Pleuronectes platessa, European plaice: 1–Baltic Sea, Kiel Bay (field-captured and transferred) [44], 2- Baltic
Sea, ICES SD 24 (lab-fertilised) [22,43]; 3 - Baltic Sea, ICES SD 24–25 (lab-fertilised) [43], 4 - Baltic Sea, ICES SD 25 (lab-fertilised) [43]; 5- Bergen, Norway (lab-
fertilised) [22]; 6– North Sea, southern (field-captured) [119]; Pomatus saltatrix, bluefish (all are field-captured): 1– Black Sea [20,66] with temperature data
from [112], 2 = NW Africa, Morocco [120]; Sarda sarda, bonito: 1– Black Sea (field-captured) [20,121], 2 = NW Africa-Morocco (field-captured) [113], 3 =
NW Mediterranean-Spain (lab-fertilised in land-based tanks) [38]; Sardina pilchardus, sardine (all are field-captured): 1– Bay of Biscay [109]; 2– NW Africa,
Morocco [113]; 3 - Plymouth, UK [68]; Scomber scombrus, Atlantic mackerel: 1– Celtic Plateau (field captured and lab-fertilized) [53], 2– Conception Bay,
Newfoundland, Canada (field captured) [105], 3 - St. George’s Bay, so. Gulf of St. Lawrence, Canada (field captured) [122], 4– Tracadie Bay offshore, Gulf of
St. Lawrence, Canada (field captured) [108]; Sprattus sprattus, sprat: 1– Baltic Sea, Gotland Basin (field captured) [104], 2 - Baltic Sea, SD 25 (lab fertilised)
[84,92], 3 - Baltic Sea, ICES SD 25–28 [92], 4– Baltic Sea, SD 26 (field captured and lab fertilised) [92,104], 5– Black Sea (field captured) [20,67] with
temperature data from [112], 6– Plymouth, UK (field captured) [68]; Thunnus thynnus, Atlantic bluefin tuna and Thunnus orientalis, Pacific bluefin tuna: 1 -
unknown developmental stages of T. thynnus from the Black Sea caught in the upper 1 m of the water column [19], 2– northern Ionian Sea and Strait of
Messina, Mediterranean Sea [63] (field-captured) 3 - unknown developmental stages of T. thynnus from the northwest Mediterranean (lab-fertilized) [38];
1-ES and 1-LS – early and late-stages of T. orientalis eggs collected in in situ rearing cages in Japan [39]; Xiphias gladius, swordfish (all field captured): 1 -
Black Sea [89], 2– Ionian Sea and Strait of Messina, Mediterranean Sea ([63], 2– Mediterranean Sea, 3 - so. Tyrrhenian Sea [123], 4– Mediterranean Sea, NW
Aegean Sea [124], with hydrography data from [125].
doi:10.1371/journal.pone.0039998.g003
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Long-term mean hydrographic conditions in spawning areas are

one of many factors which shape population and species’ life

histories, including spawning and migration behaviour and

phenology. The results presented here show some systematic

differences among some of the areas. In the Mediterranean Sea

(excluding Black Sea), mean temperature, salinity, density and

oxygen profiles are nearly identical, and differences are generally

small. However as a group the Mediterranean conditions differ

from those in the Gulf of Mexico, the western Pacific (near Taiwan

and south Japan), and the waters between Australia and Indonesia.

As such, they may provide first-order baselines of mean

hydrographic conditions against which future changes due to for

Figure 4. Top panel: Density of neutral buoyancy of eggs from 16 species of fish in relation to the salinity of water during gonadal maturation, egg
fertilisation and egg incubation in local spawning areas. Solid line: linear regression model; dashed lines: 95% prediction limits. Regression statistics:
y = 0.0009*x+1.0029; R2

