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Abstract

Background: We applied crosslinking techniques as a first step in preparation of stable avian sarcoma virus (ASV) integrase
(IN)-DNA complexes for crystallographic investigations. These results were then compared with the crystal structures of the
prototype foamy virus (PFV) intasome and with published data for other retroviral IN proteins.

Methodology/Results: Photoaffinity crosslinking and site-directed chemical crosslinking were used to localize the sites of
contacts with DNA substrates on the surface of ASV IN. Sulfhydryl groups of cysteines engineered into ASV IN and amino-
modified nucleotides in DNA substrates were used for attachment of photocrosslinkers. Analysis of photocrosslinking data
revealed several specific DNA-protein contacts. To confirm contact sites, thiol-modified nucleotides were introduced into
oligo-DNA substrates at suggested points of contact and chemically crosslinked to the cysteines via formation of disulfide
bridges. Cysteines incorporated in positions 124 and 146 in the ASV IN core domain were shown to interact directly with
host and viral portions of the Y-mer DNA substrate, respectively. Crosslinking of an R244C ASV IN derivative identified
contacts at positions 11 and 12 on both strands of viral DNA. The most efficient disulfide crosslinking was observed for
complexes of the ASV IN E157C and D64C derivatives with linear viral DNA substrate carrying a thiol-modified scissile
phosphate.

Conclusion: Analysis of our crosslinking results as well as published results of retroviral IN protein from other laboratories
shows good agreement with the structure of PFV IN and derived ASV, HIV, and MuLV models for the core domain, but only
partial agreement for the N- and C-terminal domains. These differences might be explained by structural variations and
evolutionary selection for residues at alternate positions to perform analogous functions, and by methodological
differences: i.e., a static picture of a particular assembly from crystallography vs. a variety of interactions that might occur
during formation of functional IN complexes in solution.
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Introduction

Retroviruses utilize the viral enzyme integrase (IN) for inserting

DNA copies of their genomic RNA into host DNA. As this step is

necessary for replication of pathogenic retroviruses such as HIV,

integrase inhibitors are being developed as an important class of

AIDS drugs [1–5]. Detailed structural data concerning IN-

substrate interactions can contribute greatly to such efforts. Recent

success in determining the structure of complexes of prototype

foamy virus (PFV) IN with both the viral and target DNAs [6] has

provided the foundation for a valuable HIV IN model [7];

however, experimental data for DNA complexes of HIV IN or

other integrases from more closely related viruses are still lacking

[2]. On the other hand, a large number of structures have been

published for the three domains of IN [N-terminal (NTD), core

(CCD), and C-terminal (CTD)] from HIV, ASV and other

retroviruses, either singly or in pairs [2]. Retroviral integrase is

known to be a conformationally dynamic protein and current

evidence indicates that it is capable of adopting a defined and/or

active conformation only upon binding to its DNA substrate(s) and

metal cofactors [8,9]. Several models of IN-DNA complexes have

been developed, originally based on other transposase-DNA

structures [10,11], and more recently on the structures of PFV

IN [7,12], but the conformational variability of integrase,

particularly within the inter-domain linkers, exacerbated by the

significant differences in their lengths in various viruses, makes
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such modeling efforts challenging. As detailed structural data on

IN-DNA interactions are required to elucidate the molecular

mechanism of catalysis and to facilitate drug development efforts,

further studies of such complexes remain an imperative. Here we

report the use of photoaffinity and chemical crosslinking methods

to obtain insight into the interactions of avian sarcoma virus (ASV)

IN with its DNA substrates.

Photoaffinity crosslinking and chemical crosslinking are essen-

tially methods of measuring distances between points of interest in

macromolecular complexes. By use of reagents with differing

linker lengths it is possible to estimate the shortest distance

between two sites on a protein or a protein complex. In

photoaffinity crosslinking, a heterobifunctional reagent carries

one functional group for chemical attachment to a specific target

residue in a protein or nucleic acid molecule, and one

photoactivatable group that can be triggered by mild UV

irradiation into high reactivity, forming a covalent bond with the

closest neighbor in a pre-formed complex.

Chemical crosslinking between DNA and target protein involves

engineering of sulfhydryl groups into specific positions in the

DNA, with the aim of forming disulfide bridges with the cysteine

residues in the protein. The positioning of modified nucleotides to

enable such chemical crosslinking relies on detailed knowledge of

the most likely structure of the complexes. Crosslinking between

two thiol groups through formation of the S-S bond serves as

confirmation of their close proximity in the complex. However, if

successfully prepared, chemically crosslinked protein-DNA com-

plexes not only provide additional validation of the putative

contact sites, but such complexes can be further purified in

amounts sufficient for other structural studies.

