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Abstract

Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer
from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also
distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics.
However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their
mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and
averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we
demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from
Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated
time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption,
energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET
kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close
resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached
Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to
experimental data. We identified cis-isomers and different static local environments as sources of the experimentally
observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory
demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results
show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile
tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET
efficiencies.
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Introduction

Since the development of the Resonance Energy Transfer

theory by Förster (FRET) in the late forties [1], and the definition

of this technique as a ‘‘spectroscopic ruler’’ in biological systems by

Stryer and Haugland [2], single molecule detection [3–5] and

time-resolved experiments [6] have opened up a new window to

probe inter- and intramolecular distances and motions. In a typical

experiment, donor molecules are excited by a laser pulse, and part

of the excitation energy is transferred to nearby acceptor

molecules. The transfer efficiency

E~
IA

IDzIA
ð1Þ

is measured via the donor fluorescence intensity ID and the

acceptor fluorescence intensity IA. Among other factors, E

depends on the distance R between the donor and the acceptor

fluorophores, as well as on the mutual orientation of their

respective transition dipole moments. After orientational averag-

ing, the distance dependency is described by Förster’s approxi-

mation,

E~
1

1z
R

R0

� �6
, ð2Þ

where R0 is the so-called Förster radius which denotes the distance

at which 50% of the donor excitation is transferred to the acceptor

molecule.

This relation is widely used to monitor structural changes in

biomolecules via FRET efficiency measurements [2,7]. To that

aim, donor and acceptor fluorophores are covalently attached to

specific sites of the macromolecule of interest. Taking into account
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the flexibility of the fluorophores and their linkers, the measured

intensities provide information on the mutual distance of these

specific sites [8–11]. The use of multiple dye pairs allows for

triangulation of biomolecules, which provides three-dimensional

structural information [10,12–16].

In single molecule setups, distributions and distance fluctuations

of individual molecules are accessible [4,17–19]. If the scatter of

the observed efficiency distributions in these experiments is

broader than the expected shot noise, distance distributions can

be estimated [20]. For distance changes in the biomolecule, which

are slow compared to the burst duration, time resolved

information is then accessible [21,22]. By recording millisecond

fluorescence bursts while the molecules diffuses through a confocal

laser volume, conformational motions in the same time scale have

been resolved [21,23,24].

FRET spectroscopy has proven particularly successful in

situations where the mutual orientation distribution of the

transition dipole moments can be considered isotropic and

uncorrelated. Examples are freely diffusing dyes, or dyes attached

to flexible and solvent-exposed parts of a protein [18] or nucleic

acids [10,11]. In this case, orientational averaging gives rise to the

well-known orientation factor k2~2=3, which is by convention

included within the Förster radius R0 [7]. In contrast to this

average k2, the instantaneous orientation factor k2 tð Þ can assume

values in the range of 0 to 4.

Particularly when triangulating biomolecules, however, the dye

motion is often far from isotropic due to steric restrictions set by

the biomolecule, as well as due to electrostatic or hydrophobic

interactions between the dye and the protein surface [25–30].

Since the mutual dye orientation is typically inaccessible to

experiments, the k2~2=3 approximation provides only qualitative

insights, unless the free and rapid reorientation of the dyes is

commonly verified by fluorescence anisotropy measurements [31].

For this reason, efficiency distributions rather than distances are

often reported.

The orientational dynamics uncertainty of fluorophores has

been addressed via several routes. Empirical, semi-empirical, and

theoretical models [32–36] for the orientational factor have been

developed, assuming that the dynamics of the dyes can indeed be

described by a time average. Recent computer simulations [37,38]

have suggested that the mutual dye orientation can be highly

anisotropic, with k2-values deviating markedly from 2=3 (0.24–

1.02 [38]; 0.71–2.81 [37]). R0 has been refined through

fluorescence quenching measurements of multiple fluorophores

[39].

Despite these efforts, three main problems remain. First, the

assumption of an isotropic dye orientation distribution is invalid or

difficult to establish in most cases [40,41]. Second, possible

correlations between the distance and dye orientation distribution

are neglected in the above treatments [38]. Third, the orienta-

tional sampling during individual bursts may be incomplete, in

which case the dye distribution relevant for the observed efficiency

depends on the duration of the bursts. In all three cases, applying

an average k2 – as opposed to the k2 of instantaneous and time-

dependent Förster transfer rate coefficients – leads to an additional

broadening of the efficiency distribution [25], and biased distance

distributions are obtained.

To overcome these limitations, we have developed an approach

that combines molecular dynamics (MD) simulations of a dye-

labeled biomolecule in solution with Monte Carlo (MC)

simulations of dye excitation, FRET transfer, and fluorescence

decay events. This approach involves four steps.

First, extended and fully atomistic MD simulations of the

solvated biomolecule, labeled with a FRET dye pair, serve to

cover the biomolecular dynamics at the fluorescence decay time

scales of the system. To capture structural motions that are slower

than the nanoseconds time scale accessible to MD simulation,

several MD trajectories are recorded starting from different

isomers and combined into a comprehensive ensemble using

appropriate Boltzmann weights.

In the second step, time-dependent mutual dye orientations

extracted from these trajectories are recorded. These orientations

are then used to derive time-dependent instantaneous resonance

energy transfer rate coefficients kT(t). Within a short time interval

Dt, these rate coefficients specify the probability pT tð Þ~Dt:kT tð Þ
that a FRET transfer event takes place, for each instant of time.

In the third step, using pT(t), a large number of MC runs is

carried out to simulate and collect many individual photon

absorption and excitation, FRET transfer, and emission events.

For each photon absorption event, an instant of the trajectories is

chosen randomly, and the probabilities are propagated appropri-

ately until a photon emission or radiationless decay event occurs.

After averaging over sufficiently many events, fluorescence

intensities ID and IA are calculated. The numbers of photos

recorded from the donor and the acceptor dyes, respectively,

finally determine an average FRET efficiency value E. Similar

approaches using dye conformations from simulations have been

proposed recently [42–45].

To mimic single molecule FRET (smFRET) experiments, in a

fourth step the emitted photons are collected into bursts according

to the experimental photon burst size distribution (BSD). The

efficiency in each burst is then calculated, and efficiency histograms

are obtained, similar to single molecule experiments. By construc-

tion, this procedure takes shot noise accurately into account.

This hybrid simulation approach will enable one to calculate

efficiency distributions that can be directly compared to measured

efficiency distributions. Vice versa, we will develop a systematic

approach to reconstruct distance distributions by combining the

dye orientation and photon statistics at hand with measured

efficiency distributions.

Here we apply this approach to a polyproline 15, 20, and 30-

mer [46] with two FRET dyes (Alexa 488 and 594, Fig. 1)

attached to both termini [2,31,45](Fig. 2A). As dye-labeled

polyproline chains have been widely used as ‘‘rigid rods’’ to test

the validity of the approximations underlying Förster’s theory, and

to gauge the Förster radius of several of FRET pairs in different

environments [2,31,45], much of the current understanding relies

on the particular properties of these systems. Initially assumed to

be quite rigid, all-trans polyproline helices were used in the

definition of FRET as a ‘‘spectroscopic ruler’’ [2]. This assumption

was challenged quite early [47,48], suggesting that polyproline

chains exhibit a substantial degree of flexibility [49]. The issue is

still not fully resolved.

For these reasons, polyproline flexibility has been revisited

recently by performing single molecule FRET recordings [31,50]

and simulations [45] on these molecules. Indeed, unexpectedly

broad efficiency distributions were seen, suggesting substantial

structural heterogeneity. A detailed analysis of single molecule

data showed the heterogeneity that persists on time scales greater

than 10ns [50]. Recent NMR experiments [45] pointed to a

considerable population of cis-isomers within all-trans polyproline

helices, which might contribute further to the structural flexibility

and heterogeneity of polyprolines. These findings put the

suitability of these molecules as ‘‘rigid rods’’ in question, and the

unexpected complexity of their dynamics requires a detailed study

of the structural ensemble in solution at room temperature.

Here we attempt a comprehensive characterization of the

polyproline structural heterogeneity by combining atomistic

FRET through Atomistic Simulation and Monte Carlo
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simulations with single molecule FRET data. Resting on a direct

comparison of single burst efficiencies collected over many bursts,

our approach is based on much fewer assumptions than the

standard interpretation of FRET experiments. In particular, this

approach includes k2 averages, on the basis of the detailed

molecular dynamics of the system, and cases where the motion of

the dyes is slower than the donor fluorescence decay time are

readily handled. Moreover, all possible correlations between the

dye movement and the distances are included, such that accurate

mutual orientation distributions are obtained. Finally, the

approach fully accounts for the photon count shot noise. Vice

versa, comparison with experiments will enable us to test our

approach. As we will demonstrate, our approach serves to

combine dye orientational dynamics from MD with experimental

FRET efficiency distributions at increasingly refined approxima-

tion levels.

The good agreement of distance distributions of polyproline

obtained by this approach with the reference distribution suggests

that this combination allows extraction of improved quantitative

geometrical information from single molecule FRET experiments.