adj. = 0.87; P,0.0001; residual mean square error SDest = 0.0026; N = 336. Species codes: 1 = Cynoscion nebulosus spotted
seatrout, 2 = Enchelyopus cimbrius fourbeard rockling, 3 = Engraulis encrasicolus European anchovy, 4 = Gadus morhua cod, 5 = Hippoglossoides
platessoides American plaice, 6 = Limanda limanda dab, 7 = Platichthys flesus flounder, 8 = Pleuronectes platessa European plaice, 9 = Pomatus
saltatrix bluefish, 10 = Sarda sarda bonito, 11 = Sardina pilchardus sardine, 12 = Scomber scombrus Atlantic mackerel, 13 = Sprattus sprattus sprat,
14 = Thunnus orientalis Pacific bluefin tuna, 15 = Thunnus thynnus Atlantic bluefin tuna, 16 = Xiphias gladius swordfish. Bottom panel: same as top
panel, except that salinities were atypical of those in local spawning areas because adults were transferred to nonlocal salinities for gonadal
development, spawning and fertilisation, eggs were fertilised and/or incubated at nonlocal salinities, or eggs were captured at sea and then
transferred to nonlocal salinities for buoyancy measurements. The relationship is not statistically significant (P = 0.14; N = 99). Species codes (N = 7) as
above. Populations and data sources given in Figure 3 and Supplementary Table 1.
doi:10.1371/journal.pone.0039998.g004
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example climate change [27,28] could be evaluated for specific

populations or in a comparative manner across populations and

species.

The present profiles may also be useful when comparing some

key physiological rates, life history traits (e. g., spawning time,

migration behaviour) and genetic patterns among the species and

populations. This approach has been insightful for studies of the

macroecology of other fish species, notably small pelagic clupeids

(e. g., anchovy, sardine; [75,76]), and cod ([77,78]). In the case of

bluefin tuna, one might hypothesize that among-population

variations in reproductive and early developmental processes

could be related to the differences in hydrographic conditions at

spawning sites and nursery areas. Bluefin tuna sampled on

spawning areas in the Gulf of Mexico and Mediterranean Sea

during spawning time differ genetically [14]. Moreover tagging

and otolith microchemistry data of adult bluefin tuna across

several years suggest exclusive spawning site preference. Indeed

individuals visiting the Gulf of Mexico (or Mediterranean)

spawning areas during known spawning periods have never been

observed visiting Mediterrenean (or Gulf of Mexico) areas during

the same period in other years [79–81]. The modest difference in

hydrographic conditions between these areas may have contrib-

uted to the evolution of such differences. There are also genetic

differences among populations within the Mediterranean Sea [15],

where hydrographic conditions among known spawning areas are

smaller than those between the Mediterranean and the Gulf of

Mexico. Hence processes and mechanisms in addition to abiotic

conditions at spawning sites also likely contribute to the local

structuring of bluefin tuna populations (e. g., food and predator

abundances; advective processes).

Given these profiles, the salinity and thermal conditions for

reproduction in the Black Sea (Figure 2) appear initially to be

restrictive for bluefin tuna in this system. Salinities are ca. 50%

lower than in other spawning areas and could be too restrictive for

successful fertilisation and development of eggs. However, other

Figure 5. Analytical solution of the distribution of sinking
bluefin tuna eggs in the Black Sea over time (0–48h). Particles
have been released at time t0 and depth z0 = 5 m with an initial
concentration C0 and terminal velocity W = 1 mm s21, corresponding
to egg density = 1019 kg m23.
doi:10.1371/journal.pone.0039998.g005

Figure 6. Simulated vertical distribution of bluefin tuna eggs at
different times and specific gravities under modest wind-
induced mixing. Panels from top to bottom represent simulations for
egg densities rS = 1019, 1017 and 1015.7 kg m23. Particle concentra-
tion calculated from the average number of particles passing the
numerical box of 1 m side between two time steps (dt = 60 seconds).
doi:10.1371/journal.pone.0039998.g006
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marine fish species spawn and reproduce successfully in estuarine

regions [24,26,45,82,83] so we cannot presently exclude the

possibility that bluefin tuna could do (or did) the same. This issue is

discussed in a following section.

