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Abstract

Background: Of antigen-presenting cells (APCs) expressing HLA-DQ molecules in the celiac disease (CD) lesion, CD11c+

dendritic cells (DCs) co-expressing the monocyte marker CD14 are increased, whereas other DC subsets (CD1c+ or CD103+)
and CD163+CD11c2 macrophages are all decreased. It is unclear whether these changes result from chronic inflammation or
whether they represent early events in the gluten response. We have addressed this in a model of in vivo gluten challenge.

Methods: Treated HLA-DQ2+ CD patients (n = 12) and HLA-DQ2+ gluten-sensitive control subjects (n = 12) on a gluten-free
diet (GFD) were orally challenged with gluten for three days. Duodenal biopsies obtained before and after gluten challenge
were subjected to immunohistochemistry. Single cell digests of duodenal biopsies from healthy controls (n = 4), treated CD
(n = 3) and untreated CD (n = 3) patients were analyzed by flow cytometry.

Results: In treated CD patients, the gluten challenge increased the density of CD14+CD11c+ DCs, whereas the density of
CD103+CD11c+ DCs and CD163+CD11c2 macrophages decreased, and the density of CD1c+CD11c+ DCs remained
unchanged. Most CD14+CD11c+ DCs co-expressed CCR2. The density of neutrophils also increased in the challenged
mucosa, but in most patients no architectural changes or increase of CD3+ intraepithelial lymphocytes (IELs) were found. In
control tissue no significant changes were observed.

Conclusions: Rapid accumulation of CD14+CD11c+ DCs is specific to CD and precedes changes in mucosal architecture,
indicating that this DC subset may be directly involved in the immunopathology of the disease. The expression of CCR2 and
CD14 on the accumulating CD11c+ DCs indicates that these cells are newly recruited monocytes.
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Introduction

Celiac disease (CD) is a chronic small intestinal inflammatory

condition caused by an inappropriate immune response to gluten

proteins of wheat, rye and barley. The condition is common with a

prevalence of about 1%. There is a strong association of CD with

certain HLA alleles. The majority of patients carry HLA-DQ2.5

(80–95%) whereas most of the remaining patients carry HLA-

DQ8 [1,2]. The histopathology of CD is characterized by villous

blunting, crypt hyperplasia and increased number of CD3+

intraepithelial lymphocytes (IELs) [3]. The current treatment for

CD is lifelong gluten-free diet (GFD).

Gluten-reactive T cells in the gut appear to play a central role in

the immunopathogenesis of CD, but how and where these T cells

get activated by interaction with antigen-presenting cells (APCs)

fronting them with gluten antigen are not well understood. The

priming of naı̈ve T cells is likely to take place in organized

lymphoid tissue whereas activation of effector T cells probably

takes place in the gut mucosa. In a previous study we found that

duodenal lamina propria HLA-DQ+ APCs could be divided into

CD11c+ dendritic cells (DCs) and CD68+CD11c2 macrophages

and that gluten challenged CD11c+ DCs isolated from celiac

lesions more efficiently activated gluten-reactive T cells than their

macrophage counterparts [4]. More recently we further subclas-

sified the CD11c+ DC population into cells expressing either

CD103, CD1c or CD163. Co-staining experiments showed that

CD68+ and CD163+ cells were completely overlapping popula-

tions. CD103+ and CD1c+ DCs were partly overlapping
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populations, whereas the majority of CD11c+CD163+ DCs co-

expressed the monocyte marker CD14, suggesting that they were

derived from monocytes. Furthermore, we observed that the

density of CD14+CD11c+ DCs was increased while the density of

CD103+ DCs, CD1c+ DCs and CD163+CD11c2 macrophages

was decreased in the active celiac lesion [5]. The differences

between untreated CD patients and healthy controls with respect

to mucosal APC populations suggest dynamic regulation of these

populations, but little is known about the kinetics of these changes

in relation to gluten exposure.

