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Abstract

Human embryonic stem cells (hESCs) are primed for rapid apoptosis following mild forms of genotoxic stress. A natural form
of such cellular stress occurs in response to recombinant adeno-associated virus (rAAV) single-strand DNA genomes, which
exploit the host DNA damage response for replication and genome persistence. Herein, we discovered a unique DNA
damage response induced by rAAV transduction specific to pluripotent hESCs. Within hours following rAAV transduction,
host DNA damage signaling was elicited as measured by increased gamma-H2AX, ser15-p53 phosphorylation, and
subsequent p53-dependent transcriptional activation. Nucleotide incorporation assays demonstrated that rAAV transduced
cells accumulated in early S-phase followed by the induction of apoptosis. This lethal signaling sequalae required p53 in a
manner independent of transcriptional induction of Puma, Bax and Bcl-2 and was not evident in cells differentiated towards
a neural lineage. Consistent with a lethal DNA damage response induced upon rAAV transduction of hESCs, empty AAV
protein capsids demonstrated no toxicity. In contrast, DNA microinjections demonstrated that the minimal AAV origin of
replication and, in particular, a 40 nucleotide G-rich tetrad repeat sequence, was sufficient for hESC apoptosis. Our data
support a model in which rAAV transduction of hESCs induces a p53-dependent lethal response that is elicited by a
telomeric sequence within the AAV origin of replication.
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Introduction

It is becoming increasingly appreciated that human embryonic

stem cells (hESCs) have an altered DNA damage response

compared to multipotent and differentiated cells: i) hESCs display

high rates of spontaneous apoptosis and induce rapid apoptosis in

response to, generally, sub-lethal forms of DNA stress (1), ii)

apoptotic induction in hESCs is often elicited via a p53-

transcription independent mitochondrial pathway [1,2], iii) hESCs

are deficient in p21 abundance despite significant p53 transactiva-

tion of the p21 promoter upon DNA stress [3] and iv) hESCs may

display unique cell-cycle checkpoint kinetics in response to

ionizing radiation [3]. These characteristics help to define/

maintain the pluripotent versus differentiation status of hESCs,

maintained in part and also characterized by micro RNA profiles

[4]. Furthermore, such intolerance to genotoxic stress is likely a

mechanism to purge genetic abnormalities [3].

Natural insults that induce cellular DNA damage responses

include single-strand DNA viruses, such as the Parvoviridae members

B19, minute virus of mice and adeno-associated virus (AAV) in

manners both dependent and independent of viral gene expression

[5,6; reviewed in 7]. In particular, AAV is a small (25 nm) non-

enveloped virus of the family Parvoviridae genus Dependovirus. The

protein capsid is packaged with a 4.7 kb single-strand DNA genome

flanked at both ends by 145 nucleotide (nt) inverted terminal repeats

(ITRs) that are necessary for the initiation of replication and

packaging, among other processes (reviewed in [8]). An 80 nt

sequence within the AAV ITR containing the replication protein

(Rep) binding site and the terminal resolution site is sufficient for

these aspects of the viral life cycle [9]. This viral telomere sequence

shares characteristics of human telomeres including existing as

ssDNA and having G-rich repeated elements. For transducing

vector applications, we developed recombinant AAV (rAAV) in

which all viral genes are replaced by a sequence of choice such that

only the AAV ITRs remain [10]. Such vectors have demonstrated

success for gene delivery applications in cell culture, in animal

models, as well as for human disease therapy. In such instances, the

majority of transgenic DNA is converted to double-strand monomer

circles and concatemers for episomal persistence, processes

stimulated by the ITRs [11,12].

It is well documented that AAV infection of dividing cells in

culture results in a DNA damage response including cell cycle
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checkpoint activation [13,14,15]. This response was found

independent of the expression of viral proteins and, instead, is

attributed to the ITR sequence [5]. Transduction of normal

dividing cultured cells results in G2 arrest, followed by normal

cycling thereafter [5]. This cell cycle perturbation is dependent

upon the activity of p53 and its downstream regulatory cascades.

In fact, in the absence of a functional p53-p21-pRb signaling

cascade, a deficiency associated with many cancers, cells do not

maintain the G2/M checkpoint, and undergo AAV-induced

apoptosis upon transduction [3,5].

This work investigated the ability of 9 AAV serotypes to

transduce hESCs of different origins. However, a previously

undescribed apoptotic phenotype was observed that directly

correlated with the level of transduction. The rAAV-induced

apoptosis was mediated at the level of a lethal DNA damage

response as demonstrated by p53ser-15 phosphorylation, increased

gamma-H2AX and p53-dependent trans-activation of the p21

promoter. Consistently, AAV protein capsids without DNA were

well tolerated by hESCs. Further investigation into this lethal

DNA damage response implicated a 39 nucleotide G-rich

telomere-like tetrad repeated sequence within the ITR as the

apoptotic trigger. An oligonucleotide with the sequence, but not

the reverse complement sequence, formed intermolecular interac-

tions using native gel electrophoresis suggestive of G-quadruplex

formation. Collectively, these results demonstrate that rAAV

transduction of hESCs induces a p53-dependent lethal DNA

damage response in a manner reminiscent of G-quadruplex

induced apoptosis.

Results

AAV transduction of hESCs
Embryonic stem cell therapies are currently being developed for

therapeutic applications and have already entered the clinic for the

treatment of multiple diseases. To investigate the efficiency of

rAAV transduction as a tool by which hESCs may be genetically

manipulated for use in clinical therapy, capsid serotypes 1–9

packaged with a self-complementary (sc) CMV-egfp reporter

cassette were initially used at a multiplicity of infection (MOI) of

100,000 (viral genomes/cell). Of the analyzed serotypes, AAV3B

demonstrated the highest transduction at 46% GFP+ cells after

24 h (Figure 1A). AAV2, AAV6, and AAV1 were also capable of

hESC transduction, albeit at lower efficiencies whereas all other

serotypes demonstrated transduction efficiencies of less than 1%

report (Figure 1A).