Regarding temperature, bluefin tuna eggs require 19–20uC to

develop and hatch in the laboratory [38]. Temperatures in the

upper 20–30 m layer of the Black Sea often reached and exceeded

this range (Figure S5), which would be warm enough to allow

many bluefin tuna eggs to develop and hatch. However, average

temperature conditions in the Black Sea decrease more sharply

with depth than in other areas where bluefin tuna are known to

spawn: mean temperature at 5 m depth is already below 20uC in

the Black Sea (Figure 2). Nevertheless, the presence of variability

suggests that in some years and places within this region there is

likely sufficiently warm conditions for the eggs to develop and

hatch successfully. Moreover some bluefin tuna used to spawn in

August in the Black Sea [1], and conditions at this time were likely

warmer than in June. Had (or if) there are still bluefin tuna

spawning in the Black Sea, new experimental studies could

(should) be conducted to evaluate the thermal and salinity

requirements for egg fertilisation and development.

Our perception of the spawning area in the Black Sea is limited

by fragmentary descriptions of the sampling locations for eggs and

larvae, and is constrained to where eggs have been captured by

ichthyoplankton surveys. These surveys have mostly been

conducted in the northern area near Crimea, until a survey in

the 1990s was conducted in the south-central region; however by

this time, the population had disappeared. The true extent of

where bluefin tuna used to spawn in the Black Sea is unknown. It

is probable that other (southern) areas of the Black Sea are warmer

than areas considered here, and possible that bluefin tuna may

have spawned in those locations. Consequently our hydrographic

representation of bluefin tuna spawning habitat in the Black Sea is

perhaps an underestimate due to limited sampling and knowledge

of spawning locations.

Density Constraints on Reproduction of Bluefin Tuna in
the Black Sea

Our analyses and comparisons show that bluefin tuna from the

Mediterranean Sea are unlikely to produce eggs which could

remain buoyant in the upper layers of the Black Sea where

temperature and oxygen conditions are suitable for successful egg

development. Eggs produced by these spawners, as well as by a

closely-related species T. orientalis, are too dense relative to the

hydrographic conditions of the Black Sea to remain within the

warm, oxygenated surface layer. Our modelling exercise showed

that such eggs would sink into cold anoxic waters within 5–10

hours. This time period is shorter than the expected egg

development time (24–40 hours [38,61] estimated for 21–27uC).

If sinking time was sufficiently slow, the newly hatched larvae

might be able to swim up to surface layers and avoid detrimental

conditions at depth. Hatch success of bluefin tuna eggs decreases

strongly at temperatures ,20uC and .29uC [38,61]. Tempera-

tures which allow bluefin tuna eggs to hatch in the Black Sea are

only found in the upper 10–20 m (Figure 2, S5). Sinking of bluefin

tuna eggs to colder water would therefore delay and probably

Figure 7. Time after which no bluefin tuna eggs remain in the upper 10 m of the numerical domain vs. egg density. For densities rS

#1012 kg m23 some eggs can remain within the upper 10 m during 48 h, even under modest wind-induced mixing. The proportion of eggs
remaining is linearly scaled to symbol size for the black circles; white circles indicate 0% of eggs remaining in upper 10 m. Solid and dashed lines
represent simulations assuming long-term mean and mean +1 SD of density profile as estimated by GAM of World Ocean Atlas data. The solid and
dashed lines for densities rS #1012 kg m23 are shown plotted at 4822 and 48+2 hours for clarity. Horizontal bars below figure indicate ranges of
measured buoyancies of fish eggs in the Black Sea [20] and for bluefin tuna eggs in the Mediterranean Sea and near Japan.
doi:10.1371/journal.pone.0039998.g007
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prevent development. Moreover sinking of eggs to depths .50–

60 m would expose the eggs to oxygen concentrations ,2–3 ml

l21. Given that bluefin tuna eggs in other areas occupy surface

oxygen-rich areas, it is most likely that oxygen concentrations

,3 ml l21 will also inhibit normal development and hatch success.

Consequently the contemporary Black Sea is unlikely to be a

suitable habitat for most bluefin tuna eggs from the Mediterranean

Sea.

Alternatively, one could hypothesize that the bluefin tuna

population which may have spawned in the Black Sea produced

eggs which were adapted to the specific conditions of this

ecosystem, including having a density of neutral buoyancy which

was sufficiently low to maintain the eggs in the warm, oxic layer at

the surface. Such an adaptation would allow eggs to experience

temperature and oxygen conditions comparable to those in other

bluefin tuna spawning areas throughout the world. Notably bluefin

tuna eggs have been captured in the upper 1 m of the Black Sea

[19]. These eggs must have been considerably more buoyant than

eggs of contemporary bluefin tuna spawning in the Mediterranean

Sea (Figure 4 and Figure 7).