By comparison with synthetic FRET data, the validity of the

reconstruction will be established.

Methods

System Setup
The studied system comprises a polyproline peptide of 15, 20 or 30

proline residues [46], an amino-terminal glycine and a carboxyl-

terminal cysteine residue, to which a succinimide ester and maleimide

derivatives of Alexa 594 and Alexa 488 dyes [52](Fig. 1), respectively,

are attached. Figure 2A shows the simulation system for the

polyproline-20 [53] within a rectangular simulation box. Figure 2B

depicts the box filled with explicit water molecules and 300mM
NaCl, corresponding to the ionic strength of 50mM sodium

phosphate buffer used in the experiment [31]. The number of

Naz and Cl{ ions was chosen such as to obtain a neutral system.

In aqueous solution the most stable configuration for polypro-

line chains is the polyproline II (PPII) helix [53,54], characterized

by dihedral angle values W,Y and V of {750, 1500, and 1800,
respectively [47], with the trans-isomer as the most favorable

configuration. Nevertheless, in water a marked fraction of cis

peptide bonds the PPII helices is observed. By NMR experiments

a fraction of approximately 10% for proline at the C-terminus of

the chain and 2% within the chain was measured [45], with trans

to cis transition times of 103 to 104 seconds [50,55]. As this is far

beyond MD time scales, separate simulations were performed for

all relevant isomers, for subsequent weighted averaging. To this

end, all possible isomers containing one single cis peptide bond

were considered, i.e., 20 cis-trajectories for the polyproline-20 with

dyes attached. Additionally, for polyproline-30, a subset of 61

isomers with cis-bonds at two positions was simulated.

Force Field
For water molecules, the TIP4P model was employed [56].

Force field parameters for the peptide were taken from a modified

OPLS-AA force field [57] including custom parameters for the

two dyes and their corresponding linkers. Alexa 488 and Alexa

594 are highly conjugated systems whose parameters are not

included within the standard OPLS-AA force field. Figure 1

depicts the atomic structure of the two dyes together with the

orientation of the transition dipole moments. All dye parameters

(bonded and Lennard-Jones) – except for the partial charges –

Figure 1. Dye and Linker Structures. Structure and transition dipole
moments of Alexa 488 and Alexa 594. The red arrows show the
orientation of the transition dipole moments. MarvinSketch was used to
draw the chemical structures, Marvin 5.3.0.2 , 2010, ChemAxon (http://
www.chemaxon.com).
doi:10.1371/journal.pone.0019791.g001

Figure 2. System Setup. (A) All-trans polyproline-20 molecular
structure including Alexa 488 (green) and Alexa 594 (red) dyes attached
by their corresponding linkers. The simulation box is shown in blue,
terminal prolines used to restrain the position are depicted in black. (B)
Fully solvated system is shown including Naz (blue) and Cl{ (yellow)
ions.
doi:10.1371/journal.pone.0019791.g002

FRET through Atomistic Simulation and Monte Carlo
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were assigned via an analogy approach from similar OPLS-AA

groups [58].

Because FRET occurs when the donor dye is in the excited state

and the acceptor in the ground state, partial charges of these

corresponding states were used in all our simulations for the dyes.

The fact that the partial charges calculated for the ground and

excited states differed only by a small amount suggests that the

effect of this simplified treatment on the dynamics of the dyes is

small. All partial charges were calculated by fitting to the

electrostatic potential surfaces (EPS approach [59]) obtained from

ab-initio B3LYP Density Functional Theory (DFT) calculations

with the 6-31G* basis set. All ab-initio calculations were performed

with the GAUSSIAN 03 program package [60]. First, for

reference, the point charges for the 20 natural amino acids were

calculated with B3LYP/6-31G* CHelpG population analysis to

assure compatibility of the derived charges with OPLS-AA. A

mean scaling factor of 0.9 was calculated by averaging the

multiplicative factors of each amino-acid, which minimizes the

mean square deviation between OPLS-AA and DFT charges

(amino-acid scaling factors shown in Suppl. Table S1).

For the ground state of the two dyes, the same protocol was

used. For the excited state, we determined charge differences with

respect to the ground state for each atom in two steps. First, point

charges were determined from Configuration Interaction Singlets

(CIS) calculations for the first excited state using the STO-3G basis

set. From these values, in a second step, point charges were

subtracted, that were obtained from Hartree Fock (HF) calcula-

tions with the same STO-3G basis.

For both, ground and excited state, the charges were averaged

to reflect the internal symmetry of the molecule, and scaled with

the previously calculated scaling factor of 0.9. Finally, a small

offset was added to all partial charges to re-establish the correct

total charge of the system.

Molecular Dynamics Simulations
All MD simulations were carried out with the GROMACS

4.0.7 simulation software package [61–63]. Each proline system

was energy-minimized by steepest descent to convergence.

Periodic boundary conditions were applied in all three dimensions.

V-Sites on hydrogens [64] were used allowing 4fs integration time

steps. After minimization, 10ns equilibration simulations were

performed. From the last 5ns of these simulations, starting

conformations for all subsequent production runs were selected at

random instances (Table 1). Solvent and ions as well as the solute

were separately coupled to an external temperature bath with a

time constant of 0:1ps applying the v-rescale algorithm [65,66].

The system was coupled to an isotropic pressure bath of 1atm
using the Parinello-Rahman algorithm [67] and a time constant of

1ps. Bond lengths were constrained to their equilibrium lengths

with LINCS [68]. The cut-off for Lennard-Jones interactions was

set to 1nm. Electrostatic interactions between charged groups at

distances below 1nm were calculated in direct space, while for the

long-range interactions the particle-mesh-Ewald method [69] with

a grid spacing of 0:12nm and fourth order spline interpolation was

used. All simulations were performed with random Maxwell-

distributed starting velocities at 293K, 303K, and 313K
(Table 1).

Soft restraints were imposed to suppress rotation of the entire

molecule in the box and thus to allow the use of a small simulation

box, adapted to the shape of the molecule. To this end, the

component of the difference vector perpendicular to the x-axis

(Fig. 2A) between the centers of mass of the two terminal prolines

was restrained to zero with a weak harmonic potential

(k~9:744kJmol{1 nm{2, corresponding to a Boltzmann distri-

bution of width s~0:5nm). We assume that these soft restraints

leave the internal dynamics of the molecule unperturbed.

Resonance Energy Transfer Rates
All FRET efficiencies were calculated from the MD simulations

using following kinetics,

DzA DzA

:kDi
:kAi

DzAzhn ? D�zA ?
kT(t)

DzA�

;kD ;kA

DzAzhnD DzAzhnA

ð3Þ

Starting after a photon adsorption event by the donor dye, this

kinetics is described by

_pp D�zAð Þ~{ kDi
zkDzkT tð Þ

� �
:p D�zAð Þ and ð4Þ

_pp DzA�ð Þ~kT tð Þ:p D�zAð Þ{ kAi
zkA

� �
:p DzA�ð Þ: ð5Þ

In Eq. 3, D=D� is the donor (Alexa 488) and A=A� is the acceptor

(Alexa 594) dye in their ground and the excited state, respectively.

hn,hnD and hnA denote the exciting photon and photons emitted

by the donor and the acceptor dye. The rate coefficients refer to

FRET (kT ), fluorescence and internal conversion of the donor

(kD,kDi
), and fluorescence as well as internal conversion of the

acceptor dye (kA,kAi
).

The rate coefficients were calculated from the lifetimes t of the

dyes and their respective quantum yields Q,

kD~
QD

tD
, kA~

QA

tA
, ð6Þ

Table 1. Performed molecular dynamics simulations.

Proline Length Isomer Temperature Number of simulations

K

pro15 all-trans 293 10

pro15 single-cis 293 30

pro20 all-trans 293 20

pro20 all-trans 303 10

pro20 all-trans 313 10

pro20 single-cis 293 40

pro30 all-trans 293 10

pro30 single-cis 293 30

pro30 double-cis 293 61

Simulations are listed according to isomer and applied temperature. Single-cis
simulation were carried out for all possible cis-isomer positions. For polyproline-
30, in addition, a representative set of 61 isomers, randomly picked from the
870 possible isomers with two cis bonds, was simulated. All simulation lengths
are 100 ns summing up to a total sampling of 22:1 ms.
doi:10.1371/journal.pone.0019791.t001

FRET through Atomistic Simulation and Monte Carlo
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kDi
~

1{QD

tD
, kAi

~
1{QA

tA

: ð7Þ

For the Alexa 488 and 594 dyes attached to polyproline peptides, we

used the measured lifetimes tD of 4:0ns and tA~3:9ns. To obtain

photon statistics directly comparable to the experiment, the

quantum yields were combined with the detector efficiencies into

(relative) effective quantum yields using the correction matrix

defined in Ref. [70]. In this framework, QA and QD correspond to

the diagonal correction matrix elements. For the simulations, we

averaged the two detector channels used in the experiment, yielding

0.77 and 1.0 for donor and acceptor effective quantum yields,

respectively. Crosstalk, direct acceptor excitation, and background

were found to change the photon statistics only by a small amount

and thus are neglected in our MC approach.

