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Abstract

The olfactory system, particularly the olfactory epithelium, presents a unique opportunity to study the regenerative
capabilities of the brain, because of its ability to recover after damage. In this study, we ablated olfactory sensory neurons
with methimazole and followed the anatomical and functional recovery of circuits expressing genetic markers for I7 and
M72 receptors (M72-IRES-tau-LacZ and I7-IRES-tau-GFP). Our results show that 45 days after methimazole-induced lesion,
axonal projections to the bulb of M72 and I7 populations are largely reestablished. Furthermore, regenerated glomeruli are
re-formed within the same areas as those of control, unexposed mice. This anatomical regeneration correlates with
functional recovery of a previously learned odorant-discrimination task, dependent on the cognate ligands for M72 and I7.
Following regeneration, mice also recover innate responsiveness to TMT and urine. Our findings show that regeneration of
neuronal circuits in the olfactory system can be achieved with remarkable precision and underscore the importance of
glomerular organization to evoke memory traces stored in the brain.
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Introduction

The olfactory system offers a unique opportunity to study the

mechanisms of neuronal regeneration. Lying on the olfactory

epithelia (OE), olfactory sensory neurons (OSNs) are responsible

for the initial process of odorant detection. This neuronal

population is replaced continuously during adult life [1,2,3].

Several studies have shown the remarkable capability of regener-

ation of OSNs in the OE and reinnervation of their postsynaptic

targets in the olfactory bulb (OB) after diverse insults [4–7].

Moreover, the organization of neuronal circuits within the OE and

OB allows for monitoring of anatomical and functional recovery

after damage [1]. Each OSN expresses only one of ,1000 possible

olfactory receptors (ORs) [8–11]. All the OSNs expressing a

specific OR innervate the same area of the OB, where their axons

coalesce and form functional circuits called glomeruli.

For each population of OSNs, there is at least one glomerulus

lying on the lateral side and one on the medial side of the OB [12–

16]. This topographic organization of glomeruli is stereotyped

among individuals [17–21]. Glomeruli constitute an anatomical

feature that organizes the incoming sensory inputs to the OB: An

odorant molecule activates a variety of ORs and every OR

recognizes several chemically-related odorant molecules [22–25],

but a specific set of glomeruli is activated by a particular odorant

mixture [14,26–31]. Hypothetically, these maps of glomerular

activation are closely related to the subsequent neural processing

that defines the identity and possibly the qualities of odor

molecules [32,33,34]. Supporting this hypothesis, studies inducing

the degeneration of the OE have shown that the precise

glomerular organization is severely disrupted after re-innervation

of the OB [1,5,35–37]. These alterations in the glomerular circuit

correlate with loss of learned olfactory tasks [38], without affecting

the basic function of detection and discrimination of odorants

[39,40]. However, it is not clear whether the loss of olfactory

performance is caused by distorted glomerular maps, or due to

memory loss produced by changes in circuitry after denervation of

sensory fibers.

In this context, new models of OSN regeneration that allow a

better recovery of the glomerular organization are necessary to

clarify the role that glomerular activated maps have during

perception of odorants and recall of memory tasks associated to

those same odorants. Here, we used the anti-thyroid drug

methimazole to induce degeneration of the OE in knock-in mice

expressing genetic markers for the M72 and I7 receptors (M72-

IRES-tau-LacZ and I7-IRES-tau-GFP). Contrary to other models

of degeneration [6], methimazole preserves the integrity of the

lamina propria (LP) and cribriform plate, which are essential for

sensory axon fasciculation and extension during re-innervation of

the bulb. We analyzed the regenerative capability of OSN

populations as well as the precision of glomerular re-innervation,

and examined the functional implications of glomerular circuitry

regeneration for learned and innate olfactory behavior.
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Results

M72 circuits are restored after methimazole treatment
The temporal course of axonal regeneration of neurons

expressing the M72 receptor was followed during 45 days after

methimazole administration. Figure 1 shows the medial aspect of

the nasal cavity and olfactory bulb of M72-IRES-tauLacZ mice.

These M72-expressing OSNs are located in the dorsal portion of

the nasal turbinates. Their axons project to the dorsal aspect of the

olfactory bulb, where they coalesce into glomeruli [43,44].

Virtually all M72-positive OSNs were ablated five days after

methimazole administration (Fig. 1F). Ten days after methimazole

exposure almost no M72-positive cell bodies could be detected on

the surface of the turbinates (Fig. 1B), while blue-stained axon

fibers remained visible on the OB. The number of M72-expressing

neurons gradually recovered after methimazole administration

(Fig. 1F, see below). The distribution of M72-positive neurons on

the dorsal part of the turbinates was reestablished, similarly to

what has been reported with other methods of OE ablation [45].