To address this issue we used a unique in vivo model in which the

density of mucosal APC subsets of treated CD patients and gluten-

sensitive control subjects where determined before and after a

three-day gluten challenge. We show that there are rapid dynamic

changes in the APC populations in the challenged duodenal

mucosa of CD patients, but not in gluten-sensitive controls.

Materials and Methods

Ethics statement
The study was approved by the Regional Committee for

Medical Research Ethics in South-East Norway and the Privacy

Ombudsman for Research at Oslo University Hospital –

Rikshospitalet (Oslo, Norway), and it is registered at http://

clinicaltrials.gov/ct2/results?term=NCT01100099. The study

complies with the Declaration of Helsinki. All the participants

gave their written informed consent.

Subjects
We studied CD patients (n = 12; mean age 51 years, range 37–

65, 7 females) and gluten-sensitive control subjects (n = 12; mean

age 45 years, range 29–65, 12 females) who all were HLA-DQ2+.

The subjects have been described in detail elsewhere [6]. Twelve

CD patients, diagnosed on the basis of typical histopathological

changes in duodenal mucosa [7] and from whom we had

cryopreserved biopsies available, as well as twelve randomly

selected gluten-sensitive control subjects were included. Both the

CD patients and the gluten-sensitive control subjects had been on

a strict GFD for at least 4 weeks prior to the study. The gluten-

sensitive participants had initiated their GFD without being

examined for CD by gastroendoscopy. Three had negative IgA

TG2 serology before commencing the GFD and nine had

unknown serology. Most of these subjects had experienced

symptoms, like abdominal discomfort and/or diarrhea, on a

gluten containing diet, and the symptoms improved on dietary

gluten elimination. All participants were challenged orally with

four slices (,160 g) of gluten-containing white bread every day for

three days. Duodenal biopsy specimens were obtained before

challenge and at day four. During the gluten challenge, symptoms

like bloating, diarrhea, constipation and satiety were observed in

six of twelve CD patients and in seven of twelve gluten-sensitive

control subjects. There were only four CD patients who

experienced histological changes after challenge; two patients

changed from Marsh 1 to 3a, one patient changed from Marsh 2

to 3a, and one patient changed from Marsh 0 to 3b. One patient

was unchanged Marsh 3a, whereas the seven other patients were

unchanged Marsh 0. Thus, there were no statistically significant

changes in Marsh grade after a three-day gluten challenge

amongst the CD patients. Biopsies from gluten-sensitive control

subjects were scored as Marsh 0 both before and after challenge in

all cases. The gluten-sensitive subjects were included as controls

because they adhered to a GFD and were willing to undergo a

gluten challenge. These subjects are highly unlikely to suffer from

CD as they did not react with appearances of HLA-DQ2-gluten

tetramer positive CD4+ T cells in the peripheral blood after the

gluten challenge [6].

In addition to the material obtained from individuals of the

challenge study, duodenal biopsies were obtained from three

treated CD and three untreated CD patients as well as from four

patients with normal histology who were examined with gastro-

endoscopy as part of the routine diagnostic workup. Blood samples

were also obtained from two treated CD patients who were not

challenged with gluten. These subjects were included due to

limited material available from the participants of the challenge

study. Finally, CD14+ monocytes were isolated from buffy coats

obtained from two HLA-DQ2+ healthy individuals.

Multicolor immunofluorescence staining
Two biopsy specimens from each subject were oriented on thin

