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Abstract

Background: A feature of the Asian Indian phenotype is low birth weight with increased adult type 2 diabetes risk. Most
populations show consistent associations between low birth weight and adult type 2 diabetes. Recently, two birth weight-
lowering loci on chromosome 3 (near CCNL1 and ADCY5) were identified in a genome-wide association study, the latter of
which is also a type 2 diabetes locus. We therefore tested the impact of these genetic variants on birth weight and adult
glucose/insulin homeostasis in a large Indian birth cohort.

Methodology/Principal Findings: Adults (n = 2,151) enrolled in a birth cohort (established 1969-73) were genotyped for
rs900400 (near CCNL1) and rs9883204 (ADCY5). Associations were tested for birth weight, anthropometry from infancy to
adulthood, and type 2 diabetes related glycemic traits. The average birth weight in this population was 2.7960.47 kg and
was not associated with genetic variation in CCNL1 (p = 0.87) or ADCY5 (p = 0.54). Allele frequencies for the ‘birth weight-
lowering’ variants were similar compared with Western populations. There were no significant associations with growth or
adult weight. However, the ‘birth weight-lowering’ variant of ADCY5 was associated with modest increase in fasting glucose
(b 0.041, p = 0.027), 2-hours glucose (b 0.127, p = 0.019), and reduced insulinogenic index (b -0.106, p = 0.050) and 2-hour
insulin (b -0.058, p = 0.010).

Conclusions: The low birth weight in Asian Indians is not even partly explained by genetic variants near CCNL1 and ADCY5
which implies that non-genetic factors may predominate. However, the ‘birth-weight-lowering’ variant of ADCY5 was
associated with elevated glucose and decreased insulin response in early adulthood which argues for a common genetic
cause of low birth weight and risk of type 2 diabetes.
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Introduction

A recent genome-wide association (GWA) study identified two

independent loci on chromosome 3 (rs900400 near CCNL1 and

rs9883204 of ADCY5) for low birth weight [1]. When replicated in

Europeans robust associations (p = 3610226 and 361029, respec-

tively) with birth weight were observed leading to a 113 g

difference between homozygous carriers vs. non-carriers for the

two respective variants [1].

Indian new born babies generally weigh the least in the world

with a mean birth weight at term being 2.6 to 2.9 kg compared to

3.5 to 3.7 kg among Europeans [2,3]. The discovery of genetic

variants having a strong effect on birth weight therefore provides

the opportunity to test if some of the low Indian birth weight has a

genetic component.

A systematic review of the relationship between birth weight

and subsequent risk of development of type 2 diabetes in

adulthood has shown an inverse relationship that is consistent

between populations [4]. Although the exact mechanism for this

relationship remains unclear, the fetal-insulin hypothesis describes

a distinct role for a genetic and environmental component for the

association [5]. An alternative, but neither opposing, nor exclusive,

explanation is through fetal programming due to the in utero

environment [6]. However, this latter explanation remains

mechanistically elusive.

Genetic variants that influence fetal insulin secretion or insulin

sensitivity appear to be important determinants of fetal growth,

and subsequent development of type 2 diabetes [7]. Associations

between mutations in the INS, INSR, IPF1, KCNJ11, ABCC8 and

HNF1B genes reducing fetal insulin secretion and markedly
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reducing birth weight in monogenic diabetes provide support for a

genetic role in the modulation of birth weight, although this

cannot be extrapolated to the general population due to the rarity

of these mutations [5,8–10]. There is some evidence from the

study of common genetic variants related to type 2 diabetes

(TCF7L, GCK, I/III polymorphisms of INS-VNTR and IGF-1) and

its effects on birth weight, lending support to the notion that more

moderate impairment of insulin secretion provides a link between

inheritance of type 2 diabetes susceptibility and reduced weight at

birth [11–14]. More recently genetic variants near ADCY5 have

been linked to glycemic traits in healthy individuals [15], and with

birth weight in the Danish Inter99 population [16].