To determine if the differential expression of the egfp transgene

among the most efficient serotypes directly correlated with viral

gene copy number/cell, total DNA was extracted (including that

from intact intracellular AAV particles) and quantitated by PCR

(Q-PCR). The results were normalized to the copy number of the

human lamin B2 gene and are presented as viral genomes/cell. In

general, the copy number of the egfp transgene directly correlated

with the percentage of GFP+ cells determined by flow cytometry

(Figure 1B). However, there was an exception, hESCs treated with

rAAV4 demonstrated no GFP+ cells, yet the intracellular

transgene copy number was equivalent to that of rAAV3B

transduced hESCs (Figure 1A, B). This observation suggests that

the AAV4 capsid is capable of cell entry but is deficient for

trafficking/uncoating in hESCs.

Of particular note during the these experiments is that at the

tested time point, most of the GFP+ cells had detached from the

fibronectin coated plates and were compromised for membrane

integrity (Figure 1C). In fact, by 72 h post-infection all GFP+ cells

had lost viability, an effect that was observed in hESCs of different

origin (WiCell H1, H7, H9 and CBh6). It is important to note, that

the AAV-induced toxicity was independent of the vector

production method (different chromatographies or cesium chlo-

Figure 1. Recombinant AAV Transduction of hESCs. The
indicated AAV serotypes were packaged with a self-complementary
CMV-egfp genome and used to infect human embryonic stem cells
(hESCs) at 100,000 viral genomes per cell. 24 h post-infection (post-
infection) cells were harvested and GFP+ cells were quantitated by flow
cytometry (A.). Treated cells were also analyzed for intracellular
transgene copy number normalized to the lamin B gene (B). Cell
viability was also measured under the indicated conditions via dye
exclusion (C) and significant decreases (p-value,0.05) were noted in all
cases (compared to no virus) except with AAV4 treatment (p-
value = 0.44). The results are averaged from at least 6 replicates for
each treatment group and the standard deviation is depicted.
doi:10.1371/journal.pone.0027520.g001

Viral DNA Induces Apoptosis in hESCs
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ride gradient centrifugation), the dialysis buffer, the GFP protein,

and AAV particle purity was deemed high by electron microscopy

(unpublished data).

AAV induces apoptosis in hESCs
The dose-dependent toxicity of scAAV3B-egfp was evaluated

over time, and morphological changes characteristic of apoptosis

(small, spherical, loss of matrix adherence) were observed as early

as 8 h after rAAV infection. At 24 h post-infection, hESC viability

was assessed by microscopy and quantitated by dye exclusion

(Figure 2A, B). At this time point, over 70% of cells were

compromised for membrane integrity, compared to vehicle only

(PBS) treatment controls (labeled no virus), at both tested MOIs

(Figure 2A, B).

To confirm that the rAAV-induced toxicity observed in hESCs

is characteristic of apoptosis, a variety of assays were employed.

First, the ability of scAAV3B-egfp to induce cell death was

examined in hESCs cultured in the presence of the pan-caspase

inhibitor, Z-VAD-FMK. Upon incubation with Z-VAD-FMK, the

toxic phenotype was completely abrogated 24 h post-infection

(Figure 2). As a second method to determine the mechanism of cell

death, membrane changes characteristic of apoptosis were

evaluated by annexin V staining 8 h after scAAV3B vector

addition. At this time point, annexin V staining increased 3-fold in

cells treated with rAAV, an effect that was completely eliminated

by caspase inhibition (Figure 2C). Chromosome condensation was

evaluated by DAPI staining as a third and final method to

determine whether the hESCs were undergoing apoptosis in

response to rAAV transduction. Eight hours after scAAV3B

infection, hESCs demonstrated a dramatic increase in punctate

nuclear staining compared to cells that were not treated (Figure

S1). Collectively these results demonstrate that the observed hESC

toxicity induced by rAAV transduction is apoptosis.

To determine if the rAAV-induced apoptosis was specific to the

WiCell H9 line, CBh6, WiCell H7s, and H1 cells were also

evaluated. rAAV transduction videos of WiCell H7s, H9s and

Figure 2. Recombinant AAV Transduction of hESCs induces Apoptosis. Human embryonic stem cells (hESCs) were treated with 100,000
AAV3B particles packaged with a self-complementary CMV-egfp genome. 24 h post-infection (p.i.) cellular morphology and GFP fluorescence was
observed by microscopy in the presence or absence of a pan-caspase inhibitor (A). Cell viability of hESCs treated with the indicated amount of the
scAAV3B-egfp vector described above was analyzed by dye exclusion 24 h post-infection (B). Significant decreases (p-value,0.05) were noted in all
cases except when the caspase inhibitor was used (p-value.0.1). hESCs treated as described were analyzed for annexin V staining 8 h post-infection
(C). A significant increase (p-value,0.05) was noted for cells treated with only rAAV3B. The data in (B) and (C) represents the average from at least 6
replicates per treatment group and the standard deviation is depicted as well.
doi:10.1371/journal.pone.0027520.g002
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CBh6 hESCs demonstrating this phenomenon can be found at

http://genetherapy.unc.edu/samulski.htm. For instance, H1 cells

displayed a GFP+ phenotype 24 h post-infection by scAAV3B-egfp

(MOI 1e5; Figure S2A). However, in contrast to the results using

the H9s, the onset of complete rAAV-induced apoptosis was

delayed in the H1s with only a 2-fold decrease in viability 24 h

post-infection followed by near complete toxicity during the next 3

days (Figure S2B). These results suggest that the kinetics of rAAV-

induced apoptosis in hESCs may correlate with the cell cycle

kinetics of the particular hESC. Additionally, the H1 cells exhibit

decreased abundance of the Oct4 transcript (relative to GAPDH),

a decreased mitotic entry rate, and a lower S-phase fraction when

compared to the H9s (Figure S2 C, D).