For the time-dependent FRET rate coefficient kT(t), which

depends on the electronic coupling between the two dyes and thus

also on their mutual orientation at each instant, we used Förster’s

dipole approximation for the electronic coupling,

kT~ kDzkDi

� � R0

R

� �6

: ð8Þ

In Eq. 8, R is the distance between the geometric center of the ring

system of the acceptor and the donor dyes, and R0 is the Förster

radius (the distance of 50% excitation transfer), which is

proportional to the time-dependent orientation factor k2,

R6
0~

9(ln10)QDJk2

128p5n4NA
~R6

const
:k2, ð9Þ

where QD is the quantum yield of the donor in the absence of the

acceptor, J the spectral overlap integral (Franck Condon factor),

NA Avogadro’s number, n the index of refraction of the solvent,

and k2 is the time-averaged orientation factor [3,70,71]. For the

pair Alexa 488 – Alexa 594, a Förster radius R0 of 5:4nm has been

determined [7,72], based on the assumption of isotropic dye

orientations i.e., k2~2=3. To describe time-dependent Förster

transfer, R6
0 in Eq. 8 is therefore replaced by R6

constk
2(t), with

Rconst~5:4nm=

ffiffiffi
2

3

6

r
~5:78nm.

The orientation factor

k2 tð Þ~ coshDA tð Þ{3coshD tð ÞcoshA tð Þ½ �2 ð10Þ

depends on the three relevant angles defined in Fig. 3. The

transition dipole moment orientations within the molecular frame

of the dyes were chosen parallel to the ring system plane, and

connecting the terminal rings of each dye (Fig. 1) [73].

Using the above framework, for all MD trajectories orientation

factors k2(t) and distances R(t) were calculated and stored for

each time step, thus obtaining time-dependent FRET rate

coefficients kT(t), which will be used below. Supplementary Video

S1 shows distance, orientation factor and transfer efficiency for an

exemplary trajectory.

We note that for small inter-dye distances (v2nm), when terms

of higher order than the dipolar are not negligible, Eq. 8 can be

replaced by multipole expansion of the coupling potential or the

transition density cube method [42,74] in a straightforward

manner, such that accurate FRET rate coefficients are also

obtained in these cases. In the present work, the dipolar coupling

potential was used.

Single Photon Generation
For direct comparison with smFRET burst counts, we

developed a Monte Carlo (MC) procedure to calculate single

burst FRET efficiencies from kT tð Þ. In the experiments, the arrival

times of individual photons from single molecules were recorded.

Accordingly, and following the kinetics scheme Eq. 3, multiple

individual photons were generated in a Monte Carlo process

(Fig. 4). For each photon, we proceeded as follows.

Figure 3. Geometry of dye orientations. Three angles define the
orientation factor k2 , the angle hDA between d̂d and âa, and the angles hD

and hA between d̂d and âa, respectively, and R̂R. The DR and DA plane are
defined by R̂R and d̂d as well as R̂R and âa.
doi:10.1371/journal.pone.0019791.g003

Figure 4. Photon generation by Monte Carlo. FRET transfer rate
coefficient vs. time, calculated from a molecular dynamics simulation
(box, left part). A random starting point on the trajectory is chosen at
which the donor dye is assumed to be excited by a photon (blue). Then,
for each time step the MC process on the right side is evaluated
according to the corresponding probabilities until de-excitation occurs.
Four de-excitation pathways are considered, thermal de-excitation of
donor or acceptor (dark-blue) and respective photon emissions (donor:
green; acceptor: red). The ratio of the collected donor and acceptor
photons is used to calculate a FRET transfer efficiency.
doi:10.1371/journal.pone.0019791.g004

FRET through Atomistic Simulation and Monte Carlo
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First, a random donor excitation instance was chosen from a

randomly chosen trajectory (Fig. 4 left). Next, the Markov scheme in

Fig. 4 (right) was iterated in time steps of Dt until either photon

emission or radiationless decay occurred (see Suppl. Video S2). In

the latter case, the MC run was discarded, in the former, the photon

(donor or acceptor) was recorded. During each MC cycle and using

an integration time step Dt~1ps, transitions were randomly

selected according to probabilities pDi~kDi
:Dt for thermal de-

excitation, pD~kD
:Dt for donor photon emission, pT~kT(t):Dt for

FRET transfer and 1{pDi{pD{pT(t) for no state change.

Acceptor de-excitation probabilities were calculated in the same

way, but with consistent transition probabilities pAi and pA, which

allowed to skip the remaining Monte Carlo step and to record the

emitted photon right away. All random numbers were generated

with an SIMD-optimized Mersenne Twister algorithm [75,76].

In the experiment, no FRET is seen for dyes in or close to van-

der-Waals contact, presumably due to quenching by electron

transfer [77]. The effect of quenching at low inter-dye distances is

not described with Förster theory, and therefore also not in our

MC process. To correct for this, photons are rejected if the inter-

dye distance is below 1nm during the photon generation when

comparing to experiments.

FRET Efficiency Calculation
Averaged over many MC runs, the collected de-excitation

events nAtot~nAiznA and nDtot~nDznDi from donor and

acceptor, respectively, were used to determine the average

efficiency

E~
nAtot

nAtotznDtot
: ð11Þ

In experiments, only radiative de-excitation events (nA,nD) can be

recorded. We therefore followed the same way in reconstructing

the total number of de-excitation events using the respective

fluorescence quantum yields,

nAtot~
nA

QA
, ð12Þ

and analogously for nDtot.

To directly relate efficiency distributions from MC sampling to

single molecule FRET measurements, the effect of shot noise and

burst size distribution has to be taken into account properly

[31,78]. Here, a sufficiently large number (w50000) of bursts has

been measured, which provided sufficient statistics such that the

experimental burst size distribution was used for combining the

MC generated photons into bursts. After correction for quantum

yield and detector efficiency, for each burst a single FRET

efficiency value was calculated using Eq. 11. Collecting FRET

efficiencies from many bursts yielded efficiency distributions that

can be directly compared to the measured ones. As in the

experiment, only bursts larger than 100 photons, after correction

for the effective quantum yield, were used.

Inclusion of cis/trans isomer heterogeneity
So far, we have considered only one isomeric state of the proline

polymer, e.g., the all-trans state. As has been found by NMR,

however, each peptide bond undergoes isomerizations, with a

small but non-negligible population in the cis-isomer, and with a

larger cis-population for the terminal peptide bond at the C-

terminus [45]. Because the isomerization times of minutes to hours

are much longer than all other relevant time scales, we considered

a weighted ensemble of all possible relevant isomerization states

and performed the above MD and MC simulations with efficiency

calculations separately for each isomer. Subsequently, employing

pcis
ter and pcis

int from NMR experiments [45] as probabilities for the

occurrence of cis-isomers for C-terminal and internal peptide

bonds, receptively, a weighted average was obtained (Table 2).

Single-Molecule Experiments
Peptide samples were prepared as described previously [31].

Single-molecule fluorescence experiments were performed with a

MicroTime 200 confocal microscope (PicoQuant, Berlin, Ger-

many) equipped with a pulsed 485nm diode laser (LDH-P-C-

485B, PicoQuant) and an Olympus UplanApo 60 x/1.20 W

objective. After passing through a 100mm pinhole, sample

fluorescence was separated by a polarizing beam splitter cube

into components parallel and perpendicularly polarized with

respect to the excitation light. Subsequently, both components

were further divided into donor and acceptor photons by means of

dichroic mirrors (585DCXR, Chroma), filtered (donor emission

filters: Chroma ET525/50 M, acceptor emission filters: Chroma

HQ650/100), focused on avalanche photodiodes (PerkinElmer

Optoelectronics SPCM-AQR-15), and the arrival times of all

detected photons were recorded using suitable counting electronics

(Hydra Harp, PicoQuant, Berlin, Germany).

Results and Discussion

Time-dependent conformations of the two dyes and their

mutual orientations for the three polyproline systems considered

here (Fig. 2) were obtained from multiple 100ns MD trajectories

of the all-trans and cis-isomers. MD simulations totaling 22:1ms
were carried out for the different isomers, chain lengths, and

temperatures (Table 1). We first focus on polyproline-20 in the all-

trans isomer as the most stable configuration in water and analyzed

two main factors relevant for the FRET efficiencies, the distance R

between the two fluorophores and the orientation factor k2.

Distance Distributions
Fig. 5A shows the distributions of dye-to-dye distances (defined

by the geometric center of the ring system) from individual 100ns
simulations. The fact that the distributions differ from each other

shows that the individual simulations are not fully converged to

represent the full all-trans ensemble. To improve convergence,

multiple simulations were combined. The apparent differences

between the individual distance distributions are mainly due to

Table 2. Isomer weights.