Strikingly, at 45 days post-lesion, the pattern of projection of the

M72 circuit was qualitatively similar to the control condition, even

though some axons were located off-target (Fig. 1E).

The entire population of M72 neurons is recovered after
methimazole treatment

To accurately determine the extent of OSNs loss and recovery

after methimazole treatment, we evaluated OE histological

sections from M72-IRES-tau-LacZ mice to quantify X-gal stained

neurons. Figure 2 shows representative images of coronal sections

of the olfactory turbinates at 10 and 45 days post lesion. Ten days

after methimazole exposure, nearly all M72-positive neurons were

eliminated (7.660.5 vs. 0.160.05 cells/mm length, control vs.10

days post lesion; mean 6 SEM; P,0.0001, Fig. 2B). Remarkably,

X-gal stained axons remained visible within the lamina propria

(Fig. 2B right panel), confirming what we observed in the whole

mount preparations. The entire M72-positive population is

renewed in the OE 45 days after methimazole treatment

(7.660.5 vs.7.560.4, cells/mm length, control vs. 45 days post

lesion; P.0.05, Fig. 2D). We also measured the thickness of

olfactory epithelia and observed a significant decrease 10 days

post-lesion (96.6764.8 vs. 42.0461.2 mm, control and 10 days

post-lesion; P,0.0001, Fig. 2E). No statistical difference in

thickness was found 45 days post-lesion (96.6764.8 vs.

87.0662.8 mm, control vs. 45 days post-lesion; P.0.05). No

evidence of metaplasia or damage to the underlying structures of

the epithelia was observed 45 days post-ablation.

Location of M72 glomeruli is restored after regeneration
In order to refine our observations on the projection patterns of

these regenerated circuits, we performed spatial analysis of the

position of glomerular structures on the dorsal portion of the OB

from control and regenerated mice. Figure 3 shows representative

images of the dorsal aspect of the olfactory bulb of control (3A) and

regenerated mice (3B). Forty-five days after methimazole treat-

ment, the innervation pattern of regenerated M72 axons to the

olfactory bulb was very similar to the one observed in control

animals. To better describe the position of glomeruli after

regeneration, images were normalized to the average size of the

OB (see Materials and Methods). Figure 3C shows normalized

bulbs and the position of glomeruli observed in control (blue dots)

Figure 1. M72 olfactory circuit is restored following ablation by methimazole administration. A, Medial view of OE and OB is shown. M72
neurons lie at the dorsal portion of the turbinates, their axons innervate the dorsal aspect of OB were they coalesce into glomeruli. B, No cell bodies
can be observed 5 days post lesion. C, Ten days after lesion few M72-positive neurons are observed. X-gal stained axons and glomeruli remained
visible on the surface of the bulb. D, 25 days post lesion M72-positive neurons could be observed in the turbinates and their axons have re-
innervated the OB. E, After 45 days, M72-positive cell bodies and glomeruli have regenerated almost completely. The pattern of innervation is similar
to control animals even though some wandering axons remain visible. F, Cell counts at the turbinates show the time-course of regeneration of X-gal
stained cells. Scale bar 500 mm. Mean 6 SEM are represented.
doi:10.1371/journal.pone.0046338.g001
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and methimazole-treated mice (orange dots). First, we assessed

differences in projection precision by analyzing the dispersion of

glomeruli around the mean position by use of Euclidean distance

measures (see Material and Methods). As shown in figure 3D,

there were no significant differences in the variance of the

Euclidean distance to the mean glomerular position between both

animal groups (P.0.05). To evaluate differences in projection

accuracy, the mean position of regenerated glomeruli was

examined. Figure 3E shows the summary of the relative position

of all glomeruli projected on a single virtual plane representing the

dorsal portion of the right hemibulb (images from the left

hemibulbs were mirror-inverted digitally and projected on the

same plane for analysis purposes). There were no significant

differences in glomerular positions between control and regener-

ated animals (n = 32 and n = 42, respectively) (Fig. 3F, P.0.05).

On the other hand, we observed a small but significant, increase

in the number of M72 glomeruli present on the dorsal surface of

regenerated bulbs 45 days after methimazole exposure (1.2460.4

vs.1.860.7, glomeruli/hemibulb, control vs. regenerated animals;

P,0.05, Fig. 4A). This increased number of glomeruli persisted 90

days after methimazole injection, contrasting with the refinement

process observed during neonatal development, where supernu-

merary glomeruli tend to disappear over time [46]. The frequency

distribution of lateral glomeruli per hemibulb illustrates an

increase in glomeruli numbers (Fig. 4B). To further explore the

refinement of mistargeted projections to the bulb after regener-

ation, we analyzed the position of those axons on the dorsal OB.