Therefore, we aimed to replicate two ‘birth weight-lowering’

alleles (rs900400 near CCNL1 and rs9883204 of ADCY5) in a

longitudinal birth cohort form South India and also test whether

the low Indian birth weight is driven, or partly explained, by

similar genetic factors as in Europeans. In this replication there

are two inherent questions. First, whether the low birth in Indians

is due to higher frequencies of ‘birth weight-lowering’ alleles

compared to the Western population and secondly, whether the

lower average birth weight is modulated by variants in ADCY5 and

near CCNL1 in a way similar to the western population. Due to the

known associations between birth weight and adult type 2 diabetes

and the fact that one of the ‘birth weight-lowering’ alleles (ADCY5)

also appears to be a genetic determinant of glycemic traits, we also

aimed to investigate possible associations of CCNL1 and ADCY5

genotypes with diabetes related intermediate-traits in addition to

investigating the influence of these SNPs on anthropometric traits

during longitudinal follow-up from birth to adulthood.

Materials and Methods

Ethics Statement
All study participants gave written informed consent and the

protocol was in accordance with the Helsinki Declaration, and

approved by the Institutional Ethics committee and Review board

of Christian Medical College & Hospital, Vellore, India.

Cohort description
The current study included 2,151 adults aged 26–32 (mean

28.361.10) years, drawn from an original birth cohort of 10,691

singleton births during 1969–1973 in one of 24 wards of Vellore

town and adjoining rural villages, Tamil Nadu, India. Details of the

original cohort are described elsewhere [17]. Complete birth

measurements were available for 4,092 (2,790 from rural and 1,302

from Urban dwelling) individuals and 2,218 out of 2,572 members

retraced during 1999–2002 agreed to take part in a study of glucose

tolerance and cardiovascular risk factors, reported earlier [18]. The

original cohort was followed up at several time points of growth and

development from birth, through infancy (1–3 months), childhood

(6–8 years) and adolescence (10–15 years) and adulthood. A total of

2,151 (1,175 of rural birth and 976 of urban birth) participants (out

of 2,218 retraced) had adequate DNA samples and were included in

the current study. Based on WHO criteria, there were 83 (3.9%)

subjects with impaired fasting glucose (IFG) (.6.1 but below

7.0 mmol/l), 319 (14.8%) with impaired glucose tolerance (IGT) (2-

hours blood glucose .8 mmol/l) and 55 (2.6%) with manifest type

2 diabetes (T2DM), demonstrated by an oral glucose tolerance test.

Anthropometric measurements and biochemical analysis
Anthropometric measurements included height, weight, waist

and hip circumference measured by standard methods during

adulthood. Body fat percentage was calculated from four skinfold

measurements [19,20]. Plasma glucose and insulin were recorded

at 0, 30, 60 and 120 minutes, following a 75 g oral glucose

tolerance test (after 12 hours of overnight fasting). Plasma glucose

concentrations were measured by glucose oxidase/peroxidase

methods, and serum lipids using commercial enzymatic kits

(Roche Diagnostics, Germany) on a Hitachi 911 autoanalyser

(USA). Plasma insulin was measured by an immunoradiometric

assay using Coat-a-Count kits (Diagnostic Products Corporation,

USA). The quality of these measurements was assessed using

Roche Precinorm and Precipath controls for glucose and lipids

and BioRad Lyphocheck Immunoassay controls for insulin. Intra-

and inter-assay coefficients of variation for insulin estimations were

8.0–14.5 and 8.2–13.0% respectively. HOMA-IR and HOMA-B

were calculated using an algorithm from http://www.dtu.ox.ac.

uk/homacalculator/index.php. All biochemical measurements

were done centrally at the Department of Clinical Biochemistry,

Christian Medical College & Hospital, Vellore, on samples that

were collected during adulthood (in 2002).

Genotyping
DNA was extracted from peripheral blood using Qiagen kits.