To demonstrate that the rAAV vector preps do not induce

indiscriminate apoptosis, and that this phenomenon is unique to

pluripotent cells, rAAV transduction of partially differentiated

hESCs was investigated. hESCs were grown to embryoid bodies

and differentiated towards a neural lineage for 15 days. The same

scAAV3B-egfp vector preparation previously shown to induce

apoptosis in hESCs was used to infect the differentiated cells (MOI

of 100,000). At 24 h post-infection, the majority of the

differentiated cells demonstrated a GFP+ phenotype with negligi-

ble toxicity consistent with a previous report (Figure S3; 25). This

result is consistent with a previous report on the etoposide-induced

DNA damage response in pluripotent hESCs versus hESCs in

various stages of differentiation [3].

Recombinant AAV Transduction induces a DNA damage
response in hESCs

The TP53 gene product, p53, plays an integral role in

coordinating the cellular response to damaged DNA, including

cell cycle arrest and the induction of apoptosis. Upstream sensors,

such as ATM and DNA-PK, activate p53 following DNA damage,

in part, by phosphorylation at serine 15 (ser-15), a phenomenon

reported for both differentiated cells and hESCs [3]. Therefore, to

investigate whether a DNA damage response was induced in

hESCs upon rAAV transduction, we analyzed total p53

abundance and the phosphorylation status of ser-15 of p53

(Figures 3, S5). Total protein from hESCs treated with scAAV3B-

egfp (MOI of 100,000) was analyzed by Western blot 8 h post-

infection. The results demonstrate a dramatic increase in the

phosphorylation of p53ser-15 for rAAV transduced cells while no

phosphorylation at that site was observed for untreated cells

(Figure 3). Another indicator of damaged DNA, phosphorylation

of ser-139 on H2AX (gamma-H2AX), was also investigated.

Increased gamma-H2AX was observed for hESCs treated with

AAV3B-egfp for 8 h (Figure 3). Collectively, the results thus far

demonstrate that rAAV transduction of hESCs induces a DNA

damage response that concludes in apoptosis.

Recombinant AAV-induced hESC apoptosis is p53-
dependent

As p53 has been reported necessary for the induction of

apoptosis in hESCs in response to UV-induced DNA damage

and etoposide [2], its role in rAAV-induced apoptosis was

investigated. First, a p53 knockdown polyclonal hESC line was

generated using lenti-viral vectors to deliver constitutively

expressed p53 shRNA. The knockdown of p53 transcript was

confirmed using Q-PCR of cDNA and normalized to the

GAPDH transcript. The polyclonal p53 shRNA H9 population

demonstrated a 45-fold reduction in the p53 transcript (normal-

ized to GAPDH) compared to the wt parent (Figure 4A). In

addition, a marked decrease in p53 protein abundance was also

observed (Figures S4A, S5) This H9 cell population (referred to as

hESC/p53-) maintained near identical levels of Oct4 transcrip-

tion as determined by Q-PCR compared to the wt parent (Figure

S4B). Next, these cells were transduced by scAAV3B-egfp

(MOI = 100,000) and harvested for determination of cell viability

24 h post-infection. At this time point there was a 2-fold decrease

in cell viability for rAAV treated hESC/p53- cells compared to a

10-fold decrease for wild type hESCs when compared to their

respective untreated control (Figures 2B and 4B). Additionally,

transduction (GFP+ phenotype) was scored in nearly all

scAAV3B-egfp treated hESC/p53- cells with retention of normal

hESC morphology (Figure 4C). After 5 days post-infection, a time

point when all transduced wild type hESCs are dead, the majority

of p53 deficient hESCs survive and maintain productive

transduction as evidenced by a GFP+ phenotype (Figure

S4C).Collectively, these data demonstrate that the apoptotic

DNA damage response induced by rAAV is dependent upon p53.

p53 trans-activation following Recombinant AAV
transduction

p53 functions as a transcriptional regulator of genes involved in

cell cycle control and apoptosis, among other processes.

Therefore, we analyzed transcript abundance following rAAV

transduction for the cyclin dependent kinase inhibitor 1A (p21),

Btg2, Bcl-2, Bax, and Puma. The p21 and Btg2 transcripts both

increased .10-fold 8 h post-infection (Figure 5A). The cellular

response for these two transcripts in the hESC/p53- cells was also

evaluated in the same manner. The results demonstrate that the

17-fold increase in p21 transcription was p53-dependent while

the increase in Btg2 transcription was p53-independent

(Figure 5A). Given that rAAV-induced apoptosis is dependent

on p53 (Figure 4B, C), and p21 transcriptional induction is p53-

dependent (Figure 5A), p21 abundance was directly evaluated by

Western blot analysis. Despite our successful detection of p21 in

our positive control cells (human fibroblasts), no p21 was detected

in the hESCs despite the 17-fold induction of transcription

following AAV infection (Figure 5B). This result is consistent with

barely detectable levels of p21 protein in hESCs despite a UV-

induced stimulation of p21 transcription [2]. No significant

change in transcript abundance was noted for promoters of genes

involved in regulation of apoptosis (Bcl-2, Bax, Puma; Figure S6).

This suggests that the apoptotic response in rAAV transduced

hESCs is mediated by p53 in a transcription independent

manner.