Figure 4C shows a representative image of regenerated, mis-

targeted M72 axons, most of them single fibers not coalescing with

other major M72-positive glomeruli (arrows). In overlapped

images, obtained 45 and 90 days post- methimazole ablation, no

apparent differences in the location patterns and axon numbers

were observed (figure 4C right and 4D).

I7 circuits are also restored after methimazole
administration

To determine if our findings on olfactory circuit regeneration

were restricted to the M72 population or, on the other hand, could

be observed in other areas of the bulb, we studied the degree of

regeneration of the I7 glomerular circuit located on the ventral

region of the OB [24,25]. We analyzed seven mice, 3 in the

control and 4 in the experimental group, expressing the

histological genetic marker tauGFP in I7-positive OSNs (I7-

IRES-tauGFP). The regenerated projections to glomeruli were

studied 45 days after methimazole injection. Figure 5 shows

representative images of serial, coronal OB slices OB from age-

matched control animals (Fig. 5A) and 45 days after methimazole-

exposure (Fig. 5B). Images show serial sections of the anteroventral

region of the OB (see methods) where the lateral glomerulus is

located. Projections of GFP positive axons in control mice

innervated this area and formed one single glomerulus (arrow in

Fig. 5A and inset). After regeneration, the GFP-positive axons

projected to the same area and entered in to the glomerular layer

similarly to control animals. However, axons innervated two

adjacent glomeruli (arrows in Fig. 5B, and inset). Also innervation

to some glomeruli appeared irregular (Fig. 5B, arrow right), since

the GFP fibers did not fill the entire glomeruli. The same

projection pattern was observed consistently in all tested mice.

A learned odor-guided task is recalled after regeneration
We evaluated the extent of functional recovery and preservation

of odor-dependent memories following reinnervation by a learned

odor-discrimination task. We focused in odor molecules known to

activate glomerular circuits in diverse zones along the OB

Figure 2. M72-expressing OSN population is regenerated 45
days after methimazole treatment. A, Coronal view of control
olfactory epithelium is shown. At higher magnification X-gal stained
neurons can be observed within the OE and axons can also be seen
traversing the LP. B, Almost no X-gal stained neurons can be observed
10 days post lesion. Some axons bundles remain visible along the LP. C,
45 days after methimazole induced lesion, the regenerated olfactory
epithelium cannot be distinguished from that of control animals. D, Cell
counts in the OE show that the population of M72 neurons is
regenerated after methimazole treatment. E, Thickness of olfactory
epithelia is significantly decreased 10 days post lesion. Mean 6 SEM.
Scale bars 400 mm and 80 mm in OE magnifications. *** denotes P,0.05.
doi:10.1371/journal.pone.0046338.g002
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including the cognate ligands for M72 and I7 receptors

(acetophenone and heptaldehyde, respectively) [24,47]. Twenty-

four mice were randomly separated into two groups and each

group was tested with different pairs of odorants, acetophenone vs

citral (Group 1) or heptaldehyde vs 2-heptanone (Group 2). The

task consisted in associating the presence of given odorant in the

environment with receiving water as a reward (details in Material

and Methods). Figure 6A illustrates a diagram of the maze and the

experimental design. Figures 6B and 6C show the performance of

Group 1 and Group 2 in both (blue dots represent data from the

rewarded arm of the maze (i.e. the zone with the water reward and

the specific odorant; +arm, blue dots) and the not-rewarded arm

(2arm, red dots). Control groups retained the ability to

discriminate the odorants even when tested 45 days after finalizing

the training period (Group 1: 0.760.04 vs. 0.1260.03, efficiency

score in +arm vs. 2arm; P,0.05. Group 2: 0.760.03 vs.

0.860.01; P,0.05). Animals from the methimazole-treated

(EXP) group were unable to discriminate the different odorants

10 days after injection (Group 1: 0.4560.1 vs. 0.4360.2, efficiency

score in +arm vs. 2arm; P.0.05. Group 2: 0.5760.09 vs.

0.3760.09; P.0.05). This observation correlates well with the

absence of olfactory sensory neurons in the OE at 10 days after

methimazole injection (Fig. 2). Remarkably, the EXP Group

recovered the ability to discriminate the odorants 45 days after

lesion (Group 1: 0.760.06 vs. 0.260.04, efficiency score in +arm

vs. 2arm; P,0.05. Group 2: 0.6060.08 vs. 0.260.04; P,0.05).