The samples were genotyped using 10–20 ng genomic DNA in

384-well format on an ABI 7900 machine at final volume of 4 ml.

The genotyping was performed using TaqManH SNP Geno-

typing Assays C1860681_10 and C3035719_20 for rs900400 (near

CCNL1) and rs9883204 (ADCY5), respectively. The TaqManH
genotyping master mix was used following the manufacturer’s

conditions. Genotyping quality control was tested in 8.6% of the

samples (genotyped in duplicate) with 0% difference in genotype.

Genotyping failed in 65 (3.0%) for rs900400 and 61 (2.8%) for

rs9883204, most probably due to low quality DNA for the

platform used.

Statistical methods
We tested the association between quantitative phenotypes and

SNPs using ANOVA for normally distributed variables and

Kruskal–Wallis test for skewed variables, adjusted for gender.

Linear regression analysis was performed for each of the glycemic

trait as the dependent variable against genotypes (additive model)

as independent variables, with age, gender, consanguinity and

BMI as covariates. Z-scores for selected anthropometric variables

were age-adjusted and converted into within-cohort age- and

sex-specific Z-scores [(subject mean- cohort mean)/cohort SD]

considering variations in ages measured at different time points.

The cohort mean and SD were derived from all 4,092 individuals

with complete birth and parental measurements. Infant data were

included if there was at least one measurement between 1 and 3

months, and the latest available time point used. Childhood data

were included if there was at least one measurement between 6

and 8 years, and the average Z-score was used if there were more

than one measurement. Adolescent data were included if there was

at least one measurement between 10 and 14 years, the Z-score for

the age closest to 12 years being selected. The main analysis used

all available data at each time point. The absolute effect of genetic

variants on Z-scores of anthropometry was assessed using

ANOVA after adjustment for gestational age, gender and

consanguinity. Effect size of the additive model was computed

using regression models adjusted for gestational age, gender and

consanguinity. All data were analyzed using STATA (Version

11.0). Subjects with T2DM (n = 55) were excluded from all

analysis. All diabetes related traits except 2 hours postprandial

glucose and AUC glucose were log transformed to obtain normal

distribution before analysis.

A power calculation based on variance explained by both the

genetic variants (0.3% for CCNL1 and 0.1% for ADCY5) as
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previously described, showed a power of 74% and 32% to detect a

variance (r2) explained, for CCNL1 and ADCY5 respectively using

adjusted models, calculated at an alpha (0.05), and a sample size of

2,151. The coefficient of variation (CV) of birth weight was 18.8%

for CCNL1 and 16.7% for ADCY5 and this was comparable to the

effects demonstrated by these variants on birth weight as described

by Freathy RM et al [1].

Results

There were no significant associations between either rs900400

(near CCNL1) or rs9883204 (ADCY5) with birth weight in the

Indian population (Table 1). The allele frequencies of the ‘birth

weight-lowering’ alleles were 0.21 for C allele (rs900400) and 0.81

for C allele (rs9883204). The rs9883204 showed some loss of

expected heterozygosity and did not follow Hardy–Weinberg

equilibrium (X2 4.45, p = 0.035) in the cohort. This is a well-

known phenomenon in cohorts with a high degree of consan-

guineous parentage, which was the case in 47% of the rural part of

the cohort and 29% in the urban group.

Comparing birth weights in extreme homozygotes (CC) for

both of the ‘birth weight-lowering’ variants, no statistically sig-

nificant difference between carriers (2,7726535 g, n = 62) and

non-carriers (2,7826552 g, n = 53, p = 0.10) was observed.

We then compared the birth weights for participants with

normoglycemia, IFG, IGT and manifest type 2 diabetes (T2DM)

in the entire cohort. The mean birth weight among people with

normoglycemia was 2,7956460 g (n = 1,694), with IFG (n = 83)

2,7546505 g, with IGT (n = 319) was 2,7636496 g and

2,7156536 g in the diabetes group (n = 55). The difference

appeared largest between the normoglycemic group and the

groups with manifest type 2 diabetes, but this was not statistically

significant (p = 0.24).