slices of carrot, embedded in Tissue Tek optimal cutting

temperature (O.C.T.) compound, snap frozen ‘‘bed-side’’ in liquid

nitrogen and stored at 270uC. H+E stained sections of both

specimens were evaluated and cryosections of the best oriented

tissue sample were cut in series at 4 mm and dried in room

temperature (RT) over night. The sections were then fixed with

acetone for 10 minutes, dried for 15 minutes, wrapped in

aluminium foil and stored at 220uC until use. Two- or three-

color immunofluorescence staining was performed. To determine

the density and phenotype of HLA-DQ+ APCs, cryosections were

first incubated with the following combinations of mouse

monoclonal antibodies (mAbs) for 1 hour at RT: anti-HLA-DQ

(clone SPV-L3, IgG2a, 1.3 mg/mL, kind gift from H. Spits,

Amsterdam, Netherlands [8]) with anti-CD163 (clone RM3/1,

IgG1, 10 mg/mL, lot 818176, abcam, Cambridge, UK); anti-

CD11c (clone CRB-p150/4G1, IgG2a, 5 mg/mL; Biosource,

Camarillo, CA) with either anti-CD103 (clone Ber-ACT8, IgG1,

1/200, kind gift from H. Dürkop, Berlin, Germany [9]), CD1c

(clone M241, IgG1, 5 mg/mL, Ancell Corporation, Bayport, MN),

CD14 (clone 18D11, IgG1, 0.3 mg/mL, kind gift from T. Espevik,

Trondheim, Norway [10]) or CD163 (clone RM3/1). Polyclonal

antibody specific for cytokeratin (rabbit anti-human IgG, 1/100,

H. Huitfeldt, Oslo, Norway [11]) was added to the primary mAb

mixtures to visualize the epithelium. The sections were briefly

rinsed with phosphate-buffered saline (PBS) and then incubated

with biotinylated goat anti-mouse IgG2a (2.5 mg/mL; South-

ernBiotech, Birmingham, AL) for 1.5 hour, followed by a

combination of Cy2-labeled streptavidin (1 mg/mL, Amersham

Biosciences, Buckinghamshire, UK) and Cy3-labeled goat anti-

mouse IgG1 (2.9 mg/mL; SouthernBiotech) for 30 minutes. Initial

testing showed that the staining intensity using anti-CD103 was

enhanced by prefixing the sections with paraformaldehyde-lysine-

periodate (PLP) for 10 minutes. In that case, incubation with anti-

CD103 and anti-CD11c was followed by a combination of FITC-

labeled goat anti-mouse IgG2a (20 mg/mL; SouthernBiotech) and

Cy3-labeled goat anti-mouse IgG1 for 30 minutes. Before

mounting, the sections were washed in Hoechst 33258, pentahy-

drate (bis-benzimide) (1 mg/mL; Invitrogen, Paisley, UK) for

5 minutes to visualize cell nuclei. When anti-cytokeratin was

included, 7-amino-4-methylcoumarin-3-acetic acid (AMCA)-la-

beled goat anti-rabbit IgG (1/10–1/20; Vector Laboratories,

Burlingame, CA) was added in the final step. Irrelevant isotype-

and concentration-matched primary mAbs were used as negative

control in all experiments.

Immunoenzyme staining
Four biopsies from each subject were formalin-fixed and

paraffin-embedded in the same paraffin block. Sections were cut

in series at 4 mm and dewaxed. Heat-induced epitope retrieval
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(HIER) was performed by boiling sections for 20 minutes in Tris-

EDTA (pH = 9) in a water bath followed by cooling for 20 minutes

at RT. Immunoenzyme staining was performed with Ventana

Ultra View DAB Detection Kit (Ventana Medical Systems, Inc.,

Tucson, AZ). Sections were pre-blocked with H2O2 for 8 minutes.

Primary antibodies used were either monoclonal rabbit anti-

human CD3 (clone SP7, IgG, 1/100, Thermo Scientific, Fremont,

CA) or monoclonal mouse anti-human neutrophil elastase (clone

NP57, IgG1, 1/600, Dako) for 30 minutes in RT. When stained

with anti-neutrophil elastase (clone NP57) sections were not

pretreated with HIER. Antibody Diluent (S0809; Dako) replaced

the primary antibody as negative control. All sections were

counterstained with haematoxylin.

Evaluation of tissue staining results
Examination of immunofluorescence stainings was performed

with an epifluorescence microscope (Nikon Eclipse 80i, Nikon

Corporation, Tokyo, Japan). To determine the density of different

cell populations, all immunostained cells in lamina propria were

counted to a depth of ,0.5 mm from the basolateral side of the

surface epithelium. The area of lamina propria was estimated by

superimposing a grid (10610 lines; 0.24260.242 mm) parallel to

the muscularis mucosa. On average, 7 grids were examined for

every section. Combined fluorescent microscopy and differential

interference contrast microscopy (DIC) was used to visualize

eosinophils as previously described [12].