Figure 3. Position of M72 lateral glomerulus is recovered after regeneration. A, Image of the dorsal aspect of a M72-IRES-tauLacZ control
mouse showing the lateral glomeruli on the surface of OB. B, Representative image of M72 lateral glomeruli 45 days after methimazole
administration. Notice the striking similar pattern of innervation compared to control animals. C, Summary of glomerular distribution after
regeneration. The normalized dorsal aspect of olfactory bulbs is represented (dashed line in A shows the OB contour taken in every image to perform
the normalization), the centroid of all glomeruli in control animals (blue dots) and 45 days post lesion (orange dots). The mean position (filled dots)
and 2 standard distances (transparent spheres around the means) are shown. D, Box plot of the values of Euclidean distances showing no significant
differences between control and regenerated mice. E, All glomeruli projected on the right plane at a higher magnification. F, The analysis of the
mean position carried on the normalized X- and Y-axes shows no significant differences in glomerular location following regeneration. Mean 6 SD
are represented. Scale bars 500 mm (C) and 200 mm (D, F). Latero-medial (L–M), Antero-posterior (A–P), No difference (ND).
doi:10.1371/journal.pone.0046338.g003
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Innate odor-dependent behavior is partially recovered
after regeneration

Previous studies have shown that the main OB mediates the

innate response to some odorants, such as the aversive response to

Trimethyl-thiazoline (TMT, a compound present in fox feces [41])

and the attractant response to urine [47,48]. Thus, we decided to

further explore the functional recovery after methimazole treat-

ment by evaluating the innate behavior elicited by these odorants

in a preference task. We hypothesized that reestablishment of

glomerular circuit organization following methimazole-induced

ablation could lead to recovery of innate responses to odorants.

Mice were exposed to TMT or urine –scented filter paper and the

animal’s investigation time was measured during 3-min periods.

Figure 7A shows the investigation time for the different odorants 45

days after methimazole exposure and from age-matched control male

mice. Female urine elicited strong attraction in control as well as in

regenerated mice (33.462.8 vs.19.165.1 s, control vs. regenerated

animals; P.0.05, n = 6 per group). Also, we observed that they were

able to mate with no evident problems (data not shown). In contrast,

although TMT elicited repulsive behavior in regenerated mice

(Figure 7A), the investigation time was significantly increased in

regenerated mice (0.860.1 vs. 2.460.7 s, control vs. regenerated

animals; P,0.01, n = 6 per group). Moreover, withdrawal index

(times mouse head abruptly changed direction/times the mouse

approached the stimulus) from TMT was drastically decreased in

regenerated mice (0.8960.06 vs. 0.160.04 s, control vs. regenerated

mice; P,0.01, n = 6 per group. Figure 7B).

Discussion

This study shows for the first time that the process of

regeneration after extensive damage of the OSNs is precise

enough to restore the major features of specific glomerular circuits.

Furthermore, this anatomical recovery of olfactory circuits allows

recalling of odorant-dependent memories.

Neuronal regeneration after methimazole injection
Different strategies have been used to ablate OSNs, such as

surgical axon lesion, gas exposure, detergent irrigation, and

systemic injection of toxins [4,5,36,49,50]. In every case, OSNs

can regenerate in the OE and sensory axons maintain the ability to

recreate circuits in the OB. At the OE level, the dorso-ventral

organization of the different OSNs populations is completely

restored [45]. However, these methods damage the LP and

produce metaplasia of supportive tissue of the OE [5,6]. At the

OB, few axon fibers reach the dorsal part [5] and the specific

glomerular organization is disrupted [36,37].

In this study, we administrated methimazole systemically to

ablate the OSNs. Previous studies have demonstrated that

methimazole is metabolized by a cytochrome P450 in sustentac-

ular cells and Bowman glands, causing massive apoptosis and

promoting the degeneration of OE supportive cells [6,51,52]. This

leads to detachment of OSNs while progenitor cells remain intact

[53]. Contrary to other methods, methimazole lesions induce

minimal damage to the LP with no evident metaplasia of the OE

[6]. The structure of the LP has an important role in axon

navigation in the olfactory system. Axon bundles pack together

and run through the LP and they grow and innervate the OB [54].

Recent studies demonstrate that sensory axons are presorted

before they reach the OB. This early organization is crucial for

correct targeting of glomeruli [55]. Therefore, after an extensive

damage, the structural integrity of the LP is essential for navigation

of new axons. Here, we report that 45 days after methimazole

administration the major features of M72 and I7 glomerular

Figure 4. No refinement of glomerular circuits after regeneration. A, The mean number of lateral glomeruli increased 45 days after
methimazole administration (* denotes P,0.05). No evident refinement of glomeruli is observed 90 days after methimazole exposure (P.0.05). B,
Percentage of hemibulbs showing the indicated number of glomeruli. C, Image of dorsal bulb from regenerated mice (left) and normalized plane
with the distribution of miss routed axons at 45 (blue dots) and 90 (orange dots) days post lesion (right). D, Box plot of the number of miss routed
axons. Mean 6 SEM are represented. Scale bar 200 mm, (ND, no difference).
doi:10.1371/journal.pone.0046338.g004
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circuits are recovered. Most of the newly regrown axons innervate