Isomer Probability

all-trans ptrans~ 1{pcis
int

� �n{1
1{pcis

ter

� �
#1 cis, other trans pcis1 ~pcis

int 1{pcis
int

� �n{2
1{pcis

ter

� �
#2 cis, other trans pcis2 ~pcis

int 1{pcis
int

� �n{2
1{pcis

ter

� �
..
. ..

.

#n-1 cis, other trans pcisn{1 ~pcis
int 1{pcis

int

� �n{2
1{pcis

ter

� �
#n cis, other trans pcisn ~ 1{pcis

int

� �n{1
pcis

ter

Here, cis1,cis2, . . . ,cisn indicate the position 1,2, . . . ,n of the cis peptide bond in
the chain, starting from the amino terminus.
doi:10.1371/journal.pone.0019791.t002

FRET through Atomistic Simulation and Monte Carlo

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e19791



slow transitions between subpopulations of dye-conformations (for

more details see section ‘‘Preferred Dye Conformations’’).

To better characterize the subpopulations and how they differ

between the individual trajectories, the distance between two

terminal proline residues center of mass (COM) was analyzed. As

shown in Fig. 5B, these length fluctuations are much smaller

compared to the dye-to-dye distances. In addition, the mean

length of individual simulations shows only small variations.

These small length fluctuations point to considerable rigidity of

the polyproline peptide, which indeed originally motivated its use

as a molecular ruler. From the angular fluctuation h of selected

segment pairs, separated by length L, a persistence length

P~18:3+0:3nm was obtained via

P~{
L

ln S cos hT
: ð13Þ

Here, 3 proline residues (:1 PPII helix turn) defined a segment

and its tangent with a segment length of 0:93nm. The all-trans

chains are indeed quite rigid and do not strongly deviate from the

type II helix structure model.

Because of the stiffness of the polyproline, the observed broader

distribution between the dyes mainly originate from the flexible

dye linkers rather than from the flexibility of the polyproline chain.

Orientational Dye Dynamics and Orientation Factor k2

Figure 6 shows the k2 distributions derived from 20 all-trans

simulations (gray) as well as their average (red). For comparison,

an isotropic k2 distribution is shown (black). As shown, the

individual simulations scatter considerably, with respective mean

k2 values between 0.58 – 1.06. Averaging over all 20 simulations,

the mean k2 of all-trans simulations was 0:83+0:03, and

0:80+0:02 for the complete ensemble including all cis-isomers

(Fig. 6). Both values agree within statistical error and significantly

deviate from the isotropic k2 value of 2=3.

As seen from the k2 histograms of individual MD simulations,

the sampled dye geometries differ for each simulation, which

underscores the importance of averaging multiple simulations.

The obtained more realistic k2{value shifts the effective Förster

radius from 5:4nm to 5:6nm.

Next, we determined the correlation between R and k2 for the

20 all-trans simulations and found a mean Pearson correlation

coefficient of {0:13+0:02. Because R and k2 are assumed to be

uncorrelated in Försters RET theory, this finding suggests that

using a distance-dependent Sk2T(R) might further improve the

distance reconstruction, as will be discussed below.

Table 3 shows mean auto-correlation times of different variables

from the simulations (exemplary autocorrelation plot shown in

Figure 5. Distance distributions. (A) Histograms of the distances
between the geometric centers of the ring systems of the two dyes for
20 all-trans MD simulations. (B) The distance histogram between the
COM of terminal prolines from the polyproline-20 chain, for the same
simulations. The insets visualize the measured distance in each plot.
Respective averages are shown in red; vertical lines denote the mean
and standard deviation.
doi:10.1371/journal.pone.0019791.g005

Figure 6. Distributions of the orientation factor k2. Each gray line
shows to an orientation factor histogram from one of the 20 all-trans
simulations at 293K, with the average shown in red. The green curve
(full ensemble) additionally includes the cis-isomers with appropriate
weights, the green vertical line shows the corresponding average and
its statistical error (dashed). The black curve shows the k2 histogram for
an isotropic dye orientation distribution, with the well known mean
value of 2=3 (vertical black line).
doi:10.1371/journal.pone.0019791.g006
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Suppl. Fig. S1 ). The orientation factor k2 shows the fastest decay

(0:3ns), whereas the terminal orientation and the dye to dye

distance are in the ns regime (Table 3) and thus comparable to the

donor fluorescence decay times. Calculated fluorescence anisotro-

py decay timescales [34,35] of 0:9ns in our simulations agree with

experimentally measured decay times of 0:3{0:8ns [31] within

the accuracy of the simulation [34] and thus indicate a correct

modeling of the dye dynamics by our force field.

These autocorrelation times determine the correlation of the

dye conformations and distances as probed by successive photons

and, therefore also, how many structures probed by each burst are

effectively statistically independent. Further, this autocorrelation

time may determines the size of the sub-ensemble of conforma-

tions that is actually probed by FRET, because the fluorescence

intensities of the two dyes also depend on past transfer efficiencies.

We will therefore examine the influence of these effects on the

quality that can be achieved for the distance reconstruction

described further below.

Preferred Dye Conformations
What is the structural origin of the orientation factor k2

deviation from its isotropic value of 2=3? A closer inspection of the

MD simulations revealed that hydrophobic interactions of the dye

linker with the proline chain enhanced the population of certain

conformational sub-states, similar to previous reports[45]. This

effect is more pronounced for Alexa 488 due to the longer linker.

For Alexa 488, two distinct conformation sub-states (open and

closed) were seen (Fig. 7).

To test the stability of these confomer ensembles, we analyzed

distances and the orientation factors of the all-trans polyproline-20

system at elevated temperatures (303 and 313K, Table 1). No

significant impact on the values for k2 was found (293K :
0:82+0:03,303K : 0:83+0:05,313K : 0:86+0:04). Also the dye-

to-dye distance R showed no systematic trend towards open

or closed conformations (293K : 5:57+0:08nm,303K : 5:22+
0:08nm,313K : 5:37+0:06nm). For the polyproline-20 chain

length L (293K : 5:77+0:01nm,303K : 5:73+0:01nm,313K :
5:70+0:02nm), a small decrease with increasing temperature was

seen. In summary, the applied temperature changes neither seem to

significantly influence the population ratios of the two conforma-

tions, nor the relative dye-to-dye orientations. However, due to the

limited sampling, we cannot fully exclude small effects, which may

arise at larger temperature changes. It will be an interesting

challenge for future experimental work to directly identify the

presence of the dye conformations observed here, e.g. from a

broadening of fluorescence anisotropy distributions in single

molecule experiments [79], or from the effect of measurements

under conditions that increase the solubility of the fluorophores on

the transfer efficiency histograms.

Efficiency Distributions from Individual Simulations
Figure 8 shows FRET efficiencies calculated separately from all

20 all-trans MD simulations. As already expected from the dye-to-

dye distance distributions, also the mean FRET efficiencies cover a

broad range from 0.27 to 0.66 with s~0:037 to 0:043. These

standard deviations s were compared to the expected shot noise

s2~E 1{Eð Þ=ntotL
[80,81] for each simulation mean efficiency E

using the lower experimental BSD limit (ntotL
~100) resulting in a

width s~0:033 to 0:036. Thus, the efficiency peak observed in the

individual traces of our simulations is mainly broadened due to the

photon shot noise.

Comparison of the distance distributions (Fig. 5A) with the

efficiencies (Fig. 8) illustrates the effect of signal averaging over an

entire fluorescence burst, subsequently referred to as ’‘burst

averaging’. To see this, consider naive transformation from

distances to efficiencies using Eq. 2, which would result in much

broader efficiency distributions than those observed in Fig. 8. This

narrowing is due to the combination of multiple photons, and thus

also of distances, into one burst, such that each efficiency value

represents a corresponding average [11]. It is this averaging, which

markedly narrows obtained efficiency distributions and also

obscures much of the structure seen in the distance distribution.

Isomeric Heterogeneity
To account for the isomeric heterogeneity due to the presence

of cis-isomers, which reduce the average distance between the two

Table 3. Time scales of motions.

mean SEM min max

½ns� ½ns� ½ns� ½ns�

R (dye-to-dye) 2.96 0.52 0.71 8.68

k2 (orientation
factor)

0.34 0.04 0.15 0.86

L (terminal
prolines)

0.80 0.20 0.30 4.12

V (terminal
orientation)

4.96 0.86 1.06 14.55

Anisotropy decay
(Alexa 488)

0.90 0.08 0.42 1.66

Autocorrelation times of all-trans polyproline-20 with their respective standard
error of the mean (SEM), minimum and maximum. Terminal orientation V
denotes the autocorrelation times of the cosine of the angle between the
terminal proline tangent vectors.
doi:10.1371/journal.pone.0019791.t003

Figure 7. Conformational heterogeneity of Alexa 488. Several
conformations of the Alexa 488 dye and its linker attached to the
proline chain during MD simulations are seen in the simulations. For the
open conformation, fast large amplitude motions are seen for the dye
whereas hydrophobic interactions restrict the dye mobility in the closed
conformations (one representative example is shown). Additionally slow
transition between the open and closed conformations are seen.
doi:10.1371/journal.pone.0019791.g007
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dyes [45], additional MD simulations for all possible isomers were

performed (Table 1). Using the population estimate of Table 2, the

full ensemble includes 5%, 8%, and 15% of isomers with more

than one cis bond for polyprolines of length 15, 20, and 30,

respectively. Thus, for proline 15 and 20, we included only the

single-cis conformers within the ensemble. For polyproline-30,

estimating the impact of multi-cis isomers, additionally a subset of

double-cis isomers was considered (Table 1). In the isomer

simulations, all the other bonds were kept in the trans

configuration, and the same MD parameters and protocol as for

the all-trans isomer were used. FRET efficiencies were then

calculated as explained before.