There is another possibility which could explain the presence of

bluefin tuna eggs in the Black Sea. As suggested by one of our

reviewers, Black Sea spawners could possibly have been a ‘‘sink’’

population from the Mediterranean, and produced eggs there

without successful fertilisation and/or development. These eggs

could potentially have been captured by ichthyoplankton sampling

before sinking from the upper layer of the water column. We

cannot exclude this possibility of ‘‘sink spawning’’ although given

the rapid egg development time and sinking time (if not adapted to

local hydrographic conditions), we suspect that such captures

would have been unlikely.

Many other marine fish species which spawn in estuarine

ecosystems produce buoyant eggs to enable flotation in lower

density habitats (Figure 3, 4); moreover, reciprocal transfer

experiments and other experiments where eggs are exposed to a

wide range of non-local salinities shows that this ability is a

population-level trait [24,26,40,43,45,82,84]. Indeed, meta-anal-

ysis showed that egg density in such experiments varied

independently of the experimental salinity treatment, whereas

egg densities measured at typical, local salinities were strongly

correlated with those local salinities. Egg characteristics which

promote higher buoyancy in estuarine habitats include increased

water content, larger size, lower dry weight, and thinner chorions

with fewer lammellae [24,25,40,43]. Experimental observations

demonstrate that these traits are partly under osmotic responses

but also have a population-level (adaptive) contribution. Moreover

estuarine spawning populations have other reproductive adapta-

tions for successful reproduction in these environments; these

adaptations include fertilisation of eggs by sperm and egg

development at lower salinities [83,85,86]. Successful spawning

and reproduction by bluefin tuna would require similar adapta-

tions.

Such adaptations are probably genetically based, although no

study has yet to our knowledge identified the specific genes which

might be responsible for these adaptations. Nevertheless, there is

evidence that populations of several other marine fish species

representing different taxa which spawn across wide salinity

gradients are genetically distinct. For example, the physiological

adaptations of cod reproduction in the eastern Baltic Sea

[25,26,83,85–87] where bottom salinity is 10–15 PSU may be

associated with true genetic adaptations. Cod in the eastern Baltic

Sea are sufficiently genetically different from other cod popula-

tions in the north Atlantic that the level of genetic variability from

the North Sea through the Danish straits into the eastern Baltic

Sea (a distance of only 600–800 km) is greater than the genetic

variability throughout most of the entire latitudinal range in the

northeast Atlantic [88]. This genetic adaptation must have

occurred rapidly (in evolutionary terms) because cod are only

believed to have invaded the Baltic Sea since the last glaciation ca.

10–15,000 years ago. Similar levels of genetic variability associated

with the strong salinity gradient through the Danish straits have

been documented for several other marine fish species (sprat,

turbot, herring, flounder; [12]), several of which also produce eggs

with density characteristics adapted for the estuarine conditions of

the Baltic Sea.

There is evidence therefore from many other fish species across

different taxa (e. g., Gadidae, Clupeidae, Pleuronectidae) that local

populations can produce eggs whose specific gravities are adapted

to local hydrographic conditions. Moreover, ichthyoplankton data

show that other scombrid species (e. g., bonito Sarda sarda and

Atlantic mackerel Scomber scombrus) and another large highly

migratory top predator fish species (swordfish Xiphias gladius) also

spawn in the Black Sea [67,89,90]. Given this comparative

biogeographic evidence, we suspect therefore that at least some of

the bluefin tuna which used to spawn in the Black Sea also were

locally adapted to its particular hydrographic circumstances. The

collection of eggs attributed as T. thynnus in this region and in the

upper meters of the water column suggests that some bluefin tuna

possessed these adaptations.

We also investigated the relative sizes of bluefin tuna eggs

produced in habitats with different salinities. As is shown in the

literature, estuarine-spawning populations usually produce larger

eggs with higher water content than marine-spawning populations.