the dorsal and ventral aspects of the olfactory bulb and coalesce in

few glomerular structures. Thus, it is possible that the main cause

for the alterations in the pattern of projection reported in other

studies is damage to the LP. Similar complete anatomical recovery

of P2-olfactory glomeruli can be observed few weeks after inducing

selective degeneration of P2-expressing sensory neurons, with no

visible off-target projections [56]. However, our results show less

robust recovery of OR-expressing OSN populations and more off-

target axons. The context of massive regeneration occurring in our

model could account for these differences.

Interestingly, we observe X-gal stained (M72) axons on the OB

surface even were no OR-positive cellular bodies can be observed

within the OE. Although we cannot rule out the possibility that

some cells escaped ablation, our cell counting experiments suggest

that these fibers are remnants of axons in which the degeneration

process has not been completed. The fact that X-gal positive axons

do no completely disappear from the olfactory system suggests that

the process of neuron degeneration and recovery occurs so fast

that new and remnant axons coexist in time. It is possible,

therefore, that those residual axons could guide the rewiring

process. This important issue must be addressed in future studies.

Regeneration of glomerular structures
Previous studies have measured the variability of the glomerular

position in several olfactory circuits [21,57,58], with variations

ranging from 100 to 700 mm. Here we reported a variability of less

than 150 mm of the M72 lateral glomeruli, after image normal-

ization. This variability is consistent with other studies where the

relative position is normalized with respect to a functionally

identified glomerulus or adjacent tagged glomeruli [58,21]. We

focused on two aspects to determine the location of regenerated

glomeruli: precision and accuracy. Precision reflects the intrinsic

variation of projections of sensory neurons and the accuracy

reflects the stereotypic position of glomeruli on the OB, reflected

by the differences in location of regenerated glomeruli. We show

that despite the increased number of glomeruli in the lateral

hemibulb, there is no change in the precision and accuracy of

glomeruli position after regeneration. This result strongly suggests

that the mechanism that guides sensory fibers to their final location

in the bulb is present in the adult mice and is similar to the one

observed during development. Contrasting to postnatal develop-

ment of glomerular circuits [46], refinement of regenerated circuits

of adult mice is absent even 90 days after methimazole

administration. Furthermore, the innervation of I7 glomeruli after

regeneration appears irregular and possibly heterogeneous, i.e. it is

likely that fibers from different OSN populations co-exist in some

regenerated glomeruli, similarly to the initial steps in its formation

during normal development [46]. Overall, our observations

demonstrate that some mechanisms of axonal navigation and

targeting persist from development to adult stage of the murine

olfactory system; while others, chiefly those determining circuitry

refinement, are absent.

Figure 5. I7 glomerular circuit is restored 45 days after methimazole-induced lesion. Representative images of serial coronal slices of
bulbs from I7-IRES-tauGFP mice are shown. A, The projection of GFP-positive axons into the antero-ventro-lateral aspect of control OB, it can be
observed that they coalesce in one lateral glomerulus (arrow). B, 45 days post-lesion the axons project mainly into two adjacent locations (arrows) in
the same area shown in A. Insets at the bottom show a close-up of GFP fibers. Space between slices is 40 mm. Scale bar 100 mm and 50 mm for insets.
doi:10.1371/journal.pone.0046338.g005
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Odor memory and regenerated glomerular circuits
Previous studies have shown that olfactory function is recovered

after regeneration of the olfactory system [38,39,59]. Discrimina-

tion capability recovers 15 days after lesion and the temporal

course of learning of odorant-dependent task learning is identical

between naive mice and those that have recovered from a lesion

[38,40]. However, regenerated animals are not able to recall a

learned odorant-dependent task [38]. This phenomenon has been

explained by alterations in the perceptual identity of odors

produced by changes in the spatial organization of glomerular

circuits.