Figure 9 shows FRET efficiency distributions and averages for

the all-trans and cis polyproline-20 chains in comparison with

experiment. As expected, the average efficiencies of the cis-chains

are larger than that of the all-trans isomer, due to the reduced

distance of the terminal prolines. The largest reduction is seen for

cis-bonds in central positions, thus attributing measured high

efficiencies to those isomers. This behavior can be captured in a

simple model (Fig. 9, top), in which the cis-isomer is described by a

kink angle a between the two stiff parts of the molecule, with

distances RA and RD between the cis-bond and the respective

termini, and R~RAzRD being the all-trans distance between the

two termini. R, was determined from the all-trans mean efficiency

using Eq. 2 and split up on RA and RD for each cis isomer

according to the cis-bond position. To account for the distance

change due to the linker and the observed dye conformations

(Fig. 7), an offset RDzx0 and RA{x0 was allowed for as an

additional fit parameter. After fitting to the model to the average

cis-efficiencies using Eq. 2, an angle of 95:50, and and offset

x0~0:27nm was obtained. The resulting model is shown as green

line in Fig. 9 and has to be compared to the mean efficiency values

(red dots). The dashed line shows an offset of +1nm in efficiency

space as error estimate. The offset towards Alexa 594 x0~0:27nm
agrees with the deviation of the average dye-to-dye distance from

the proline length (6:01nm{5:57nm~0:44nm) within the

accuracy of this simple model.

Next, ensemble efficiency distributions were calculated by

combining cis and trans isomers according to their population in

solution. Using the population of individual isomers as determined

by NMR [45], pcis
int and pcis

ter, weights were determined as listed in

Table 2. For polyproline-20, these weights are ptrans~0:6131,
pcis½1{19�~0:0125,andpcis20~0:0681.

For poly-15 and polyproline-30, the same pcis
int and pcis

ter measured

on polyproline-20, were applied assuming that they are not

strongly influenced by the proline chain length. Because the cis-

content is larger in polyproline-30, an error in pcis
int and pcis

ter has a

larger impact on the accuracy of the ensemble composition. For

example, if polyproline-30 has a pcis
int value of 4% instead of 2%,

the multi-cis isomer ensemble content increases from 15% to 37%,

whereas the all-trans isomer contribution drops from 50% to 28%.

As a result, the obtained ensemble efficiency histograms sensitively

depend on the value of pcis
int and pcis

ter , particularly for the longer

polyproline-30 chain.

As seen before, the cis ensemble content and thus the content of

isomers with double-cis bonds increases with the chain length. For

polyproline-30, this contribution is about 15%. To estimate the

impact of double-cis species on the efficiency histogram, we

simulated a subset of double-cis isomers (Table 1). The obtained

weights for each chain length and isomer were used in the next

step, to calculate efficiency distributions of the entire ensemble.

Combining Photons into Bursts
So far, we calculated efficiency distributions of single simula-

tions (Fig. 8) and their accumulated histograms (Fig. 9). To

calculate burst efficiencies in closer resemblance to single molecule

experiments, we need to define how the recorded photons are

combined, e.g. from multiple trajectories. The specific approach

depends on the relative time scales of the relevant processes in the

experiment and the simulation. In single molecule experiments on

freely diffusing molecules, ten to hundreds of photons are recorded

in each burst of several ms duration. On the simulation side, in

contrast, multiple 100ns trajectories are available. We consider

three different ways of combining photons into bursts and

compare the resulting efficiencies to experiment.

The relevant time scales are the two autocorrelation times for

the dye dynamics, namely those of the orientation factor k2 and of

the distance R fluctuation, from hundreds of picoseconds (k2) to ns

(R) (Table 3); further the polyproline chain dynamics of a specific

isomer with the slowest motions in the 5ns range (Table 3, L and

V), the cis to trans isomerization time ranging from minutes to

hours for polyproline [82], the experimental burst recording

duration of several ms and the respective inter photon times [83],

as well as the simulation trajectory length of 100ns.

In the first case (burst average over fast and slow dye motions as

well as the polyproline isomerization), the burst duration is

assumed to be longer than all other time scales mentioned above.

Accordingly, in this case, each measured burst consists of photons

from the entire isomeric ensemble. To achieve a most compre-

hensive sampling, therefore, photons from all available trajectories

Figure 8. Spread of the efficiency amongst individual simula-
tions. Transfer efficiency histograms (blue) obtained via MC sampling
from 20 all-trans MD simulations of polyproline-20 at 293K. The red
curve at the top depicts the efficiency combined from all 20 trajectories,
where each burst is still combined from photons of one trajectory; the
bootstrapping standard error, calculated from 100 random samples, is
indicated by the shaded area. The vertical lines indicate the mean
efficiency and its standard deviation.
doi:10.1371/journal.pone.0019791.g008
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with their appropriate ensemble weight are combined. The blue

line in Fig. 10 shows the resulting efficiency distribution as a single

peak whose width is solely determined by the shot-noise.

Experiments measuring ensemble efficiencies (e.g., CW in bulk)

correspond to this case, except that in ensemble measurements an

effectively infinite number of photons is gathered, and therefore

the shot noise vanishes. For the polyproline system at hand,

however, the isomerization times are long compared to the burst

duration, and thus this case is not expected to apply here. Indeed,

the measured efficiency distribution (Fig. 10, black) is much

broader.

Accordingly, for the second case (burst average over fast and slow

dye motion), we assume that the isomerization time is longer than

the average burst duration, with the remaining dye and chain

dynamics still being fast compared to the burst duration. In this case,

all photons from a measured burst originate from one particular

isomer. Because the trajectory length is much shorter than the burst

duration, each burst is generated from all trajectories of a particular

isomer. Figure 10, green line, shows the resulting efficiency

distribution. Because in contrast to the previous case, averaging is

not done over multiple isomers within each burst, as assumed above,

the individual cis isomers contribute high efficiencies (w0:7) to the

efficiency distribution (Figure 10). As shown in Fig. 10 (dashed green

line), these high efficiencies are also observable in the experiment

(black line). In addition, Fig. 10 reveals that the low efficiency side

agrees with the experimental distribution (solid green line).

However, when comparing the region around 0.7, a gap between

the all-trans peak and the high efficiency cis region is present, not

found in the experiment. In analogy to the comparison of this case

and the above case, which averages over the polyproline

isomerization, this hints at additional dynamics slower than the

burst duration, averaged out in the current case.

Figure 9. FRET efficiency of trans and cis isomers. Comparison between measured FRET efficiency histograms (black) and histograms computed
from the simulations (blue: ensemble, all-trans and cis01 ... cis20). Red dots denote the respective mean values. The simple model sketched on top
and defined in the text describes the general trend (green line) that isomers with a cis-bond close to the termini show lower efficiencies, whereas
those with cis-bonds close to the polymer center tend to yield higher efficiencies. The dashed green lines estimate the spread of the average
efficiencies of the cis simulations mirroring the spread found for the all-trans simulations (DR~+1:0nm). For illustration purposes, the photons of
the individual cis were not discarded when generated below 1nm as described in the Methods Section. The high efficiencies observed for cis-6 to cis-
12 result from dyes in contact and are quenched in the experiment.
doi:10.1371/journal.pone.0019791.g009
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If this is true, one would expect a better agreement for the third

case considered here. In this case (burst averaging over fast dye

motion only), we now assume that the dye dynamics contains

additional components that are slow compared to the burst

duration. An example of such a component is the transition

between different conformations of the dye, e.g. the ones shown in

Fig. 7. Therefore, all photons in a burst originate from a distinct

dye conformation with an interconversion time larger than 100ns.

In resemblance to this, each burst is generated from one distinct

simulation trajectory. The previous assumption of slow isomeri-

zation times compared to the burst recording duration is

automatically contained in this case, since each trajectory contains

a single distinct isomer. Figure 10 (red line) shows the resulting

efficiency distribution. In contrast to the burst average over fast and

slow dye motion, where all-trans and cis-isomers were resolvable

(Fig. 10, green line), the conformational heterogeneity on time

scales beyond 100ns and thus of different simulations, is now

visible as already observed in Fig. 8. As shown in Fig. 10 (red line),

this heterogeneity is particularly pronounced for the all-trans

simulations due to the largest number of simulations (Table 1) and

the all-trans isomer being the largest fraction of the ensemble. The

small numbers of simulations result in a considerable statistical

error, shown as red area in Fig. 10 and calculated from the all-trans

isomer. When comparing this result to the experiment, the high

efficiency side (solid red line) with cis-efficiencies agrees with the

experiment (black). The discrepancy (gap around 0.7) previously

observed (burst average over fast and slow dye motion) vanishes.