Immunoenzyme-stained formalin-fixed sections were examined

by light microscopy (Nikon Eclipse 50i, Nikon Corporation). To

determine the density of IELs, all intraepithelial CD3+ cells in the

upper half of the villi with satisfactory morphology were counted,

and the density was given as IELs per 100 epithelial cells (EPCs).

The density of neutrophils in lamina propria was determined by

superimposing a grid parallel to the muscularis mucosa as

described above.

All sections were examined at 400 X magnification by the same

investigator (A-C.R. Beitnes), blinded to patient identity and

diagnosis.

Multicolor flow cytometry
Multiple biopsies (4–10) were collected in ice-chilled RPMI

medium and processed further in the laboratory within 30 min-

utes. Preparations of single cell suspensions were performed as

follows: EPCs and IELs were removed by incubation with 2 mM

EDTA in PBS twice for 30 minutes with continuous rotation at

37uC. Single-cell suspensions were obtained by digesting the

remaining material with 1 mg/mL Blend Collagenase (C-8051;

Sigma, St. Louis, MO) for 60 minutes with rotation at 37uC. The

cell suspension was then filtered through a 40 mm cell strainer and

washed with PBS. For analysis of blood cells, peripheral blood

mononuclear cells were isolated from acid-citrate-dextrose (ACD)

blood using standard protocols for density centrifugation with

Lymphoprep. Cells were transferred onto V-bottomed 96-well

plates, washed in PBS containing 0.5 mM ethylenediaminetetra-

acetic acid (EDTA) and 3% foetal calf serum (FCS) and stained

with directly labeled antibodies on ice for 30 minutes. After

incubation, cells were briefly washed, resuspended in PBS with 3%

FCS and analyzed with a LSRII (BD Biosciences, Franklin Lakes,

NJ) instrument. To exclude dead cells, 0.2 mg/mL propidium

iodide (PI) was added to the samples immediately prior to analysis.

2246105 cells were analyzed in each sample.

The following antibodies and dilutions were used: anti-CD45-

FITC, -PE, -APC and -Pacific Blue (all clone HI30, 1/20) and

anti-HLA-DR-eFluor450 (clone L243, 1/40) from eBioscience,

San Diego, CA; anti-CD11c-Alexa488 (clone 3.9, 1/20), anti-

CD14-APC-Cy7 (clone HCD14, 1/20), anti-CCR2-Alexa 647

(clone TG5/CCR2, 1/20) and IgG2b-Alexa647 isotype control

(clone MPC11, 1/20) from Biolegend, San Diego, CA; anti-

CD11c-PE (clone S-HCL-3, 1/15), anti-HLA-DR-PE-Cy7 (clone

L243, 1/100) from BD Biosciences and anti-DC-SIGN/CD209-

PE (clone DCN46, 1/15) from BD Pharmingen, San Diego, CA.

T cell assay
Monocytes were isolated from peripheral blood mononuclear

cells using MACS CD14 MicroBeads (Miltenyi Biotec STED)

according to the manufacturer’s instructions. Recovered cells were

stained for CD14 and CD11c to assess purity. Monocytes (26104

cell) were transferred into 96-well plates and incubated overnight

with or without peptide antigen and with or without recombinant

IFN-c (100 U/ml; R&DSystems, Minneapolis, MN). Two gliadin

peptides harboring the HLA-DQ2.5-glia-a2 epitope were tested;

PQPELPYPQPQL (DQ2-a2) at 10 mM or LQLQPFPQPEL-

PYPQPELPYPQPELPYPQPQPF (33-mer) at 2 mM [13,14]. The

CD14+ monocytes were then washed and incubated with 50.000

cells of the gut derived T-cell clone TCC493.3.4.5 specific for the

HLA-DQ2.5-glia-a2 epitope. The gluten-reactive T-cell clone was

generated as previously described [15]. T-cell proliferation was

evaluated after 72 hours by uptake of [3H]thymidine (1 mCi/well

(0.037 MBq/well); Hartmann Analytic, Braunshweig, Germany),

which was added to the wells 24 hours before harvesting with an

automated harvester (Mach III; TomTec, Hamden, CT).