Our results show that after methimazole administration, there is

a remarkable restoration of the projection patterns of M72 and I7

circuits; which correlates with high success in recalling learned

olfactory-dependent behavioral tasks, clued by the cognate ligands

of M72 and I7 receptors (acetophenone and heptaldehyde,

respectively). Although our anatomical analysis focuses only on

M72 and I7 circuits, our behavioral data could suggest a similar

degree of regeneration in other glomeruli. Moreover, the set of

odorants used in this study has different molecular profiles and

activates different regions along the OB: 2-heptanone activates the

antero-dorsal [60], heptaldehyde the antero-ventral and dorso-

medial regions of the bulb [61]. On the other odorant set,

Figure 6. Memory of an olfactory discrimination task is recovered after the regeneration. A, Diagram of the three-arm maze and
temporal course of the experiments is shown. B and C, Performance in the discrimination task pre- and post-methimazole administration in group 1
and group 2 respectively. Both groups discriminate the odorants after training (Test-Pre) (** denotes P,0.01). Ten days after methimazole treatment
the experimental group (EXP) fails to perform the task (P.0.05), 45 days post lesion, mice recover the ability to perform the task (* denotes P,0.05).
Mean 6 SEM are represented.
doi:10.1371/journal.pone.0046338.g006

Figure 7. Odorant-clued innate behavior is partially recovered after regeneration. A, Histogram shows the investigation time for female
urine and TMT. Behavioral responses to attractive female urine from regenerated males cannot be distinguished from control animals 45 days after
OE ablation (P.0.05). However, responses to the repulsive odorant TMT are significantly different between control and regenerated animals. The
latter showing significant increases in investigation time of TMT-scented filter paper and B, decreased withdrawal responses to this pheromone 45
days after ablation. (** denotes P,0.01). Mean 6 SEM are represented.
doi:10.1371/journal.pone.0046338.g007

Odor Memory Stability after Reinnervation
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acetophenone [47] and citral [62] elicit responses in separate areas

within the postero-dorsal bulb. Thus, it is likely that following the

administration of methimazole the circuits responsible of recog-

nition of all these odorants are reestablished as well.

Our results demonstrate that the disruption of glomerular

organization on the OB observed in previous studies is the main

cause of the loss of learned odorant-dependent behaviors after

regeneration and underscore the importance of initial processing

and segregation of olfactory information within the bulb for

correct odorant identification and discrimination, which is

necessary for the correct recall of memories associated with

olfaction. Nevertheless, the behavioral tests used here differ from

those used in previous studies and we cannot rule out that other

subtle changes in olfactory performance occur, such as those

observed with genetic models [47].

Innate responses to odorants after regeneration
It has been shown that odorants can induce stereotypic

behavioral responses in mice. During these responses, odorants

are recognized simultaneously by the vomeronasal system,

trigeminal and the main olfactory systems (i.e., the OE) [63]. It

has been demonstrated that neural processing of aversive

responses to TMT is performed by a set of glomeruli located

specifically in the dorso-medial area of the OB. These circuits

relay information to the bed nucleus of the stria terminalis (BNST),

which is crucial for the repulsive behavior elicited by TMT [41].

Moreover, mice lacking the transient receptor potential channel

(TRPC2), a crucial component in the sensory response of

vomeronasal neurons, show no alterations in aversive response

to TMT [64]. Therefore, aversion of regenerated mice to TMT

suggests that the circuits responsible recover within the main

olfactory system (OE and OB). However, the repulsive behavior

elicited by TMT is altered in regenerated animals: mainly, the

withdrawal response decreases significantly in comparison to

control animals. These results could be explained to some degree

by modifications in the centrifugal innervation of the OB or even

to the BNST. Since it has been suggested that TMT could

stimulate the trigeminal system [65], we cannot discard alterations

to this system after methimazole exposure that could explain our

results. Additional experiments are required to resolve this issue.

On the other hand, olfactory behavioral studies using female

urine as an attractive clue for male mice demonstrate that the

main olfactory system is determinant for its detection and for the

elicited behavioral response [48]. Mice lacking the cyclic

nucleotide gated channel (CNG2), crucial in the sensory response

of OSN, disrupt the attractive and mating behavior elicited by

urine, without altering the vomeronasal neurons response to it

[66]. However, modifications in the organization of olfactory

glomeruli in the main OB do lead to mating disruption [47]. Here

we show that after regeneration there is no difference in the

attraction response to urine (Fig. 7) or mating behavior (data not

shown). Taken together, our results demonstrate that the specific

glomerular organization in the OB is largely recovered after

methimazole treatment.

In summary, we have demonstrated two important aspects of

the olfactory system. First, the olfactory system has an enormous

capacity to restore the general organization of the glomerular

circuits after an extensive damage to the OSNs. Second, the

organization of sensory inputs in the OB is important to determine

the identity of odors and recovery of this organization is sufficient

to recall memory traces associated with olfactory cues. Stability of

these memory traces is not contingent upon persistent sensory

input and can be reactivated when sensory input is re-established

in the olfactory system.

Materials and Methods

Animals
Homozygous M72-IRES-tauLacZ and I7-IRES-tauGFP adult

mice (6–9 weeks old) in a C57BL66CBL5 genetic background

were used for these experiments. All animals were maintained in a

12/12 light-dark cycle. Animal procedures followed the National

Institutes of Health (NIH) guidelines for care and use of

experimental animals (NIH approval number A5281-01). The

protocols were revised and approved by the local animal rights

committee of the Universidad Nacional Autónoma de México.