However, an additional low efficiency shoulder is visible not

present in the experiment (dashed red line).

This deviation is not within statistical uncertainty (Fig. 10, red

area) and may be due to several reasons. First, because all

simulations have been started from the open conformation (Fig. 7),

this conformation may have been oversampled. Second, although

the dye dynamics described by the fluorescence anisotropy decay

times agrees with the experiment, we cannot fully exclude over- or

underestimation of the dye-hydrophobicity with our choice of

partial charges. Third, this discrepancy can be explained by the

presence of two different dye dynamics in the experiment as

described below.

Overall, the low-efficiency side (v0:5 in Fig. 10) in case of burst

averaging over fast and slow dye motions agrees well with the

experiment, whereas on the high efficiency side (w0:5), better

agreement is seen for burst averaging over fast dye motions only

(Fig. 10, solid green and blue vs. black). From the above discussion

of time scales, this finding would imply that the low efficiency side

(i.e., large distances) is governed by fast dynamics, whereas parts of

the slow dynamics govern the high efficiency (i.e., shorter

distances) side only. Close inspection of our simulations suggests

a possible structural explanation for this finding. In particular, the

hydrophobic interactions between the polyproline and the Alexa

488, which give rise to the structural heterogeneity shown in Fig. 7,

with very slow transitions between the open and closed conforma-

tion. In the open conformation, the dye-reorientation is fast

compared to the burst duration and thus sampled within a single

burst, in agreement with the low efficiency side (Fig. 10). In the

closed conformations, the dye dynamics is largely restricted, with

the high FRET efficiency therefore being governed by the slow

transitions between these sub-states, in agreement with the

observed burst averaging over fast and slow dye motions.

Next, we compare efficiency distributions for different dye-

labeled proline lengths. Figure 11 shows the calculated efficiency

distributions (burst averaging over fast dye motions only) from

simulations with proline lengths 15, 20, and 30 (solid lines) as well

as measured efficiencies for lengths of 14, 20, 27, and 33 (dashed).

The general length effect, increase in efficiency for shorter prolines

and vice versa, is observed.

For polyproline-15, the calculated distribution has the same

narrow shape as found in the experiment, however with the

simulated efficiency distribution shifted towards higher efficiencies.

Purely from the length difference between polyproline-14

(experiment) and polyproline-15 (simulation), an opposite shift is

expected. A similar slight discrepancy is seen for polyproline-30,

where the peak should be located between the experimental peaks

of polyproline-27 and -33, but is seen in Fig. 11 somewhat below

polyproline-33.

While the overall agreement between simulation and experi-

ment is good, this observed systematic deviation is striking.

Apparently, compared to our simulation results, the experimental

efficiencies tend to be shifted slightly towards 0.5 within both the

high as well as the low efficiency regime. Overall, such behavior

cannot be explained by an uncertainty in the measured R0, which

would lead to a uniform shift in one direction. With the same

argument, also force field inaccuracies, which might, e.g.,

overestimate the hydrophobicity of the dyes and thus also the

population of the closed conformation, are incompatible with the

observed deviation. As a possible explanation one might consider a

modified Förster law with, e.g., an effective power smaller than 6

in Eq. 2 (e.g. a power of &4 yields the best agreement of the

simulated and experimental peak positions). Such effects have

been observed previously [31] and may originate from inter-dye

quenching or the breakdown of the point dipole approximation

Figure 10. Combining photons into bursts. Comparison of
different photon accumulation methods for a full polyproline-20
ensemble at 293K with the experiment (black). Three different
accumulation methods (colors) were considered. First, efficiencies were
calculated from the full ensemble (blue), for which each photon burst
has been combined from photons of all cis and trans simulations, and
which therefore average over all motions and heterogeneities covered
by the simulations. Second, each efficiency value was calculated from
photons of all simulations of a randomly chosen isomer (green), thereby
averaging over all dye motions but not over different isomers. Third,
each efficiency value is derived from photons of one single trajectory,
and weighted by the appropriate ensemble probability (red). The
impact of the cis-isomers is demonstrated by comparison to the all-
trans only efficiency histogram (magenta). The bootstrapping standard
error (Fig. 8) of the all-trans isomers is drawn as light red area. Efficiency
histograms were normalized to their maxima.
doi:10.1371/journal.pone.0019791.g010
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[41,84]. As a third possible cause, decreased fluorescence lifetimes

at high efficiencies leading to a stronger deviation from k2~2=3
has been discussed [31], but is already included within our

simulation approach and thus unlikely to explain the deviation.

Comparing the shapes of the polyproline-30 curves, both the

calculated as well as the measured efficiency distributions share

shoulders reaching into the high efficiency regime. However, this

shoulder is much more pronounced in the experiment than in the

simulation. Closer inspection shows that the shoulder originates

exclusively from cis-isomers. To interpret this discrepancy it is thus

helpful to ask what fraction of the cis-population, according to the

NMR results, is expected to fall into this high efficiency range.

Interestingly, with the 2% cis-population (per bond) from NMR,

and considering the fact that only about 2/3 of the cis-population

contributes to the high efficiency shoulder (whereas about 1/3

contributes to the main, all-trans peak, see Suppl. Fig. S2), the

NMR results are incompatible with the high (ca. 50%) population

seen by FRET. Accordingly, a small correction of the NMR values

towards higher populations of the cis-isomers would resolve both

the discrepancy between NMR and FRET as well as that between

FRET and our calculated efficiency histogram. In contrast, our

neglect of multiple cis-conformers is unlikely to explain the

discrepancy, as seen from the small effect when including the

double-cis-species (Fig. 11, bold dashed red line) as the dominant

multiple cis-population.

In experiments, a peak around zero efficiency is seen for all

proline species. This peak originates from polyproline molecules

lacking an active acceptor dye, either because of imperfect labeling

or because of photobleaching of the acceptor dye during the

measurement [31]. In our simulations, all molecules carry a donor

and an acceptor dye, and photobleaching is not considered; the zero

efficiency peak is thus absent. The clear separation of the zero

efficiency peak from the rest of the signal allows us to compare only

the signal from the ‘‘intact’’ molecules with the simulated data.

Reconstructing Distance Distributions from FRET
Efficiencies

We have shown above that accurate efficiency histograms can

be calculated from a combination of atomistic MD simulations

and Monte Carlo photon sampling. Now we will ask the inverse

question: Can the dye orientation distributions obtained from the

simulations be combined with measured FRET efficiency histograms

in such a way as to enable reconstruction of more accurate

distances and, possibly, also distance distributions, than by the

established k2~2=3 approximation? And if so, which accuracy

can be expected at the different conceivable levels of approxima-

tions that were mentioned in the Introduction?

To address these questions, the efficiency histogram calculated

from the hybrid MD/MC approach (where the distance

distribution is known) as well as the single molecule FRET

efficiency histogram from the experiment (where the distance

distribution is unknown) were used as input for the backward

calculations. The thus reconstructed distance distribution, both

from the synthetic and the experimental FRET data, were then

compared to the known distribution from the simulation. For each

level of approximations, thereby, the impact on accuracy of the

respective assumptions is quantified.

As a common framework for a proper definition of the applied

approximations, we consider the most general (linear) transfor-

mation from a distance distribution p(R) to an efficiency

distribution q(E) in terms of transfer functions g(E,R),

q Eð Þ~
ð Rmax

0

g E,Rð Þp Rð ÞdR: ð14Þ

Each level of approximation, will be defined through an

approximately specified transfer function g(E,R) – or, after

discretization, transfer matrix. In all cases, the all-trans polypro-

line-20 structural ensembles were used for the calculation of the

transfer function as well as to generate the synthetic efficiency

distribution q(E); to reconstruct p(R) from the experimental

efficiency distribution, which involves an isomer mixture, the full

structural ensemble with appropriate weights was used to calculate

the transfer function (except for transfer functions g4 and g5). At

each approximation level, p(R) was then reconstructed from q(E)
and g(E,R) by inverting a discretized version of Eq. 14.

As, generally, such inversion is numerically highly unstable,

regularization assumptions are required. Here, motivated from the

observation of two structural conformers (open and closed confor-

mation, cf. Fig. 7), we assumed that p(R) can be described

sufficiently accurate by the sum of n~2 Gaussian functions

centered at Ri of width si,

p(R)~
Xn

i~1

ai exp {
R{Rið Þ2

2s2
i

" #
: ð15Þ

With this description, the x2 between the calculated and the

reference efficiency distribution was minimized by variation of Ri

and si using the two array differential evolution algorithm [85].

Extension of this method to more Gaussian functions or to a more

sophisticated model [86] is straightforward.