There was no significant relationship between either of the

genotypes and Z-scores of anthropometry measured across various

time periods at birth, infancy, childhood, adolescence or

adulthood (Table S1). Neither of the SNPs in additive model

showed significant association with any of the anthropometric

measures of obesity in adulthood. (Table 1), and this signal was not

picked up by either the BMI or waist circumference measure-

ments. The additive model of ADCY5 variant was associated with

raised 2-hour glucose postprandially (p = 0.010) (Table 2).

Regression analysis showed that the ‘birth weight-lowering’

variant of ADCY5, was significantly and positively associated with

increase in 2-hour glucose, fasting glucose, reduced insulinogenic

index and reduced 2-hour insulin (Table 2). Since the rise in

2-hour glucose is dependent on the rate of peripheral glucose

disposal, we presumed that fasting glucose may confound this

association. However, we found that the association of ADCY5

variant with 2-hour glucose remained significant even after

adjusting for fasting glucose (Logged b 0.102, p = 0.053). The

‘birth weight-lowering’ variants were not associated with calculat-

ed index of insulin resistance (HOMA-IR). No impairment of b-

cell function was observed for variants at the CCNL1 locus

(Table 3).

To further analyze the impact on postprandial glycemia in

the homozygous carriers of the ADCY5 variant, we calculated

the frequency of having plasma glucose above an arbitrary cut-

off of 9 and 11 mmol/L, respectively. The lower level was

chosen to enhance the capacity to detect even lower glycemic

disturbances in these apparently healthy and young adults. At

the 9 mmol/L cut off, the odds ratio (OR) and 95% confidence

Table 1. Demographic characteristics of the birth cohort.

CCNL1 (rs900400) ADCY5 (rs9883204)

TT (n = 1258) TC (n = 679) CC (n = 96) P value TT (n = 87) CT (n = 610) CC (n = 1339) P value

Age (years) 28.4 (1.12) 28.4 (1.08) 28.2 (1.06) 0.59 28.3 (1.13) 28.4 (1.12) 28.3 (1.09) 0.49

Gender (% female) 582 (46.26) 360 (53.02) 39 (40.63) 0.86 43 (49.43) 301 (49.34) 644 (48.10) 0.006

Birth Weight (kg) 2.79 (0.47) 2.80 (0.45) 2.80 (0.53) 0.87 2.77 (0.55) 2.80 (0.46) 2.78 (0.46) 0.54

Adult Weight (kg) 53.2 (11.58) 53.3 (11.60) 55.5 (12.18) 0.13 52.4 (11.97) 53.2 (11.44) 53.5 (11.65) 0.80

BMI (kg/m2) 20.6 (3.79) 20.8 (3.81) 21.0 (3.94) 0.42 20.3 (4.16) 20.7 (3.80) 20.7 (3.76) 0.64

Waist circumference (cm) 74 (10.5) 74 (10.6) 76 (10.4) 0.21 73 (9.62) 74 (10.63) 74 (10.48) 0.66

Hip circumference (cm) 88 (8.2) 88 (8.1) 88 (8.5) 0.39 87 (8.98) 88 (8.04) 88(8.15) 0.78

Systolic BP (mm Hg) 107 (12.2) 106 (11.9) 109 (13.6) 0.39 106 (11.9) 107 (11.9) 107 (12.3) 0.44

Diastolic BP (mm Hg) 72 (8.89) 73 (9.05) 73 (8.53) 0.44 71 (8.32) 72 (8.96) 73 (8.82) 0.11

*Body fat % 23.3 (9.63) 24.5 (9.54) 23.0 (9.76) 0.52 23.0 (10.10) 23.7 (9.83) 23.7 (9.51) 0.44

Skin fold thickness: Triceps (mm) 10.3 (6.6,16.5) 11 (7.1,17.5) 10.5 (6.1,15.1) 0.07 8.7 (5.9,17.4) 10.9 (7,17.2) 10.5 (6.8,16.5) 0.22