Mouse strains were a generous gift from Dr. Peter Mombaerts.

Ablation of olfactory sensory neurons and X-gal staining
A single intraperitoneal injection of methimazole (Sigma,

0.1 mg/g mouse weight) in vehicle solution (phosphate buffer –

PBS- 0.1 M, 10% dimethyl sulfoxide –DMSO-) was administered

to ablate the olfactory epithelium. Control animals received a

single vehicle injection. For tissue preparation, mice were first

anesthetized with sodium pentobarbital and perfused intracardi-

ally with cold PBS, followed by freshly prepared paraformalde-

hyde (PFA 4% in PBS). Whole-head mounts were post-fixed in

cold PFA for 1 hr and dissected to expose either the medial aspect

of the nasal turbinates or the dorsal aspect of the olfactory bulb.

For coronal sectioning, whole-head mounts were post-fixed in PFA

for 24 hr and then decalcified for 3–4 days in 30% sucrose PBS-

DEPC 250 mM EDTA buffer. Serial slices of 20 mm were cut in a

Leica cryostat CM1900. For X-gal (bromo-chloro-indolyl-galacto-

pyranoside, Molecular Probes, Carlsbad, CA) staining, tissue was

incubated for 5 hours in buffer containing 100 mM phosphate

buffer (pH 7.4), 2 mM MgCl2, 0.01% sodium deoxycholate,

0.02% Nonidet P40, 5 mM potassium ferricyanide, 5 mM

potassium ferrocyanide and 1 mg/ml of X-gal. Afterwards, the

tissue was rinsed for 10 min in PBS (pH 7.4). Images were taken

with a stereoscopic microscope Leica EZ4D and digitized with

Leica FireCam software. Images were finally adjusted for

brightness and contrast with ImageJ software (NIH) with no

further manipulation.

Cell counting
To analyze the temporal course of regeneration, M72-IRES-

tauLacZ mice were sacrificed 1, 5, 10, 15, 20, 25, 30 and 45 days

after methimazole administration (3–4 mice per group). Following

X-gal staining in whole mounts, images from the medial aspect of

the turbinates were obtained and X-gal stained cells were counted

using the ‘‘Analyze Particles’’ plugin of ImageJ. Cells residing on

the right and left part of the turbinates were counted indepen-

dently and the average cell density (cells/mm2) was calculated.

Images of the medial aspect of turbinates were filtered through

contrast enhancement and background substraction before anal-

ysis. Cell counts in slices followed the same process as in whole

mounts. One of every fourth section was collected up to a total of

29 slices. Only the olfactory epithelium was digitally selected in the

images for counting procedures. For better comparison, control

and experimental animals (45 days after methimazole) were

sacrificed at the same age.

Position analysis of olfactory lateral glomeruli
Images from the dorsal aspect of the olfactory bulb were

obtained to determine the position of the lateral M72 glomerulus.

Animals were grouped in control (n = 12) and methimazole-treated

mice (n = 11). Images were taken at the same age in both groups,

and were normalized to decrease variations in glomerular position

related to the differences in bulb size. First, a rectangle delineating

Odor Memory Stability after Reinnervation

PLOS ONE | www.plosone.org 8 October 2012 | Volume 7 | Issue 10 | e46338



the medial, lateral, posterior and anterior edges was traced in each

bulb. Then, all the rectangle sizes were averaged and normalized.

Finally, the positions of centroids (x, y) of each glomerulus was

determined and merged to the normalized plane size. To

determine the dispersion of glomeruli, the standard distance was

calculated as follows:

Standard distance~

ffiffiffiffiffiffiffiffi
Sd2

n

r

Where d is the Euclidean distance i.e. distance to a given point (x,

y) from the average centroid position (xm, ym) and n is the total

number of points. All image transformations were performed using

ImageJ software.

Immunochemistry
I7-IRES-tauGFP mice (n = 7, 3 control, and 4 experimental)

were perfused as described above. After fixation, brains were

cryoprotected in PBS+30% sucrose for 2 days at 4uC. Coronal OB

slices (20 mm) were obtained. One of every third slice was

collected. Sections were rinsed in 0.1 M PBS and incubated with a

blocking solution containing 10% of normal horse serum and

0.3% Triton X-100 for 2 hours. Then, they were incubated with a

polyclonal goat anti-GFP antibody (1:1,000, Abcam) for 24 hours

at 4uC. Finally, sections were rinsed and incubated for 2 hours

with a donkey anti goat-Cy5 secondary antibody (Jackson

InmunoResearch), washed and counterstained with fluorescent

DNA stain DAPI (Invitrogen). Images shown in Figure 5

represent, in both cases, the ventro-lateral part of the OB of mice

sacrificed at the same age. Sections were obtained approximately

500 mm after the beginning of their most anterior part. Images

were obtained with a Leica DM6000 vertical microscope and

digitized with Leica LAS AF software, and adjusted for brightness

and contrast with ImageJ software.