Figure 3. Recombinant AAV Transduction Activates a DNA
Damage Response in hESCs. Total protein from scAAV3b-egfp
transduced hESCs was harvested 8 h post-infection. Western blotting
analysis was performed using the indicated antibodies.
doi:10.1371/journal.pone.0027520.g003
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Figure 4. Recombinant AAV-Induced hESC Apoptosis is p53-Dependent. A polyclonal p53 deficient H9 hES cell line was constructed using
lenti-viral transduction of a p53-specific shRNA cassette. After selection, total RNA was harvested, converted to cDNA and the relative abundance of
p53 transcript, compared to the GAPDH housekeeping transcript, was determined by Q-PCR (A). The parental H9 hESCs were used as a wild type
control (A). scAAV3B-egfp transduction of p53 deficient hESCs at a MOI of 100,000 was performed. 24 h post-infection viability was determined by
dye exclusion (B) microscopy (C). The results in (A) and (B) are averaged from at least 6 replicates for each treatment group and the standard
deviation is depicted. The differences noted in both (A) and (B) have p-values,0.005).
doi:10.1371/journal.pone.0027520.g004
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Recombinant AAV infection impairs S-phase progression
in hESCs

The p21 gene product regulates cell cycle progression at the G1

checkpoint via direct inhibition of cyclin-CDK2 and cyclin-CDK4

activities [16]. However, the role of p21 in hESCs remains largely

unknown as protein levels are barely detectable and the presence

of a G1/S checkpoint in hESCs is debatable [2,17,18]. To

investigate the hESC cell cycle response following rAAV

transduction, cell cycle kinetics were examined after a 2 hr

nocodazole treatment which prevents mitotic exit. Cells were

stained with an MPM-2 antibody, a specific marker of mitosis, and

DAPI to measure cellular DNA content [35]. Samples were then

analyzed by flow cytometry and MPM2+ cells with 4N DNA

content were considered mitotic. Immortalized human diploid

fibroblasts, which tolerate rAAV transduction, were initially

investigated after vector treatment and displayed an increased

fraction of cells in G2 phase, consistent with previous reports

(Figure 6A) [5]. In contrast, rAAV transduced hESCs displayed

increases in what appears to be the G1 fraction 8 h after rAAV

infection by this assay (Figure 6B). Since the measurement of DNA

content alone cannot accurately distinguish between true G1 cells

and very early S-phase cells, EdU incorporation was measured

after rAAV infection to identify hESCs undergoing DNA

replication. The hESCs entered and progressed through S-phase

as exhibited by the incorporation of EdU evenly across cells with

2N-4N DNA content (Figure 6C, D). In contrast, the fraction of

cells in early S-phase after scAAV3B-egfp transduction increased

almost 2-fold over the non-infected hESCs (Figure 6C, D). Taken

together, these results suggest that transduced hESCs readily enter

S-phase and subsequently, undergo apoptosis [5].

The AAV origin of replication induces apoptosis in hESCs
Since rAAV infection has been previously regarded as non-toxic

in many other cell types, it was important to delineate the

mechanism by which rAAV induces apoptosis. The results above

clearly demonstrate an apoptotic DNA damage response upon

rAAV infection suggesting the single-strand DNA is toxic.

However, it remains a formal possibility that the protein capsid

is involved in the apoptotic response and therefore, we treated

hESCs with empty rAAV capsids. In these experiments, empty

Figure 5. p53 Transactivation Occurs Following Recombinant AAV Infection. (A) Fold induction of p21 and Btg2 transcripts via quantitative
PCR following rAAV infection. Data is presented as the value determined for hESCs infected with 100,000 AAV3B vectors 8 h post-infection divided by
the transcript amount for hESCs not treated. Values were determined in both H9s and H9s with p53 knocked down as described in text (p53-). A
significant difference was noted only for p21 transcript levels in the absence of p53 (p-value,0.005). B) Western blot analysis of p21 abundance
following rAAV infection (8 h post-infection). Human fibroblasts treated with the DNA damaging agent etoposide was used as an antibody control.
The results are averaged from at least 3 replicates for each treatment group and the standard deviation is depicted.
doi:10.1371/journal.pone.0027520.g005
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AAV2 particles were utilized instead of AAV3B particles, since an

antibody to intact AAV2 particles exists and can be used to

determine particle number. Furthermore, previous work from our

laboratory has demonstrated that empty AAV2 particles efficiently

enter Hela cells and accumulate peri-nuclear, similar to the

majority of genome containing capsids [19]. No significant toxicity

was observed for AAV2 empty capsid treated hESCs, even at very

high particle numbers (Figure 7). In contrast, dramatic toxicity was

observed for hESCs treated with scAAV2-egfp (Figure 1C). This

result suggests that receptor binding, virus particle uptake,

endosomal trafficking, and peri-nuclear accumulation do not

induce the observed apoptosis in hESCs.

Since the transgene product (GFP) and the AAV capsid were

not involved in hESC apoptosis (Figure 7, unpublished data), it

was hypothesized that the AAV genomic elements might be

responsible for the apoptosis observed in hESCs. In fact, a

previous report demonstrated that the AAV ITR sequence induces

apoptosis in p53-deficient cancer cells [5]. To investigate whether

the AAV ITR is toxic in hESCs we performed DNA microinjec-

tions using oligonucleotides having AAV ITR homology. In

preliminary experiments, we observed that the entire 145 nt ITR

sequence (Figure 8A) induces rapid hESC apoptosis. We then

reduced the AAV ITR by elimination of the BB’, CC’, and DD’

elements, while retaining only the AA’ sequences (AA’oligo,

Figure 8A). This sequence contains the AAV Rep binding

element, a GC-rich telomeric tetrad repeat which is among the

minimal elements necessary for rAAV replication. The 80 nt DNA

oligonucleotide exhibiting the AAV AA’ sequence was microin-

jected into hESCs along with a labeling dye. Two hours post-

injection, the majority of cells receiving the AA’ oligonucleotide

underwent apoptosis, while cells microinjected with a sized-

matched control oligonucleotide, containing no ITR homology,

were healthy in appearance (Figures 8B, C, S7). The toxicity

induced by the AA’ oligonucleotide was completely abrogated in

cells grown in caspase inhibitor 1 h prior to injection and

thereafter (Figures 8B, C, S7). No lethal bystander effect was

noted for cells neighboring those injected with the ITR

oligonucleotide. The AA’ oligonucleotide was then dissected into

2 complementary oligos, A and A’, both 39 nt in length.