Skin fold thickness: Biceps (mm) 4.8 (3.3,7.6) 5.3 (3.4,8) 4.4 (3.4,7.3) 0.09 4.5 (3,8.1) 5 (3.5,8) 5 (3.4,7.7) 0.57

Skin fold thickness: Subscapular (mm) 16.7 (10.7,27.3) 17.1 (11.4,28.6) 15.3 (10.1,29.4) 0.26 16.8 (9.8,26.8) 16.9 (11,28.3) 16.9 810.9,28) 0.62

Skin fold thickness: Abdomen (mm) 18.5 (9.6,32.3) 19.9 (11.1,33.5) 22.7 (10, 33.5) 0.15 17.7 (8.4,29.3) 18.8 (10.1,32.6) 19.5 (10.1,33.4) 0.35

Total Cholesterol (mmol/l) 4.0 (0.89) 4.0 (0.83) 4.1 (0.89) 0.55 3.7 (0.76) 4.0 (0.87) 3.9 (0.87) 0.033

Triglycerides (mmol/l) 1.1 (0.70) 1.1 (0.60) 1.1 (0.78) 0.97 1.1 (0.68) 1.0 (0.63) 1.1 (0.69) 0.33

HDL-C (mmol/l) 1.0 (0.24) 1.0 (0.24) 1.1 (0.24) 0.35 1.0 (0.20) 1.0 (0.24) 1.0 (0.24) 0.33

LDL-C (mmol/l) 2.4 (0.74) 2.5 (0.72) 2. 5(0.75) 0.53 2.3 (0.64) 2.5 (0.76) 2.4 (0.72) 0.017

Data represented as Mean (SD) for all traits. Skin fold thickness is presented as median ( Interquartile range).
doi:10.1371/journal.pone.0021331.t001
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was 1.64 (1.08–2.48) p = 0.016, whereas there was no significant

effect at the 11 mmol/L cut off (OR 1.07, 95%CI 0.56–2.04,

p = 0.84).

Discussion

Genetic variants associated with a birth weight-lowering effect

in other populations, near CCNL1 or in ADCY5 locus are not

associated with birth weight in this Indian cohort, but the ‘birth

weight-lowering’ variant of ADCY5 was associated with raised

glucose and reduced early phase insulin secretion.

The Indian birth weight is generally about 0.8 kg less compared

to the West [21], and the mean birth weight in our cohort was

2.8 kg. Not only was there any modulation between genotypes at

this lower level, the gene frequencies of the ‘birth weight-lowering’

variants in ADCY5 and near CCNL were also the same (ADCY5) or

lower (CCNL) than in the original report in Europeans [1]. The

absence of an association between ‘birth weight-lowering’ genetic

variants and birth weight is therefore likely to be attributed to

strong environmental influences which dominate over the genetic

effects. This would be supported by the observations of slightly

higher birth weights in Indian immigrants in the West compared

to the native Indian babies [22,23]. The existence of other genetic

variants influencing birth weight in the Indian setting is possible,

but rather unlikely considering the considerable genetic diversity

in India [24] contrasted with the uniformity in the low birth weight

phenotype.

The ADCY5 variant has been associated with increased plasma

fasting glucose at a genome-wide level [15] and it appears that,

type 2 diabetes genes in general are reproduced in Indians [25]. In

the current study, rs9883204 variant of ADCY5 was associated with

raised fasting and 2-hour glucose concentrations following an oral

glucose tolerance test performed in early adulthood. Although this

finding would be in general agreement with the fetal-insulin

hypothesis, it is paradoxical compared to a recent study in a large

Danish cohort as another ‘birth weight-lowering’ (rs11708067)

variant was associated with reduced adult insulin resistance [16].

The ADCY5 rs11708067 and rs9883204 are in close linkage

Table 2. Association of glycemic traits with rs9883204 (ADCY5) additive model.