Behavioral tests
The olfactory discriminatory task performed by M72-IRES-

tauLacZ male mice involved a three-armed maze and water-

reward design. Mice were randomly divided in two groups. Group

1 had to discriminate acetophenone vs. citral and Group 2

heptaldehyde vs. 2-heptanone. During training, mice were

restricted to a water intake of 1–2 ml per day. In the first 2 days

of training, mice were habituated for 10 min to a three-arm maze

in which water was delivered at the distal end of all three arms.

Then for three weeks, one odorant of each pair was associated to

the water reward. Odorant was delivered in a cotton ball (200 ml

odorant/ball) placed in a hidden compartment on each arm. Two

arms were selected to present the non-rewarded odorant (2) (citral

or 2-heptanone) and one arm to present the rewarded odorant (+)

(heptaldehyde or acetophenone). To minimize the effect of spatial

learning, arms where randomly changed from day-to-day. In a

training session of 10 minutes, mice explored the maze and water

was delivered only in association with the conditioned stimulus in

the +arm. During the first week of training, the water reward was

delivered at a volume of 50 ml every time the animal made the

right selection. The volume of reward was increased by 50 ml every

week. To maintain a constant water intake of 1–2 ml per day, the

percentage of rewarded trials was adjusted accordingly. After three

weeks of training, we evaluated the performance of mice without

delivering water (Test-Pre). For this, each mouse was placed inside

the maze and behavior was recorded for 5 minutes. The videos

were analyzed offline by a person without previous knowledge of

the odorants used on each arm. The efficiency score for each arm

was calculated by dividing the number of water rewarded entries

during session by the total number of entries in that arm

performed by each animal. For OE lesion experiments, 12 mice

of each group showing efficiency scores $0.85 in the +arm and

#0.35 in the 2arm were selected. Group 1 and Group 2 were

divided randomly into control (CTRL, n = 6) and experimental

groups (EXP, n = 6). The EXP group was injected with

methimazole two days after Test-Pre and the control group

received a vehicle injection. The day of injection was designated as

day 0. Two more evaluations were performed to follow the

regeneration process at days 10 (Test 10-Post) and 45 (Test 45-

Post). Fresh stock solutions of the odorants dissolved in DMSO

were prepared every 10 days. Working solutions were dissolved

daily in water to the following concentrations: 50 mM citral,

50 mM acetophenone, 10 mM heptaldehyde and 10 mM 2-

heptanone. All odorants were purchased from Sigma.

Thirty-six mice were used for the innate preference test. To

avoid learning, mice performed the task once and only for one

odorant condition. Mice were habituated in a cage

(27617613 cm) for 30 min, then the cage was replaced with a

clean one and a piece of filter paper was introduced with fresh

female urine (15 ml), trimethyl-thiazoline (TMT, 5 ml undiluted) or

water (15 ml). Video recordings were taken and analyzed offline

blindly to experimental condition. The investigation time was

defined as approaches within 1 cm around the filter paper in a 3-

minute period. The investigation time around purified water was

established as the neutral response. Times greater and lower than

the neutral response were interpreted as attraction or repulsion

respectively [41]. The withdrawal index was calculated by dividing

the number of abrupt changes in head orientation when

approaching the filter paper by the total number of approaches.

Statistical analysis
Graphs were generated with Excel and Origin lab 7. Statistical

tests were performed in SYSTAT and GraphPad Prism 5

software. The Shapiro-Wilk test was done for each set of data to

determine if they followed a normal distribution. Then we used

parametrical or non-parametrical tests accordingly. For cell and

mistargeted axon counts, we used parametrical tests (ANOVA

followed by post hoc Tukey and T-student test were used,

respectively). For glomeruli per hemibulb counts and innate

behavior investigation times, we used non-parametrical tests

(Kruskal-Wallis followed by post hoc Dunn and the Mann-

Whitney, respectively). For non-parametric paired comparisons in

olfactory discrimination data, we used the Wilcoxon test. Finally,

glomerular positions were analyzed with two parametrical tests:

the Levene test was used to evaluate differences on variance of the

Euclidean distance of glomeruli position; then, as suggested by

Levine [42], sets of coordinates were compared by analyzing both

axis and correcting for multiple comparisons with Bonferroni

correction test.
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