Remarkably, the 2 oligonucleotides induced contrasting pheno-

types when injected into hESCs; the A oligo was well tolerated and

did not induce significant toxicity whereas the A’ induced

complete toxicity a few hours following the injections (Figure

S7). It is known that 39 strands of human telomeres contain short

G-rich sequences that exist as single-strand overhangs similar the

AAV ITRs. These telomeric regions often adopt higher order

structures known as G-quartets which can stack to form G-

quadruplexes via inter- or intra-molecular binding (reviewed in

[20]). Additionally, such structures are involved in stalled

replication forks, apoptotic signaling and the formation of these

structures are often analyzed by native gel electrophoreses [21].

The A oligo migrated at a single species of the predicted 39-mer

size, whereas the G-rich A’ oligo migrated faster suggestive of an

intramolecular quadruplex [21]. In addition, the A’ oligo also

migrated as a higher order species demonstrating intermolecular

interactions which could indicate the formation of a G-quadruplex

[21]. Collectively, these results demonstrate that a small G-rich

telomeric sequence within the AAV ITR induces apoptosis in

hESCs and lends further support that the AAV ITRs are also toxic

upon AAV transduction of hESCs.

Discussion

Our investigation using AAV vectors for the genetic modifica-

tion of hESCs encountered an unexpected phenomenon: rAAV

transduction directly correlated with hESC apoptosis. This

phenotype was demonstrated to be independent of the viral

capsid (Figures 1, 7), but rather, was attributed to the unique

hESC DNA damage response elicited by the single-strand AAV

origins of replication (ITR sequence), which are present on both

wt and rAAV genomes. Consistently, DNA damage signaling

cascades were induced upon rAAV transduction in hESCs and the

apoptotic finale was dependent upon p53. The ITR dissection

data from DNA microinjections supports a model in which G-rich

repetitive elements of the AAV minimal origin of replication are

the actual ‘‘apoptotic trigger’’. The notion that this AAV

‘‘telomeric’’ DNA is toxic is consistent with reports of single-

strand G-rich repetitive DNA at dysfunctional telomeres triggering

a p53-dependent apoptotic response in other mammalian cell

types [22,23,24]. The inability of hESCs to tolerate transduced

AAV genomes is the first example of rAAV toxicity in a wild type

human cell and highlights the different DNA damage responses

among hESCs, particular cancers [5], and differentiated cell types.

In contrast to reports of AAV-induced toxicity in p53 deficient

cancer cells [5], the work herein demonstrates the opposite

scenario in hESCs; rAAV-induced toxicity is dependent upon p53.

This discrepancy likely reflects the unique role of p53 in hESCs in

which DNA damage induces p53-ser15 phosphorylation, p53

accumulation and p53-dependent promoter trans-activation;

however some downstream effectors are not elevated at the

protein level [2]. These observations were demonstrated in this

work and the dramatic p53-depdendent induction of the p21

Figure 7. AAV empty capsid transduction of hESCs is non-toxic.
AAV2 capsids were administered to hESCs at the indicated dose. Cell
viability was determined after 24 h by dye exclusion. The average of at
least 6 replicates is presented with the standard deviation. No
significant difference (p-value.0.1) was noted when treatment groups
were compared to the no capsid control).
doi:10.1371/journal.pone.0027520.g007

Figure 6. AAV Infection of hESCs Induces Early S-phase Accumulation. A) Normal human fibroblasts treated with 100,000 AAV3B vectors
were treated 6 h post-infection with nocodazole. 2 h later cells were harvested and stained with DAPI and a mitotic marker as described in the text.
Flow cytometry allowed the determination of cells in the indicated growth phases; however by this assay early S-phase and G1 cells are not
distinguished. B) The method described above was performed on hESCs and processed in the same manner. C) hESCs treated with AAV as described
above were given EdU 6 h post-infection. 2 h later cells were harvest, stained with DAPI and analyzed using flow cytometry. A representative dot plot
is shown with the boxes drawn to represent different growth phases. D) Average quantitation of cells depicted in C). Collectively, the results are
averages from at least 3 independent experiments and the standard deviation is depicted (* indicates p-value,0.005).
doi:10.1371/journal.pone.0027520.g006
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transcript upon AAV transduction did not allow detectable p21

protein. Consistently, work has demonstrated the post-transcrip-

tional regulation of p21 protein abundance and that multiple

micro RNAs, specifically expressed in pluripotent cells, target the

39-UTR of the p21 message to down-regulate translation [4].

Another notable attribute of p53 in hESCs is the ability to induce

Figure 8. AAV Inverted Terminal Repeats Induce Apoptosis in hESCs. A) Cartoon depiction of the AAV inverted terminal repeat. The
experimental oligonucleotides are also depicted as AA’ (80-mer), A (39-mer) and A’ (39-mer). B) hESCs were injected with AA’ or a control
oligonucleotide with no AAV sequence under the indicated conditions. The DNA solution contained rhodamine allowing visualization of injected cells
(red). Microscopy was performed at the indicated time points. C) DNA microinjections of the A or A’ oligonucleotides as described above. D) Native
gel analysis of the A and A’ oligonucleotides as described in the text.
doi:10.1371/journal.pone.0027520.g008
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transcription-independent apoptosis via localization to the cyto-

plasm and direct activation of Bax followed by cytochrome C

release and caspase activation [2,26]. These reports are consistent

with the hESC response to rAAV transduction described herein, in

which transcriptional induction of known apoptotic effectors was

not observed, however the event was p53-dependent and

abrogated by caspase inhibitors.