At the lowest level of refinement, the usually assumed isotropic

dye orientation distribution is considered, implying k2~2=3,

independent of the mutual distance between the two dyes. The

efficiency distribution q(E) was obtained from the donor-acceptor

Figure 11. Comparison between proline 15, 20 and 30 and
experiment. Efficiency histograms averaging over fast dye motions
only (Fig. 10) are shown for three different polyproline-lengths (red,
dashed-dotted, solid, dashed), and corresponding measured efficiency
distributions (black). For polyproline-30, inclusion of double-cis isomers
(see Text S1) only slightly changes the efficiency histogram (bold
dashed line).
doi:10.1371/journal.pone.0019791.g011
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distance distribution p(R) via the usual Förster formula, Eq. 2,

q(E)~p(R)
dR

dE
~{

1

6
p(R)

R0

E2(1=E{1)5=6
: ð16Þ

In the more general transfer function formalism used further

below (Eq. 14), the above result (Eq. 16) is readily recovered from

the transfer function

g1(E,R)~d E{
1

1z(R=R0)6

 !
ð17Þ

shown in Fig. 12A.

Figures 13A and B show how well the respective transfer

functions capture the relation between p(R) and q(E) as obtained

from the simulations. At this first level of refinement, using the

above k2~2=3 transfer function for both the all-trans ensemble (A)

as well as for the full ensemble, containing all isomers (B), quite

narrow efficiency distributions (green curves) are obtained, which

are also shifted towards lower efficiencies with respect to the

reference efficiency distributions (blue, black). As expected, the

reconstructed distance distributions, Fig. 13E and F (same color

scheme), are also shifted towards smaller distances, with the

maximum being off by more than 0:5nm. Further, the reconstruct-

ed distance distribution has a shoulder that is not seen in the

reference distribution. Overall, the reconstruction is not satisfactory

at this level of refinement. Figure 13C and D show, that for the all-

trans MC and the full ensemble experimental efficiencies, respec-

tively, adjusting of parameters in Eq. 15 led to convergence.

To quantify to which extent the assumption of an isotropic dye

orientation distribution causes this discrepancy, at a second level of

refinement the correct Sk2T value was used, as obtained from the

respective MD simulation ensemble (cf. Fig. 6). Still, this value was

assumed independent of the distance between the two dyes. This

approximation is described by the transfer function

g2(E,R)~d E{
1

1z(R=Radj)
6

 !
, ð18Þ

with R6
adj~

3

2
Sk2TR6

0, and Sk2T~0:80. As seen in Fig. 12B, this

refinement results in a slight shift of the Förster curve with respect

to the isotropic dye orientation approximation (Fig. 12A).

At this improved level of refinement, a slight shift of the

calculated efficiency distributions towards the reference distribu-

tions is observed (red curves in Figs. 13 A, B). As a result,

correspondingly improved reconstructed distance distributions are

obtained (Fig. 13 E, F). However, the shapes of the efficiency

curves are still too narrow, and the shoulder in the reconstructed

distance distribution is still present. Apparently, these artifacts are

mainly caused by further approximations not investigated so far.

Therefore, at the third level of refinement, we drop the previous

assumption that the dye orientation distribution is independent of

the donor-acceptor distance. Accordingly, the MD structure

ensemble was split into groups according to mutual dye distance,

and an average orientation factor Sk2TR was calculated separately

for every group, i.e., as a function of R. Note that this distance

dependent orientation factor

Sk2T(R)~S cos hDA{3 cos hD cos hAð Þ2T(R) ð19Þ

differs from the previous ones in that it captures correlations

between the dye orientation distribution and the donor-acceptor

distances. This can be used to construct the transfer function

g3(E,R)~d E{
1

1z(R=Rred)6:(1=Sk2T(R))

 !
, ð20Þ

defining R6
red~R6

0
:3=2.

As seen in Fig. 12C, the resulting transfer function is not strictly

monotonic any more, such that the inverse transformation to R(E)
is not straightforward and, the above regularization techniques

need to be applied.

This refinement step yields a marked improvement of both peak

position and shape of the obtained efficiency distributions (Figs. 13

A and B, cyan). Only a slight peak shift towards lower efficiencies

remains for the all-trans ensemble (Fig. 13 A), as is also seen for the

experimental efficiencies in Fig. 13B. Also for the distance

reconstruction, the dominant peak is now at the correct position

in both cases (Fig. 13 E, F), although the second peak in the

synthetic distance reconstruction using the all-trans ensemble still

remains and leads to an overestimate of the distribution for smaller

distances.

So far, our transfer functions uniquely defined the efficiency E
for each distance R. Before continuing with further refinement

steps, we demonstrate how the experimental shot noise impacts the

reconstruction of distances. Two fundamental approaches have

been used so far to calculate the shot noise contribution via

numeric solution [78,80] or via simulation [87,88]. Mathemati-

cally, the shot noise free efficiency distribution ~qq(E) is convoluted

with a shot noise kernel S resulting in an efficiency distribution

q(E) including the shot noise. This convolution

q(E)~

ð
~qq(E’)S(E{E’)dE’, ð21Þ

broadens the underlying efficiency distribution ~qq(E) to q(E).
Because of this broadening, the reconstructed distance distribution

p(R) is narrowed when shot noise is taken into account. In analogy

to image reconstruction from a de-focused image by inversion of

the convolution with the appropriate image transfer function, the

achieved accuracy and the ability to recover finer details of the

original distance distribution are limited by the information loss

due to convolution of the shot noise kernel S with the transfer

function g(E,R), Eq. 14.

Since determining the shot noise kernel S of an experimental

BSD is non-trivial, the experimental shot noise (bursts §100) was

included in the transfer function as follows. Each distance bin of

the transfer matrix (columns in Fig. 12) was randomly sampled by

1200 bursts from the experimental BSD. The target efficiency for

each burst was directly calculated from the transfer function

(g1,g2,g3) or randomly picked from the efficiency distribution (for

the following refinement steps). According to the target efficiency,

donor and acceptor photons were randomly generated, and the

obtained burst efficiency was then recorded in the transfer

function. Figure 12D and H illustrate the impact of an

experimental shot noise (bursts §20) on transfer functions

(Fig. 12C and G). Comparison of C and D illustrates, that after

the inclusion of shot noise, the transfer function not uniquely

defines an efficiency E value for each distance R, but instead an

efficiency distribution. The here observed effect of the BSD on the

transfer function is purely of stochastic origin, whereas a similar

but independent effect will be seen in the following refinement

level.
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To motivate this level of refinement, recall that in all levels of

refinement considered so far the full structure ensemble has been

used to calculate appropriate averages for the orientation factor k2.

This approach implies the salient assumption that each single burst

samples the same dye orientation distribution – which, however,

holds true only if all components of the dye motion are much faster

Figure 12. Transfer functions gi at increasingly refined approximation levels. Transfer functions A, B, and C are shown as black curves; the
remaining transfer functions are shown color-coded, with averages highlighted as black curves. Transfer function g1 was calculated using the
assumption of k2~2=3 (A). For g2 , k2 was adjusted to represent the ensemble average in the simulations (B). g3 includes the distance dependency of
k2 without (C) and with (D) shot noise derived from the experimental BSD (burst size or lower burst size cutoff given in brackets). In contrast to a
distance dependent averaged k2 , g4 includes the k2 distributions at each distance without (E) and including averaging within a burst (F). In g5 , the
time dependent photon emission (Fig. 14) is included, shown without (G) and with experimental shot noise (H).
doi:10.1371/journal.pone.0019791.g012
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than the burst duration. As has been shown from the above

comparison between measured efficiency distributions and those

obtained from three different structure ensembles, there are slow

components of the dye motion, which may render this salient

assumption questionable. Our last level of refinement attempts to

include the dominant effect of this limited dye orientation sampling

within the transfer function. Note, however, that a rigorous

treatment of this effect would require to go beyond the limits of

the transfer function framework, and here is only achieved

conceptually by our explicit hybrid MD/MC simulation approach.

At this refinement level, accordingly, the columns of the transfer

matrix are formed from distance dependent transfer efficiency

distributions pk(k2,R) rather than single valued R-dependent

averages Sk2T(R), from which the transfer function g4(E,R) is

derived as

g4(E,R)~
pk(k2,R)Ð

dk2pk(k2,R)
: dk

dE
: ð22Þ

Here, the integral over k2 in the denominator of g4 normalizes the

probability distribution on the distances and dk=dE transforms

pk(k2,R) to pk(E,R). The normalized transfer function is obtained

from orientation factor histograms for different distances from the

MD trajectory ensemble, applying Eq. 2.