The data available for bluefin tuna to evaluate this hypothesis are

fragmentary and partly based on hormonally-induced spawning of

adults fed artificial diets. It is unknown whether such treatment

might affect buoyancy or sizes of eggs, if at all. Nevertheless, eggs

collected in the Black Sea were among the largest of those which

have been measured to date, although there is some overlap

among measurements from different regions and populations. The

egg size based evidence is therefore inconclusive, although not

contradictory to the hypothesis that egg size was larger in the

Black Sea than other areas.

Recovery Possibilities for Black Sea Bluefin Tuna
As described in the literature, bluefin tuna have migrated to the

Black Sea for millennia, but have recently disappeared [1,3,91]. If

it indeed is true that spawning occurred there, and that the

spawning was successful (i. e., capable of producing offspring that

themselves survived to become new spawners), then we must

assume that the population was adapted to produce eggs and

larvae in that environment. This adaptation could have (1) been

buoyancy – related (as is the case in estuarine spawning

populations of many other marine species), (2) involved adaptation

of the physiological requirements for temperature, salinity and

oxygen concentration for egg and larval development, or (3) a

combination of both types of adaptation. We note that even if the

former Black Sea spawners could produce eggs whose buoyancy

enabled them to float in warm oxic water, the eggs would have to

be fertilized and develop at much lower salinities than in the

Mediterranean Sea. However such adaptation may also have been

possible because many other marine fish species have populations

which can reproduce successfully in estuarine environments whose

salinities are ca. 50–70% lower than in marine habitats

[24,40,43,92].

The recent demise of the Black Sea population component

therefore probably represents a loss of intra-specific diversity, at

least at the phenotypic level, and probably also at the genotypic
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level. Recent studies have highlighted the importance of popula-

tion-level diversity in life histories and traits to sustain exploited

populations, particularly under climate change and high levels of

exploitation [16–18]. Loss of individual populations with locally-

adapted traits (e. g., reproductive biology) increases the vulnera-

bility of the species as a whole to further decline and possible

extinction [9,10]. The presence of distinct populations with

different life histories and local adaptations is considered to

increase species productivity and resilience to detrimental pertur-

bations [18,93].

In this study, we have developed from a comparative analysis of

reproductive strategies in widely-spawning fish species and of

oceanographic conditions, an hypothesis of the (former) existence

of a locally-adapted Black Sea population. Should this hypothesis

be correct, then spawning in the Black Sea by vagrant [9] bluefin

tuna (i. e., those born in high-salinity areas) will not likely soon lead

to recovery of a Black Sea population component, unless a

substantial portion of their eggs can tolerate and be fertilized in

low salinities and are sufficiently buoyant to avoid the deep, cold,

low-oxygen layers of the Black Sea. As a result, the best chances

for recovery of the Black Sea population are reproduction by

locally-adapted individuals, if any of those are still remaining

undetected. However, if this population has indeed been

extirpated, another though admittedly slow recovery option is to

continue and strengthen efforts to rebuild the populations which

inhabit the Mediterranean Sea. These populations, which are

managed collectively as part of the northeast Atlantic-Mediterra-

nean stock, have declined in recent decades [94–96], but a larger

population can via density-dependent processes be expected to

increase the chances that vagrants could (re-)establish new

spawning areas [9,17], including in the Black Sea. This process

could happen if Mediterranean abundances increased to levels

which stimulated individuals to explore new territories for

spawning and feeding. However we emphasize that reproductive

success by any existing vagrant Mediterranean bluefin tuna in the

Black Sea will not likely initially be high – reproductive success will

probably require adaptation to the local conditions in this region.

Recovery via this process will therefore be slow and require many

generations.

Despite the apparent captures of eggs and larvae of bluefin

tuna in the Black Sea, there has been some doubt expressed

whether bluefin tuna ever did spawn in this region [62]. Bluefin

tuna eggs are difficult to identify and distinguish from eggs of

other species [1]. However the ichthyoplankton sampling and

studies summarized here and in [1] were all part of extensive

taxonomic descriptions of eggs and larvae in the region, and

often included detailed descriptions of the eggs and larvae of

many species. This suggests that the identifications were done by

experts. In addition, we have shown using evidence from a wide

variety of other marine species that it is common for such species

to reproduce successfully in estuarine environments. We suspect

that bluefin tuna may also have been such a species, but cannot

eliminate the possibility of misidentification of earlier samplings.