Within the generalized term of pluripotency there appears to be

various stages which can be delineated based on their response to

DNA damaging agents, the significance of which is under current

investigation. This notion is supported by hESCs of different

origins which display distinct properties, such as levels of the Oct4

transcript and replication indices, which directly correlate to the

induction of rapid apoptosis in response to rAAV transduction or

etoposide (Figures 2, S1; unpublished data). This may not be

surprising as hESCs exhibit high rates of apoptosis, undergo

spontaneous differentiation and multiple passages induce genomic

alterations [1,27,28]. These observations are perhaps further

illustrated by two groups who have recently reported the genetic

modification of hESCs using rAAV [29,30]. In the first instance,

AAV gene correction was demonstrated in dissociated hESCs

cultured in the presence of a ROCK inhibitor which has been

found to pacify hESCs tendency towards apoptosis [29,31]. The

second instance is not readily explained, however, it is possible that

a small fraction of hESCs demonstrate tolerance [30]. We

speculate that cell differences, perhaps due to variations in the

initial aliquots or perhaps maintenance of pluripotency during

culture, likely account for the observed differences. Intriguingly,

hESCs and murine ESCs (mESCs) also demonstrate inherently

different DNA damage responses, including the presence of a

debatable G1/S checkpoint [2]. In addition, mESCs undergo less

spontaneous apoptosis and differentiation and are genomically

stable in comparison to hESCs [32,33]. Consistent with these

reports, yet in contrast to the hESC transduction data, we, and

others, have observed that mESCs tolerated AAV transduction, an

(unpublished data; [25,34]). A similarity is that by definition

hESCs of different origins and mESCs are grouped under the

general term of pluripotent, despite their altered response to DNA

damage and predisposition for apoptosis.

Further characterization of the AAV induced DNA damage

response in human pluripotent, cancer and differentiated cell types

is currently underway and has strong implications for understand-

ing the basis of oncogenesis and differentiation, as well as for the

optimization of AAV as a DNA delivery vector in stem cells.

Materials and Methods

Cell culture conditions
Human embryonic kidney cells (293s, ATCC CRL-1573) for

rAAV production, and normal human fibroblasts (NHF) were

maintained at 37uC in a 5% CO2 atmosphere in Dulbecco’s

modified Eagle’s medium (Sigma) supplemented with 10% fetal

bovine serum and penicillin–streptomycin (100 U/ml). These

experiments employ the commonly used WiCell H9 cells (hESCs

unless otherwise indicated) from the National Stem Cell Bank,

initially obtained from excess human embryos following in vitro

fertilization. Cells were cultured in conditioned hESC complete

medium and grown on fibronectin coated plates. The experiments

herein were performed 2 days after passage at a time when hESC

cell colonies are isolated and are predominantly monolayers. At

this time point, Oct4 is constitutively expressed and localized

within the nucleus. The hESC line H9 (WA09, XX, Passage 30–

35), was cultured on feeder-free fibronectin coated plates and fed

with mouse embryonic fibroblasts (mEF) conditioned human ES

medium. mEFs were mitomycin-c inactivated and plated in

fibroblast medium [Dulbeccos modified eagles medium (Invitro-

gen)], 10% fetal bovine serum (Invitrogen), 2 mM L-glutamate

(Invitrogen), and 1% Penicillin/Streptomycin (Invitrogen). 24 h

after attachment, the medium was changed to human ES complete

medium (77% DMEM:F12 (Sigma), 20% Knockout SR (Invitro-

gen), 1% Non-Essential amino acids (Invitrogen), 1% Penicillin/

Streptomycin (Invitrogen), 1 mM L-Glutamine (Invitrogen),

0.1 mM beta-mercaptoethanol (Sigma), 4 ng/ml basic Fibroblast

Growth Factor (Invitrogen). After 24 hours, the medium was

removed, filtered and used as conditioned medium for human ES

cultures. Cells were cultured in 5% CO2 at 37uC and manually

passaged every 5–6 days to maintain undifferentiated cultures. H9

hESCs were differentiated towards a neural lineage using

procedure SOP-CH-207 Rev A from the national stem cell bank.

Production of self-complementary rAAV
A previously described triple transfection method was used to

generate the vectors used herein [36]. This method used the pXR

series of plasmids which all contain rep2 of AAV and individually

the capsid genes of serotypes 1–9 (ex. pXR1 is prep2 cap1). The

phpaTRsk+ plasmid [8] was used to generate self-complementary

rAAV genomes containing the egfp gene expressed from the CMV

promoter. Following AAV production and cesium chloride

gradient separation [36], fractions were analyzed for self-

complementary (.90%) genomes by Southern analysis, dialyzed

against PBS, and titered by quantitative PCR (Q-PCR) using the

egfp primers: forward primer: 59-AGC AGC ACG ACT TCT

TCA AGT CC-39 and reverse 59-TGT AGT TGT ACT CCA

GCT TGT GCC-39.

Production of empty particles
Production of empty and full capsids followed the rAAV

production scheme described above, except that an ITR

containing plasmid was not used. For these experiments AAV2

empty capsids were produced and tittered by Western dot blotting

as described [36]. Membranes were probed with the primary

antibody A20 [36] at 1/20 dilution in 16 PBS-0.5% tween and

detection followed standard protocols [36]. It is important to note

that the monoclonal A20 antibody recognizes an epitope unique to

intact AAV2 capsids [37].

Determination of intracellular transgene copy number
At 24 h post-infection cells were harvested and total DNA was

purified using a Qiagen DNEasy preparation kit. This DNA then

served as the template for a Q-PCR reaction using either primers

for amplification of egfp (above) or the human lamin B gene:

Forward 59-GTT AAC AGT CAG GCG CAT GGG CC-39 and

reverse 59-CCA TCA GGG TCA CCT CTG GTT CC-39.

Viral transduction
The indicated amount of rAAV particles were added in an

equal volume of PBS to hESCs grown in a 24 well plate. At the

indicated time points, cells were analyzed by microscopy and flow

cytometry.