Incorporated radioactivity was measured by liquid scintillation

counting (Wallac MicroBeta TriLux 1450; PerkinElmer, Well-

esley, MA). The assays were performed in triplicates.

Statistical analysis
Wilcoxon matched pairs test was used to compare the density of

different cell populations in the duodenal mucosa before and after

gluten challenge. GraphPad Prism 4 software (GraphPad Soft-

ware, La Jolla, CA) was used for statistical analysis.

Results

CD14+CD11c+ DCs are selectively increased after a three-
day gluten challenge in CD patients

We found that the density of HLA-DQ+ APCs in lamina

propria was similar before and after gluten challenge in the

patients with treated CD (median 1755 cells/mm2, range 1398–

2247 vs. median 1598, range 1417–2274, respectively). Notably,

however, the relative proportions of HLA-DQ+ APC subsets

defined by expression of the markers CD11c, CD163, CD14,

CD103 and CD1c were changed. By two-color immunofluores-

cence staining we found an increase in the density of

CD14+CD11c+ (p = 0.001) and CD163+CD11c+ (p = 0.001)

DCs, and a decrease in the densities of CD103+ DCs (p = 0.03)

and CD163+CD11c2 macrophages (p = 0.03) (Figure 1). The

density of CD1c+ DCs was unchanged. We have recently shown

that CD14+CD11c+ DCs and CD163+CD11c+ DCs are mostly

overlapping populations both in the normal small intestinal

mucosa and in the active CD lesion [5]. In the following

experiments we therefore used the co-expression of CD14 and

CD11c to identify this DC subset.

Possible mechanisms for CD14+CD11c+ DC accumulation
The phenotype of the accumulating DCs in the challenged

mucosa, being CD14+CD11c+CD163+, resembles that of CD14+

monocytes in peripheral blood [16]. We therefore hypothesized

that the rapid accumulation of CD14+CD11c+ DCs was caused by

an increased recruitment of CD14+ monocytes from the
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circulation. Because the classical CD14+ monocytes, which

constitute the vast majority of all monocytes in the circulation,

can be identified by their expression of CCR2, we tested whether

CD14+CD11c+ DCs in the challenged mucosa expressed this

marker. In agreement with previous reports [17,18] we showed

that CCR2, as analyzed in two individuals, was highly expressed

on most peripheral blood CD14+ monocytes, whereas only a

fraction of myeloid DCs (CD142CD11c+) expressed CCR2

(Figure 2A). Consistent with this we found that the majority of

CD14+CD11c+ DCs in the intestinal mucosa also expressed

CCR2; both in healthy controls, treated CD and active CD

(Figures 2B and 3). In contrast, only a fraction of mucosal

CD142CD11c+ DCs and CD14+CD11c2 macrophages expressed

this marker (Figures 2B and 3). Together, these findings further

strengthen the notion that the CD14+CD11c+ DCs, which rapidly

accumulate in the duodenal mucosa in response to gluten

challenge, are recruited from circulating CD14+ monocytes.

CD14+CD11c+ DCs also expressed CD209 (dendritic cell-specific

intercellular adhesion molecule-3-grabbing non-integrin, DC-

SIGN) both in healthy controls (n = 4; range 56–76%), in an

untreated CD patient (77%), and a treated CD patient (73%)

(Figure 2C). As previously reported [4] we found that DC-SIGN

was highly expressed on macrophages, but virtually absent on

CD142CD11c+ DCs (Figure 2C).