If spawning could definitively be confirmed or refuted (e. g.,

possibly through genetic analysis of existing eggs in collections, if

any exist), then our ideas and hypotheses discussed here could

also be confirmed or refuted.

If, alternatively, the migration to the Black Sea was for feeding,

then a recovery or reappearance might occur sooner. Such a

reappearance could occur if former feeding migration behaviours

were re-established via for example exploratory (straying) foragers

and social trans-generational learning of productive foraging areas

by age and size-groups presently existing within the Mediterra-

nean populations [17,97]. These behaviours could be promoted

both by recovery of the Mediterranean populations, which would

motivate density-dependent exploration and discovery of new

feeding habitats [17,97,98], and by recovery and maintenance of

large forage fish populations within the Black Sea. Consequently

management actions that could promote recovery in the Black Sea

would be reduced exploitation of bluefin tuna throughout the

Mediterranean and especially in the Aegean Sea-Sea of Marmara

through which bluefin tuna must pass on the way to the Black Sea.

While the focus of this study is on the Black Sea and its tuna

population, the study could be a precedent for what could happen

to other species with locally adapted heavily exploited populations

in estuarine situations. As noted earlier the eastern Baltic cod is

adapted for reproduction in the low salinity conditions of the Baltic

Sea; as with bluefin tuna in the Black Sea, its loss would not

quickly be compensated by immigrants from neighboring higher

saline waters like the Kattegat or North Sea because of population-

specific differences in egg buoyancies and salinity tolerances

[24,26,99].

Roles of Eutrophication and Future Climate Change
Some of the problems associated with marine species spawning

in the Black Sea could perhaps be related to the anoxic conditions

in deeper layers where eggs and larvae might be neutrally buoyant.

However this may not be the case for bluefin tuna. If bluefin tuna

eggs were distributed in the upper few metres of the water column

then they would experience high oxygen concentrations (Figure 2;

S6). Oxygen conditions remain high, and comparable to those in

other bluefin tuna spawning habitats around the world at least to

60 m depth, so even if the eggs were neutrally buoyant at such

depths they should probably develop and hatch at rates

independent of local oxygen concentrations. Indeed the more

critical variables for egg survival in the Black Sea would appear to

be temperature and salinity, given the limited knowledge of

tolerances to these variables in the literature.

In this context, it is relevant to consider how future climate

change might affect a possible recovery of spawning by bluefin

tuna in the Black Sea. Although there are presently no local

climate change projections for this ecosystem [100], a rise in

temperature similar to that expected globally (ca. 2–4uC; [101])

and a regional decrease in precipitation or runoff should be

beneficial for bluefin tuna spawning success in the Black Sea.

Higher temperatures would benefit development rates and hatch

success, whereas a reduction in precipitation might increase

salinity and water column density. However, a full examination of

the consequences of these impacts on a potential resumption of

spawning by bluefin tuna in the Black Sea requires a climate

change impact assessment for the region as well as new knowledge

of bluefin tuna reproductive biology and early life history.

Knowledge Gaps
While conducting our investigation, we became aware of several

key knowledge gaps which if filled would help confirm or refute

our ideas. Most fundamental would be a taxonomic and/or

genetic re-analysis of any preserved eggs that may still be

remaining in samples from the earlier collections to confirm or

correct the previous identifications. New genetic technologies

could resolve the issue with certainty, possibly even if samples are

preserved in pH-buffered formalin [102]. A second major gap is

knowledge of the buoyancy of eggs and larvae of Mediterranean

T. thynnus in the laboratory and field. New and more extensive

measurements would reveal part of the variability in buoyancy

which could be the basis on which natural selection could act to

regenerate a Black Sea spawning population. New experiments

and field studies should be conducted to quantify the physiological
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thresholds of temperature, salinity and oxygen concentration

which allow Mediterranean bluefin tuna eggs and larvae to be

fertilized and develop successfully, and how these rates change

with variations in female characteristics (size, age) and throughout

the spawning season. These measurements would also be useful

inputs not only for the kinds of analyses considered here, but also

climate change impact studies and advanced coupled bio-physical

modelling studies of early life history [28,29,103].