Analysis of GFP+ cells
GFP+ cells were visualized by fluorescent microscopy and

quantitated by flow cytometry. For flow cytometry, a minimum of

10,000 similar sized/shaped single cells that were 7-AAD negative

were counted, at an event per second rate of 1,500–2,000 for each

replicate at the indicated times. The GFP+ gate was designed such

that untreated cells did not give a single GFP+ event beyond a

Viral DNA Induces Apoptosis in hESCs

PLoS ONE | www.plosone.org 10 November 2011 | Volume 6 | Issue 11 | e27520



million counted cells. It was also positioned away from false, or

transitioning, GFP+ cells to obtain no false positives. Visualization

of pooled GFP+ cells after FACs sorting confirmed the GFP+
phenotype (Flow Cytometry Core at UNC-Chapel Hill). These

experiments had a N = 3 and were performed in 8 independent

experiments. The standard deviation is depicted in the figure.

Western blot
Sample preparation for Western analysis followed standard

techniques [38]. Unlabeled primary antibodies against p53 (Cell

Signaling), p21 (Abcam), gamma-H2AX (Millipore) and p53

phospho-ser15 (Cell Signaling) were used as recommended by the

manufacturer. The secondary antibody specific for the species in

which the primary antibody was generated, and labeled with Cy5,

was used for visualization on a GE typhoon scanner.

Quantitative PCR
To quantitate the transcript level of selected genes hydrolysis

probes-primer set was used. The probes are provided by Roche

Universal Probe Library Set, Mouse (UPL # 04 683 641 001), and

Roche assay design center program was used to find ideal pair of

primer and probe for each transcript (available upon request). The

RT-qPCR was done on LightCyclerH 480 Instrument in 10 ul of

reaction volume in a 96 well plate. In each reaction 2 ul (50 ng) of

cDNA, 5 ul of the probe master mix (26), 0.5 ul of 10 uM each

forward and reverse primers, 0.5 ul of 10 uM of specific probe and

2.5 ul of RNAase/DNAase free water was used. No template

control was included in each run to rule out the possibility of

contamination for each primer-probe set. The reaction has a hot

start step at 95uC for 10 min for 1 cycle and 45 cycles of

denaturation at 95uC for 10 seconds and annealing and extension

at 60uC for 30 seconds. The baseline and the cp (crossing points)

values were already calculated by the LC software 1.5 (Roche

applied biosystem). The results were imported to the MS excel to

perform relative quantitation analysis on each transcript using the

delta-delta CT method. The experiments contained a N = 3 and

standard deviation is depicted in the corresponding Figures.

DNA Microinjections and oligonucleotide analysis
Human embryonic stem cells (H9) were plated onto 35 mm2

dishes and were microinjected on day three of culture using a

Narishige micromanipulator mounted on a Leica inverted

fluorescent microscope using needles pulled on a Narishige PC-

10 micropipette puller. Approximately 50 hESCs were injected for

each experimental condition in 2 independent experiments (note

that the A and A’ injections were performed only on one occasion).

The microinjection buffer contained 100 mM KCl and 10 mM

KPi, pH 7.4. DNA microinjections contained 100 ng/ul of a

DNA oligonucleotide containing AAV ITR sequence (59-GGC-

CACTCCCTCTCTGCGCGCTCGCTCGCTCACTGAGGCG-

CCTCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGG-

CCA-39) or a control a DNA oligonucleotide with no ITR homo-

logy (59-GTTAGTTCACTGGGTTTATCCATATGCCAAAT-

TGAGGGACCCAAATGTTATTTCAACTATCAATGTTAT-

GAGCTTAGCCG-39) as well as A (59- GGCCACTCCCTCT-

CTGCGCGCTCGCTCGCTCACTGAGGC-39) and A’ (GCC-

TCAGTGAGCGAGCGAGCGCGCAGAGAGGGAGTGGCC).

To block caspase activation, cells were pre-treated for 30 min with

50 uM zVAD-FMK (Promega), a pan-caspase inhibitor. The cells

were co-injected with 5 mg/ml rhodamine dextran for visualiza-

tion. Following injections, viable cells were identified as rhodamine

positive and intact using phase bright microscopy. For investiga-

tion of oligonucleotide intra- and inter-molecular interactions, the

A and A’ 39-mers were denatured and then allowed to anneal as

previously described [21]. The DNA was then electrophoresed on

a non-denaturing 12% polyacrylamide gel and visualized by DNA

staining.

Immunofluorescence
To quantitate the levels of c-H2AX (Ser 139), hESCs were

treated with single-strand AAV2 particles harboring a partial gfp

gene fragment [11] at 1,000, 10,000 and 100,000 viral genomes/

cell. Cells were harvested 6 h post-infection and fixed in 95%

ethanol/5% acetic acid overnight (O/N) at 4uC. Cells were

washed in IFA buffer (10 mM HEPES pH 7.4, 150 mM NaCl,

4% fetal bovine serum, 0.1% NaN3) containing 0.5% tween 20.

Cells were then re-suspended in the primary antibody staining

solution (80% IFA, 0.5% tween 20, 20% DNase free RNase) with

2 ug/ml anti-H2AX phospho-Ser 139 (Millipore) FITC conjugat-

ed antibody. Following O/N incubation at 4uC, cells were washed

again in IFA-0.5%-Tween 20 and resuspended in the flow analysis

solution (IFA, 0.5% tween 20, 5 ug/ml RNase and 5 ug/ml

propidium iodide). Single cells with 2-4N DNA content were gated

on for quantitation of c-H2AX-FITC labeling using a N = 3 in 3

independent experiments. The standard deviation is presented in

the Figure 2B.