Figure 1. CD14+CD11c+ dendritic cells are selectively increased in duodenal mucosa of celiac disease patients after short-term
gluten challenge. Density of HLA-DQ+ antigen-presenting cell subsets in cryosections from celiac disease (CD) patients on gluten-free diet (GFD)
before and after a three-day gluten challenge. The density of CD163+CD11c2 macrophages is calculated by subtracting the number of
CD163+CD11c+ cells from the total number of CD163+HLA-DQ+ cells. Paired data are connected by lines. ns = not significant (A). Three-color
immunofluorescence staining for CD11c (green), CD14 (red) and cytokeratin (blue) in cryosection of duodenal mucosa from a CD patient on GFD
before and after a three-day gluten challenge. Original magnification X 400 (B).
doi:10.1371/journal.pone.0033556.g001
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Figure 2. Expression of CCR2 on HLA-DR+ leukocytes in blood and duodenal mucosa. Flow cytometric analysis of peripheral blood
mononuclear cells from treated celiac disease (CD) patient (A) and viable single cells of duodenal mucosa from treated CD patient showing the
expression of CCR2 (B) and DC-SIGN (C) on CD45+HLA-DR+ cells depending on the expression of CD11c and CD14. Dead cells were excluded by
adding 0.2 mg/mL propidium iodide immediately before acquisition. The data are representative for two independent experiments.
doi:10.1371/journal.pone.0033556.g002
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The increase of CD14+CD11c+ DCs precedes architectural
changes and increase of CD3+ IELs

The histopathology of the CD lesion is characterized by villous

blunting, crypt hyperplasia and increased numbers of IELs [3].

Next we wished to determine whether accumulation of

CD14+CD11c+ DCs preceded typical features of an established

celiac lesion. In the same biopsy material, Brottveit et al. recently

showed that in most patients there were no significant changes in

tissue architecture after a three-day gluten challenge [6]. Only four

of twelve patients had changes according to Marsh classification.

As increased numbers of CD3+ IELs is one of the first signs of CD

[19,20], we counted CD3+ IELs in all samples. Importantly, no

difference in the number of CD3+ IELs was detected comparing

tissue obtained before and after challenge (Figure 4A). Thus, the

increase of CD14+CD11c+ DCs precedes the histopathological

hallmarks of an active CD lesion.

Increased recruitment of neutrophils and eosinophils are also

features of the CD lesion [21,22]. Of these immune cells only

neutrophils showed a modest but significant increase (p = 0.04)

after the short-term challenge (Figures 4B and 4C and Figure S1).

Increased neutrophil recruitment demonstrated that the exposure

to gluten triggered an inflammatory response.

CD14+CD11c+ monocytes from blood efficiently present
gluten to gluten-specific T-cell clones

We were not able to isolate CD14+CD11c+ DCs from the celiac

lesion to test their antigen-presenting capability in vitro. Instead, we

isolated CD14+CD11c+ monocytes from peripheral blood of two

HLA-DQ2+ individuals and tested the ability of these cells to

present gluten peptide antigen to an HLA-DQ2-restricted gluten-

specific T-cell clone. From both individuals, the purified

monocytes efficiently activated the T cells in an antigen dose-

dependent manner. Preactivating the monocytes with IFN-c
further increased their antigen presenting capacity (Figure 5).

No changes of cell densities in gluten-sensitive controls
Next we wanted to examine whether the observed changes

might represent an innate response to gluten independently of CD.

To this end, we examined biopsy samples from gluten-sensitive

control subjects on GFD who were challenged with gluten as

described above. The gluten-sensitive controls were HLA-DQ2+

subjects without confirmed CD diagnosis, but with gluten-induced

symptoms that subjectively improved on a GFD. As recently

reported, no histopathological changes according to Marsh

classification or tetramer-positive CD4+ T cells in peripheral

blood were observed in this control group, although these patients

experienced symptoms during the three-day gluten challenge [6].

Interestingly, as opposed to CD patients, no significant changes in

the density of CD14+CD11c+ DCs, CD103+ DCs, neutrophils,

eosinophils or CD3+ IELs were found after challenge (Figure 6).