Conclusions
We have used comparative approaches both within the bluefin

tuna species and with other marine fish species which spawn across

large salinity gradients to help understand the demise and

historical ecology of bluefin tuna in the Black Sea. If there was a

local successfully- reproducing population, it must have been

adapted to the specific hydrographic conditions in this region.

Mediterranean bluefin tuna could not likely produce eggs which

could be fertilized and survive in the Black Sea without local

adaptation, although we caution that the full plasticity of egg

physiological responses to key abiotic variables has not been fully

investigated and might allow survival. Evidence from many other

species demonstrates the ecological potential for adaptation by

marine fish species for spawning in estuarine habitats; given these

other examples, it is possible that bluefin tuna may also have been

adapted to spawn in such a habitat. This possibility is supported by

several ichthyoplankton surveys which reportedly captured bluefin

tuna eggs at times of year and at depths which would promote egg

and larval survival. If locally – adapted Black Sea bluefin tuna

spawners no longer exist, their recovery via evolutionary and

natural selection processes will take many generations, based on

vagrants from Mediterranean populations. Such vagrants may also

lead to recovery in the Black Sea via re-establishment of former

feeding migration behaviours. Notably, both mechanisms for

reappearance of bluefin tuna in the Black Sea would occur faster if

Mediterranean populations were larger.

Supporting Information

Figure S1 a) Profiles for the long term and upper value density

(st = density in kg m23–1000) and (b) diffusivity (m s-2) profile at

the beginning of the simulation and after 3 and 5 days. Note that

numerical particles representing bluefin tuna eggs have been

released at t0 = 3 days when the upper layers (,15 m depth) are

well mixed due to the applied wind stress.

(TIF)

Figure S2 Mean and range of diameters of bluefin tuna
eggs from different geographic areas. All eggs except those

from the Black Sea were obtained from females held under semi-

natural conditions. Data from the Tyrrhenian Sea are mean 6

standard error instead of range. Data sources: [38,56,58,60,61].

(TIF)

Figure S3 Vertical profiles of density (st = density in kg
m23–1000) in spawning areas for bluefin tunas around
the world. Solid and dashed lines are based on statistical fits

using General Additive Modelling. Dots are observed data. See

Table 1 for latitude – longitude coordinates and spawning times.

(TIF)

Figure S4 Vertical profiles of salinity (absolute salinity
g kg21) in spawning areas for bluefin tunas around the
world. Solid and dashed lines are based on statistical fits using

General Additive Modelling. Dots are observed data. See Table 1

for latitude – longitude coordinates and spawning times.

(TIF)

Figure S5 Vertical profiles of temperature (6C) in
spawning areas for bluefin tunas around the world.
Solid and dashed lines are based on statistical fits using General

Additive Modelling. Dots are observed data. See Table 1 for

latitude – longitude coordinates and spawning times.

(TIF)

Figure S6 Vertical profiles of oxygen concentration (ml
l21) in spawning areas for bluefin tunas around the
world. Solid and dashed lines are based on statistical fits using

General Additive Modelling. Dots are observed data. See Table 1

for latitude – longitude coordinates and spawning times.

(TIF)

Table S1 Buoyancy of fish eggs measured in the field
and in laboratory experiments for different species and
populations within species as compiled from literature
sources. The table contains data for species with observations at

multiple salinity levels. See main text for further details regarding

data extraction and compilation. (Table available as spreadsheet

from journal website.)

(XLSX)

Table S2 Datasets used in statistical analyses and
results of General Additive Modelling (GAM) of vertical
distributions of temperature, salinity, density and
oxygen concentration vs. depth in spawning areas of
bluefin tunas in the global ocean. All GAMs are statistically

significant at P,0.0001. Abbreviations: N = sample size (number

of years), Expl. Dev. = explained deviance, GCV = Generalized

cross-validation statistic, EDF = estimated degrees of freedom.

(DOCX)
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