For annexin V staining, hESCs were pre-treated with a caspase

inhibitor prior to infection with 10,000 particles of scAAV3B-

CMV-egfp. 8 h post-infection cells were harvested and stained with

an annexin V – Alexafluor 647 conjugate according to the

manufacturer’s instructions (Invitrogen). The degree of labeling

was determined by flow cytometry using a N = 3 on 2 different

occasions. The standard deviation is depicted in the figure.

Flow Cytometry Cell Cycle Analysis
Dividing hESCs were treated with 200 ug/mL nocodazole and

10 uM EdU was added to each sample 2 h before harvest.

Samples were harvested 0, 2, 4, or 6 h after nocodazole addition

with TrypLE (Invitrogen, Carlsbad, CA) and cells were pelleted by

centrifugation. All samples were fixed in 95% ethanol/5% acetic

acid, and stained with a Cy5-labeled MPM-2 primary antibody

(Millipore, Billerica, MA) to identify mitotic cells [35]. To

determine S phase fractions, EdU was detected using a Click-It

EdU-488 flow cytometry kit (Invitrogen, Carlsbad, CA) according

to manufacturer’s instructions. DAPI was used to measure DNA

content. Samples were measured on a Dako CyAN ADP

instrument at the Flow Cytometry Core Facility at UNC-CH.

Flow cytometry samples were analyzed using Summit 4.3 software

to quantify the percentage of hESCs with 4N DNA content that

were also labeled with MPM-2, a specific marker of mitosis. The

percentage of mitotic cells for each sample was plotted against time

and the resulting slope of the line was used to measure the rate of

entry into mitosis (the percentage of hESCs entering mitosis per

hour). hESCs that incorporated EdU and contained 2N-4N DNA

content were measured as the S phase fraction. Results are an

average of three independent experiments in each hESC cell line

and the standard deviation is depicted on the graph.

Supporting Information

Figure S1 Chromosome condensation in rAAV treated
hESCs. Chromosome condensation was evaluated by DAPI

staining to determine whether the hESCs were undergoing

apoptosis in response to AAV infection. Eight hours after

scAAV3B infection, hESCs treated with 100,000 scAAV3B-egfp

particles demonstrated a dramatic increase in punctate nuclear

staining compared to cells that were not treated.

(EPS)
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Figure S2 Recombinant AAV Transduction of hESC
WiCell H1s. A) WiCell H1s were transduced with 100,000

particles of scAAV3B-CMV-egfp. The cells were harvested for GFP

analysis by flow cytometry 24 h after virus addition. B) Cell

viability was measured by dye exclusion at the indicated

timepoints following transduction of H1 cells by 100,000

scAAV3B-CMV-egfp particles. C) Total RNA was harvested from

H9 or H1 hESCs and used as a template for reverse transcription.

cDNA was investigated by Q-PCR to determine the amount of

Oct4 transcript in each line normalized to the housekeeping

transcript GAPDH. D) Rates of mitotic entry for H1 and H9

hESCs. Dual color flow cytometry using a mitosis-specific

antibody to phospho-MPM2 epitope (Cy5) and DAPI to analyze

DNA content was employed to measure mitotic entry rates.

Samples were subjected to nococdazole treatment for 2, 4, or

6 hours. Mitotic entry rates were calculated as linear regression

slopes generated from scatter plots of the percentage of MPM2+
cells over time. (* indicates p-value,0.005).

(EPS)

Figure S3 Recombinant AAV Transduction of H9 cells
Differentiated Towards a Neural Lineage. A) hESCs were

grown to embryoid bodies and differentiated towards a neuronal

lineage for 15 days. Then, 100,000 scAAV3b-CMV-egfp particles

were used for transduction and viability was determined 24 h later

by dye exclusion. B) Immuno-fluorescence of cells following

scAAV3B-CMV-egfp transduction using an anti-vimentin antibody

and the native eGFP fluorescence.

(TIF)

Figure S4 Characterization and Transduction of p53
deficient hESCs. (A) Equal amounts of protein from wild type

H9 hESCs and those knocked down for p53 transcript [described

in (B)] were analyzed for total p53 abundance by Western blotting.

Alpha-tubulin served as additional loading controls. (B) Wild type

or p53 knockdown hESCs were analyzed for the Oct4 transcript

by reverse transcriptase followed by quantitative PCR using cDNA

template. The values were normalized to levels of the housekeep-

ing transcript GAPDH. Results are presented as transcript

induction which is the value determined for AAV infected cells

divided by the value determined for the no treatment group (p-

value.0.5). (C) H9 hESCs deficient for p53 were transduced with

transduced by rAAV3B-gfp (100,000 viral genomes/cell) and

images of colony integrity and GFP fluorescence are provided at

the time points following transfection.

(EPS)

Figure S5 Densitometry Analysis of Western Blots. The

indicated Western blotting experiments were analyzed for a

relative abundance using a storm scanner and Image Quant 5.2.

Internal loading controls were used for normalization. (ND

indicates no signal detected and NT represents no treatment).

(EPS)

Figure S6 Transcript Abundance of Apoptotic Effectors.
H9 hESCs were treated with rAAV3B-CMV-egfp (1e5 viral

genomes/cell) or equal volume of PBS. RNA from treated cells

was harvested, converted to cDNA and copy number of the

indicated transcripts was determined by Q-PCR. Lamin B2

transcript abundance was used for normalization to cell number

and the data is presented as the normalized transcript abundance

of the rAAV treated cells divided by the vehicle control. In all

cases the transcript abundance change in cells treated with AAV

was not significantly different than the non-treated (NT) controls

(p-value.0.2).

(EPS)

Figure S7 Quantitation of the DNA Microinjection
Experiment. For each of the indicated injection regimens

approximately 100 hESCs were injected with the indicated DNA

oligonucleotide (oligo) as described in the results and methods.

Two hours post-injection rhodamine positive cells were tallied and

are presented as a percentage of the total injected. (* indicates p-

value,0.005).

(EPS)
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