This finding indicates that the rapid recruitment of

Figure 3. CCR2 is highly expressed on CD14+CD11c+ dendritic
cells in duodenal mucosa. Percentage of CCR2+ cells in subsets of
antigen-presenting cells from duodenal mucosa digests assessed by
flow cytometry. Median is indicated by horizontal line. CD = celiac
disease.
doi:10.1371/journal.pone.0033556.g003

Figure 4. Neuthrophils are increased in duodenal mucosa of
celiac disease patients after short-term gluten challenge.
Density of CD3+ intraepithelial lymphocytes (IELs) per 100 epithelial
cells (A); neutrophils per mm2 (B); and eosinophils per mm2 (C) in the
lamina propria (LP) in sections of duodenal mucosa from celiac disease
patients on gluten-free diet before and after a three-day gluten
challenge. Paired data are connected by lines. ns = not significant.
doi:10.1371/journal.pone.0033556.g004
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CD14+CD11c+ DCs and neutrophils, as well as the decrease of

mucosal CD103+ DCs in response to gluten challenge are specific

for CD.

Discussion

We have studied changes in duodenal mucosal APC populations

after a three-day gluten challenge in CD patients in remission and

in gluten-sensitive control subjects. In the CD patients we found

alterations in the APC populations in response to the challenge

that preceded morphological changes in most participants. These

changes resulted in a relative composition of APCs similar to that

found in untreated CD [5] and were not observed in the gluten-

sensitive controls. The findings suggest that the changes in the

duodenal APC composition occur rapidly to gluten exposure and

represent an early and integrated part of the immune reaction

leading to CD.

The most pronounced difference was observed for the

population of CD14+CD11c+ DCs. The density of these cells

was increased almost three-fold in the celiac duodenal mucosa

after the three-days gluten challenge, similar to that found in

established celiac lesions [5]. Most notably, the increase preceded

the typical architectural changes as well as an increase of IELs and

eosinophils, which suggests that these cells may be important for

disease development. There is a striking phenotypic resemblance

between the DC subset that accumulated in the challenged

mucosa and the classical monocytes in peripheral blood. Both cell

populations express CD14, CD11c, CD163 and CCR2, which is a

unique combination of markers in both blood and tissue. Although

not formally demonstrated it is therefore tempting to speculate

that the CD14+CD11c+ DCs accumulating in the tissue are

derived from circulating CD14+ monocytes [5]. CD14+CD11c2

macrophages had lower expression of CCR2, suggesting that

resident macrophages originating from monocytes might down-

regulate CCR2 [23].

An increasing body of evidence suggests that monocytes have

the capacity to differentiate into efficient DCs in tissues. It was

recently reported that in mice the expression of DC-SIGN/

CD209 distinguishes monocyte-derived DCs (Mo-DCs) from

classical DCs both in cell suspension and lymph nodes.

Furthermore, these Mo-DCs (being CD14+CD11c+) were dem-

onstrated to have strong antigen-presenting activity [24]. Most

notably, we found that most CD14+CD11c+ DCs in the duodenal

mucosa also express DC-SIGN/CD209, which is a putative

marker of fully differentiated Mo-DCs. It is therefore conceivable

that the recruited CD14+CCR2+ monocytes rapidly differentiate

into efficient HLA-DQ+ APCs that activate gluten-reactive T cells

residing in the intestinal mucosa. In agreement with this notion,

we demonstrated that CD14+CD11c+ monocytes isolated from

peripheral blood presented gluten peptides efficiently to gluten-

specific T cells in a HLA-DQ-restricted manner. This is in line

with our previous data showing that CD11c+ cells from duodenal

biopsies are capable of presenting antigen to gluten specific T cells

in vitro [4].