CC CT TT P value{ Effect (95%CI) P value{

n Mean (SD) n Mean (SD) n Mean (SD)

Fasting Glucose (mmol/l) a 1339 5.28 (0.42) 610 5.34 (0.46) 87 5.38 (0.51) 0.13 0.041 (0.004, 0.078) 0.027

2hour Glucose (mmol/l) a 1339 6.34 (1.41) 610 6.19 (1.35) 87 6.40 (1.49) 0.010 0.127 (0.021, 0.233) 0.019

Fasting Insulin (pmol/l) a 1076 36.81 (19.45,61.12) 497 37.50 (21.53,61.12) 75 37.85 (20.48,63.209 0.10 20.008 (20.073, 0.057) 0.81

2 hour Insulin (pmol/l) a 1265 168.07 (100–295.16) 584 153.14 (86.81,255.58) 85 149.32 (82.64,268.07) 0.24 20.058 (20.126, 0.010) 0.010

Insulinogenic Index b,c 992 3.11 (1.39,5.89) 471 2.66 (1.32,5.82) 74 2.44 (1.15,5.16) 0.23 20.106 (20.211, 20.0006) 0.050

AUC glucose b,d 1337 7.12 (6.35,7.91) 610 6.33 (5.74,8.06) 87 7.20 (6.39,8.16) 0.15 0.005 (20.0005, 0.010) 0.08

AUC Insulin b,d 1333 1.22 (0.79,2.01) 608 1.27 (0.72,2.09) 87 1.19 (0.69,2.02) 0.33 20.061 (20.124, 0.002) 0.057

HOMA IR b 1336 1.12 (0.50,1.94) 610 1.02 (0.42,1.86) 87 0.99 (0.37,1.88) 0.63 20.059 (20.016, 0.043) 0.26

HOMA B b 1336 47.20 (24.91,93.09) 610 48.15 (18.79,85.13) 87 44.55 (17.16,86.09) 0.32 20.089 (20.189, 0.012) 0.09

Data represented as amean (SD) and bmedian (Inter-quartile range).
{P values adjusted for gender.
{P values obtained by regression models adjusted for age, gender, consanguinity and BMI.
CInsulinogenic index = (Insulin 30-fasting Insulin) / ( glucose30-fasting glucose).
doi:10.1371/journal.pone.0021331.t002

Table 3. Association of glycemic traits with rs900400 (CCNL1) additive model.

TT TC CC P value{ Effect (95%CI) P value{

n Mean (SD) n Mean (SD) n Mean (SD)

Fasting Glucose (mmol/l) a 1258 5.35 (0.48) 679 5.37 (0.51) 96 5.45 (0.56) 0.18 0.005 (20.002, 0.012) 0.15

2hour Glucose (mmol/l) a 1258 6.31 (1.48) 679 6.40 (1.40) 96 6.24 (1.32) 0.57 0.004 (20.010, 0.108) 0.94

Fasting Insulin (pmol/l) a 1009 37.5 (21.5,62.5) 554 37.5 (19.5,61.1) 87 40.9 (21.5,65.3) 0.82 20.00006 (20.062, 0.063) 0.99

2 hour Insulin (pmol/l) a 1196 146.5 (82.7,261.1) 644 158.4 (90.3,267.7) 91 150.7 (74.3–286.8) 0.35 0.028 (20.039, 0.095) 0.41

Insulinogenic Index b,c 941 2.43 (1.23,5.22) 516 2.62 (1.10,5.63) 81 2.58 (1.03,5.31) 0.92 20.023 (20.127, 0.112) 0.67

AUC glucose b,d 1257 7.19 (6.41,8.12) 678 7.23 (6.38,8.15) 96 7.07 (6.23,7.91) 0.51 0.00005 (20.005, 0.005) 0.99

AUC Insulin bd 1249 1.19 (0.70,1.98) 679 1.23 (0.71,2.12) 96 1.27 (0.78,1.97) 0.48 0.018 (20.043, 0.080) 0.56