Figure 13. Distance reconstruction from efficiencies. Reconstruction of distance distributions from synthetic efficiencies with known distance
distributions from simulations, and measured efficiencies with unknown distance distribution. Two ensembles were considered: The left column
consists of all-trans polyproline-20 at 293K. The right column also includes the cis-isomers with appropriate weights and uses experimental
efficiencies as reference. In the first row (A and B), the efficiency distributions obtained from multiplying the transfer matrices (discretized transfer
function) with the distance distributions obtained from simulations are shown together with efficiencies derived from our simulations and
experiment as reference. The second row (C and D) depicts the efficiency obtained by optimizing the parameters of two Gaussian distance
distributions as a measure for the reconstruction quality. The efficiencies were calculated by multiplying the transfer matrix with the Gaussian
distance distributions with optimized parameters (see Text S1). The distance distributions obtained from reconstruction and simulation are shown in
the third row (E and F). In all graphs, the reference is plotted with a bold line. Notably the experimental reference distance is inaccessible in F. The
employed transfer matrices include experimental shot noise.
doi:10.1371/journal.pone.0019791.g013
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Figure 12E shows the transfer function resulting from the samples

of our simulations. Notably, there is a distance dependent maximum

efficiency due to the k2 range from 0 to 4. The samples of pk(k2,R)
from our simulations each determine the efficiency samples of

pk(E,R). In experiments, however, efficiencies are determined using

multiple photons. Thus, the efficiencies in the transfer function need

to be averaged over multiple (k2,R) samples according to the BSD.

Figure 12F shows this effect for a constant burst size of 5. As seen, this

burst size dependent averaging introduces a narrowing of the transfer

function, independent of the photon shot noise.

Figure 14 motivates and illustrates the next level of refinement.

Shown are the donor and acceptor photon counts from a trajectory,

extensively sampled with photons created in our MC process. In

high efficiency regions with efficiency values in the lower plot close

to one (e.g., around 45 and 55ns), a marked depletion of donor and

acceptor photon counts (dips in the green curve in the upper plot) is

observed. As a result, also the mean intensity Iavg depends on k2 and

R and thus affects the probability of obtaining a photon from a

distinct (k2,R) conformation. Thus, for each instant t, the

orientation (k2(t),R(t)) depends on the history of orientations

within the fluorescence lifetime. Because in the construction of g4,

the probability distribution of dye orientations pk(k2,R) is only

normalized at each distance, this memory is not described. By

applying appropriate intensity weights, our last, most realistic

transfer function g5 includes also this effect.

g5(E,R)~
pk(k2,R):Iavg(k2,R)Ð

dk2pk(k2,R):Iavg(k2,R)
: dk

dE
: ð23Þ

In our transfer function construction, the intensity of each (k2,R)
sample was determined by extensive photon sampling of our

trajectories. Thereby, the adsorption events were equally distrib-

uted over the whole trajectory and the emission times of the

photons was recorded. The (k2,R) samples were then weighted

according to their total emitted photon count. Notably, the

samples are implicitly weighted according to their efficiency

history in experiments. In Fig. 12G, a shift towards higher

efficiencies as an effect of this weighting is seen. To reduce

computationally expensive photon sampling of the trajectories, g4

and g5 were calculated from 20 all-trans simulations only.

Applying this transfer function g5 to our known distance

distributions to asses the quality of approximations results in

efficiency distributions only slightly different from the ones for g3

(Fig. 13 A, B). Nevertheless, as seen in Fig. 13, the high efficiencies

in the experimental ensemble were reproduced better than for g3.

When using g5 for the reconstruction of distances using the

synthetic efficiencies, the best agreement with the distance

distribution from the simulations was found (Fig. 13 E). Also, the

reconstructed peak location using the experimental efficiencies is

slightly closer to the peak from the simulations (Fig. 13 F).

Overall, in the experimental reconstruction, all distance

distributions of different refinement levels are shifted towards

lower distances in comparison to the simulation distance

distribution. This agrees with the observation of low efficiency

overestimation shown in Fig. 10.

These tests demonstrate, that a markedly improved reconstruc-

tion over the established approaches is achieved by inclusion of

dye motion and photon statistics obtained by our hybrid

simulation approach of simulated data. Further, by using step-

Figure 14. Time dependent photon emission along a single trajectory. Top: normalized acceptor (blue) and donor (green) photon count for
time independent excitation probability. Mid: corresponding distance R(t) and orientation factor k2(t). Bottom: resulting time dependent
instantaneous efficiency.
doi:10.1371/journal.pone.0019791.g014

FRET through Atomistic Simulation and Monte Carlo

PLoS ONE | www.plosone.org 16 May 2011 | Volume 6 | Issue 5 | e19791



by-step refined approximation levels for the transfer functions, a

systematic improvement of the inverse distance reconstruction is

achieved for the polyproline system.

Conclusions
We have demonstrated that structural information on the

dynamics of FRET dye pairs from MD simulations improves the

reconstruction of distances and distance distributions from experi-

mental FRET efficiency distributions over the usual k2~2=3
approximation, which assumes isotropic and uncorrelated distribu-

tions of the dye transition dipole orientations. A hybrid MC/MD

method was developed and tested, which uses this structural

information in combination with a Monte Carlo description of

photon absorption, FRET-transfer, and emission, to calculate

quantitative efficiency distributions. Based on the obtained good

agreement with measured efficiency distributions of polyproline

constructs, we have investigated several levels of approximation,

resting on the particular relation of the different relevant time scales of

the experiment and of the simulations. For the system at hand, this

analysis revealed a previously unknown slow component of the dye

movement. Our analysis further highlights that careful consideration

of the time scales of the involved processes is crucial, and offers a

framework that is flexible enough to capture the different time scale

relationships expected for a broad range of systems. Unexpectedly,

already for the simple polyproline system at hand, where the dyes are

usually assumed to be sufficiently flexible to justify the established

k2~2=3 approximation, severe deviations were seen. Our results

suggest that for FRET dye pairs attached to proteins or DNA/RNA

complexes, the orientational dynamics are typically more restricted

due to sterical hindrance and electrostatic interactions, a simulation

approach like the one developed here is essential.

Supporting Information

Figure S1 Autocorrelation decay times of multiple param-
eters. R is the inter-dye distance, L the chain end-to-end distance and

k2 the orientation factor. The 3D, 2D and 2nd Legendre Polynomial

of 2D (Anisotropy decay) was determined from Alexa 488. The decay

here is from an all-trans polyproline-20 simulation.

(EPS)

Figure S2 Polyproline-30 cis-isomer efficiencies. For

each isomer, the normalized probability is shown.

(EPS)

Video S1 Distance and Orientation factor from simula-
tions. For illustration, a fragment of 10 ns simulation time from

polyproline-15 with the two dyes attached is shown as example for

the dynamics. The box in the bottom shows the time dependent

orientation and distance as well as the resulting FRET efficiency.

The position in the time trace is shown as moving red bar in the box.

(M4V)

Video S2 FRET from Monte Carlo and simulation
trajectories. In addition to Video S1, exemplary excitation

and de-excitation events are shown. Both competing pathways, de-

excitation of donor, as well as the alternate pathway via FRET

followed by acceptor de-excitation are displayed.

(M4V)

Text S1

(PDF)

Table S1

(PDF)

Acknowledgments

We thank Ulrike Gerischer, Jan Neumann, Jan Opfer, Stephanus Fengler,

Stanislav Kalinin and Christian Blau for carefully reading the manuscript

and Suren Felekyan, Brent P. Krueger as well as Daniel Nettels for helpful

discussions.

Author Contributions

Conceived and designed the experiments: MH NL BS CAMS HG.

Performed the experiments: MH NL BS HG DH. Analyzed the data: MH

NL BS. Contributed reagents/materials/analysis tools: MH NL BS CAMS

HG DH. Wrote the paper: MH NL BS CAMS HG.

References

1. Förster T (1948) Zwischenmolekulare Energiewanderung und Fluoreszens.

Annalen der Physik 2: 55–75.

2. Stryer L, Haughland RP (1967) Energy transfer - a spectroscopic ruler. Proc

Natl Acad Sci U S A 58: 719–726.

3. Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM (2010) Accurate

single-molecule FRET studies using multiparameter uorescence detection.

Methods Enzymol 475: 455–514.

4. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, et al. (1996) Probing the inte-

raction between two single molecules: uorescence resonance energy transfer between a

single donor and a single acceptor. Proc Natl Acad Sci U S A 93: 6264–6268.

5. Shera EB, Seitzinger NK, Davis LM, Keller RA, Soper SA (1990) Detection of

single uorescent molecules. Chem Phys Lett 174: 553 - 557.

6. Berglund AJ, Doherty AC, Mabuchi H (2002) Photon statistics and dynamics of

uorescence resonance energy transfer. Phys Rev Lett 89: 068101.

7. Meer BWVD, III GC, Chen SYS (1994) Resonance Energy Transfer: Theory

and Data. John Wiley & Sons, 1 edition.

8. Kalinin S, Felekyan S, Valeri A, Seidel CAM (2008) Characterizing multiple

molecular states in single-molecule multiparameter uorescence detection by

probability distribution analysis. J Phys Chem B 112: 8361–8374.

9. Neubauer H, Gaiko N, Berger S, Schaffer J, Eggeling C, et al. (2007)

Orientational and dynamical heterogeneity of rhodamine 6G terminally

attached to a DNA helix revealed by NMR and singlemolecule uorescence

spectroscopy. J Am Chem Soc 129: 12746–12755.

10. Wozniak A, Nottrott S, Kuhn-Holsken E, Schröder G, Grubmüller H, et al.
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