The gluten-sensitive subjects served as controls as they

experienced gluten related symptoms, which we consider relevant,

and as we were unable to recruit a control group of completely

healthy subjects who adhered to a strict GFD. The mechanisms

leading to symptoms in gluten intolerant patients are poorly

understood. While integrated innate and adaptive immune

responses appear important in the pathogenesis of CD [25], it is

speculated whether symptoms of gluten intolerant patients may

result from an unaccompanied innate immune response to gluten

[26]. However, conflicting results are reported on the effect of

Figure 5. Peripheral blood CD14+ monocytes efficiently present gluten to gluten-specific T cell clones. Purity of CD14+CD11c+

monocytes isolated from peripheral blood mononuclear cells of two individuals are shown (A and B, upper panels). The monocytes were incubated
with medium or two different gluten peptides 6100 U/ml IFN-c for 24 hours, washed and incubated with a T-cell clone for 72 hours. The proliferative
T-cell response (measured by thymindine-incorporation) is shown (A and B, lower panels). Experiments with IFN-c are indicated (hatched columns).
doi:10.1371/journal.pone.0033556.g005
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gluten on the innate immune system. It has been reported that in vitro

challenge of CD14+ human monocytes with digested gliadin causes

maturation of the monocytes into DCs regardless of genetic

predisposition or presence of CD in the cell donors [27,28]. This

gives credence to the above notion, but is at variance with the

observation that stimulation of human duodenal biopsies with

digested gliadin only gives activation of the innate immune system

in CD patients and not in healthy controls [29]. Neutrophils and

APCs both belong to the innate immune system, and in our study we

observed early changes in these cell populations in the CD patients. In

the established celiac lesion, the density of neutrophils and

CD14+CD11c+ APCs are reported to increase [5,21,30]. Therefore,

it was of interest to look at these cell populations in particular in

gluten-sensitive control subjects before and after a short-term gluten

challenge. The fact that the density of either APCs or neutrophils

changed significantly in gluten-sensitive controls after challenge,

demonstrates that the changes in these cell populations are restricted

to CD. Moreover, the findings suggest that the symptoms reported in

these patients upon the three-day gluten challenge, likely do not relate

to innate immune activation by gluten in APCs or neutrophils.

The cues that lead to changes in the composition of the APC

subpopulations in CD could possibly involve activation of T cells.

Experiments in vitro have demonstrated that CD3+ T cells from

duodenal biopsies of CD patients challenged with peptic-tryptic

gluten digest or a gliadin fragment were activated when harvested

after 24 hours as shown by upregulation of CD25 [29,31]. Thus, it

is to be expected that T cell activation takes place within the time

frame of three days. Moreover, IFN-c is shown to be produced

both in biopsies and CD4+ T cells from CD patients upon

24 hours in vitro gluten challenge [32,33]. Conceivably, in treated

CD patients there might be interaction between primed T cells

and APCs taking place at an early stage after gluten challenge.

The observation that gluten exposure does not lead to changes in

neutrophils and APC subpopulations in gluten-sensitive control

subjects supports the model that activation of gluten specific T cells

is implicated in the innate immune response in CD.

Figure 6. Density of various leukocyte subsets remains unchanged in duodenal mucosa of gluten-sensitive control subjects after
short-term gluten challenge. Density of CD14+CD11c+ dendritic cells (DCs) per mm2 (A) and CD103+CD11c+ DCs per mm2 (B) in the lamina propria
(LP); CD3+ intraepithelial lymphocytes (IELs) per 100 epithelial cells (C); neutrophils per mm2 (D) and eosinophils per mm2 (E) in the LP in sections of
duodenal mucosa from gluten-sensitive control subjects on gluten-free diet before and after a three-day gluten challenge. Paired data are connected
by lines. ns = not significant.
doi:10.1371/journal.pone.0033556.g006

Early Events in Celiac Disease

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e33556



Taken together, we have found that CD14+CD11c+ DCs

rapidly and selectively increase in the gluten challenged duodenal

mucosa of treated CD patients. This did not occur in gluten-

sensitive control subjects, making the gluten-induced recruitment

of CD14+CD11c+ DCs specific for CD. Accumulation of this DC

subset prior to induction of architectural changes and increase in

IELs suggests that they are directly involved in the immunopa-

thology of CD.

Supporting Information

Figure S1 Immunostaining of neutrophils in duodenal
mucosa. Immunoenzyme staining for neutrophil elastase to

visualize neutrophils (arrows) on formalin-fixed and paraffin-

embedded sections from duodenal mucosa of normal individuals

and patients with untreated celiac disease. Original magnification

X 400.
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