HOMA IR b 1254 1.01 (0.39,1.84) 679 0.97 (0.38,1.87) 96 1.29 (0.62,2.08) 0.11 0.073 (20.026, 0.171) 0.15

HOMA B b 1254 45.76 (18.05,86.62) 679 45.99 (18.04,83.44) 96 59.53 (27.22,85.35) 0.17 0.059 (20.039, 0.158) 0.24

Data represented as amean (SD) and bmedian (Inter-quartile range).
{P values adjusted for gender.
{P values obtained by regression models adjusted for age, gender, consanguinity and BMI.
CInsulinogenic index = (Insulin 30-fasting Insulin) / ( glucose30-fasting glucose).
doi:10.1371/journal.pone.0021331.t003
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disequilibrium in the Hapmap CEPH (Utah residents with

ancestry from northern and western Europe) population data (D’

0.93, r2 0.72, Hapmap data rel 27 - http://hapmap.ncbi.nlm.nih.

gov). rs9883204 is not represented in the Hapmap Indian

population (GIH - Gujarathi Indian population), therefore LD

cannot be calculated directly within Hapmap. However, a further

SNP, rs17361324, which is a proxy for rs9883204 in the CEPH

Hapmap data is also a proxy for rs11708067 in the GIH

Hapmap data. This may suggest that, the high LD between these

two SNPs in the CEPH data is also present in the Indian

population and the difference does not appear to be explained by

the genetic architecture and will need confirmation in future

studies. Additionally, the low birth weight and T2DM risk allele of

ADCY5 variant was associated with reduced early insulin response

measured by insulinogenic index, consistent with original report

by Freathy et al., supportive of a possible role in influencing insulin

secretion [1]. It is proposed that ADCY5 risk allele may operate by

different mechanisms by which they influence birth weight and

T2DM risk susceptibility [16], the later probably may be through

an effect on insulin secretion rather than insulin resistance. It is

worth mentioning that for glucose and insulin, the association

detailed in this cohort shows borderline significance and type 2

error cannot be excluded.

The loss of heterozygosity of rs9883204 in our population is

probably related to the high endogamy which is commonly seen

among Indians. It is generally assumed that an association

detected by a well-powered GWAS is in LD with the functional

variant. The strong signals in GWAS are related to the functional

magnitude of the effect and therefore, we assume this holds good

in our population despite a considerable degree of consanguinity.

Although, we have studied, the genetic variants associated with

birth weight in one of the largest and homogenous birth cohorts

from India, our study has limitations. Our study was adequately

powered for CCNL1, but less strong for ADCY5 to explain the

variance observed with these two SNPs. The CV for birth weight

in our study was comparable to originally described and this

further solidifies our power to detect an association. Also the lower

mean birth weight, observed in this population, might potentially

be associated with a reduced overall variance in the dependent

variable, i.e., reduce the effect of the functional variant on birth

weight, which could possibly contribute to the lowered power in

our study. Although it is evident that a multiple comparison

correction would abolish the modest associations with glycemic

traits, we believe that the association is biologically relevant and

that loss of statistical significance by multiple testing does not

necessarily disprove a true association owing to the homogenous

population studied within a small geographical region and the

similar allele frequencies reported among Caucasians [1]. We did

not have the maternal genotype to assess the effect of maternal

genetic variants on birth weight due to non-availability of blood

sample from the mothers. The low number of diabetes cases in this

still young cohort did not allow for observing a possible link

between diabetes incidence and birth weight or genetic links

between them.

In conclusion, the ‘birth weight-lowering’ variants in ADCY5

and near CCNL1 showing strong associations with birth weight in

European cohorts appear to have little or no effect in the Indian

setting. However, the ‘birth weight-lowering’ variant in ADCY5

was associated with modest glucose intolerance in early adulthood

which reinforces the argument for a genetic link between in utero

growth and adult type 2 diabetes.

Supporting Information
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