Both of these approaches have been applied previously in

studies of IN-DNA complexes, primarily with the HIV-1 IN

protein. The feasibility of studying IN-DNA interactions using

photoaffinity crosslinking was established in previous investigations

in which DNA was modified with halogenated nucleoside-based

photocrosslinking agents (I-dU, I-dC) [13,14] or azidophenacyl

group attached to phosphorothioate-modified DNA oligonucleo-

tides [15,16]. These studies have revealed several important

features of HIV-1 IN-DNA binding. Determinants for recognition

of viral DNA ends and for joining targets have been mapped to the

CCD and CTD of HIV-1 IN. Most of previous studies were

focused on HIV-1 IN and they were performed with crosslinking

reagents attached to DNA [13–16]. The interaction sites were

determined by mass-spectrometry and amino acid analysis after

proteolytic digestion of the HIV-1 IN [14,15]. Because these

detection methods require relatively large quantities of crosslinked

material and their accuracy depends on protein composition, only

crosslinks to major peptides can be detected and, in most cases,

without amino acid localization.

In contrast, our experimental approach was designed to attach

photoactivatable reagents at specified positions within IN for

crosslinking to DNA substrates, as well as to utilize the more

soluble ASV IN. Application of Cel 1 endonuclease then allowed

for single nucleotide localization of the crosslinks. In one set of

experiments described in this report, cysteine residues, either

normally present or substituted at various positions in IN, have

been used as attachment sites for carbene- and nitrene-generating

photoreagents [17,18], whereas DNA was not modified beyond

incorporation of radioactive markers. In the second set of

experiments, a shorter, amino group-targeted carbene-generating

photoreagent was attached to the positions on DNA identified in

the first set, and modified DNA was crosslinked to wild type IN, in

order to narrow down the most probable points of contact. Finally,

in the third set of experiments sulfhydryl groups were engineered

into the identified most probable contact positions on DNA, with

the aim of forming disulfide bridges with the cysteine residues in

the protein. Formation of such bridges under mild conditions at

high yields served as the most accurate confirmation of the

discovered contacts. These results provide new information about

the preferred sites of interaction within the ASV IN-DNA

complex. This information is compared with published data on

retroviral IN-DNA contacts obtained by the use of the same or

other techniques, and the combined set has been compared with

IN-DNA interactions observed in crystal structures of PFV IN-

DNA complexes.

Results and Discussion

Photocrosslinking and chemical crosslinking techniques have

been used in this study to map IN-DNA contacts with various

substrates. Because photoactivatable reagents are fairly bulky, their

introduction at or near the assumed sites of protein-DNA contact

imposes a limit on distance resolution by this approach. Usually,

multiple crosslinks are detected, dependent on spatial restrictions

at a particular protein/DNA interface and the flexibility of the

linker, on activated photocrosslinker preferences for certain

chemistries of target groups, on general movements of the

components of biomolecular complex, etc. To achieve higher

resolution of localization of contact sites we employed three-step

crosslinking. We first identified the nucleotides that were cross-

linked by a long-linker photoactivatable reagent placed at selected

positions in the ASV IN protein. In the second step, a short-linker

photoreagent was placed at the most promising positions identified

on DNA and crosslinked to IN protein for more accurate contact

localization. Finally, the localization results of these two steps were

refined by near-zero-length chemical crosslinking between unique

cysteines on IN and unique SH-modified nucleotides on DNA

substrates to confirm the positions of IN-DNA contacts.

Design of DNA substrates
In order to study different stages of the integration process, viral

linear and Y-mer DNA substrates were employed to mimic the

intermediate steps of processing viral DNA and joining the viral

DNA substrate to host DNA. Specifically, blunt-end, unpaired

end, and processed linear DNA substrates represented unpro-

cessed, frayed, and cleaved U3 LTR viral end DNA, respectively

(Figure 1). Y-mer substrates represent an integration intermediate

in which one strand of a viral DNA end is joined to the host DNA

(also known as a half-site strand-transfer intermediate) (Figure 1).

For the different crosslinking experiments, several modified

DNA substrates were used: a) unmodified DNA, when a

photoactivatable moiety was engineered into IN molecule; b)

DNA with selected thymidines replaced by anchor 5-aminouridine

residues for further attachment of amino-specific photocrosslinking

reagent to crosslink to the IN molecule; c) DNA with selected

adenosines and guanidines replaced by their corresponding 7-thio-

derivatives in the mixed disulfide activated form (see Methods
S1) for chemical crosslinking with target cysteine on the IN

molecule.

In the discussion below, the nucleotide positions in both strands

of the viral end substrate are numbered from the blunt end that

contains the conservative CA dinucleotide preceding the scissile

phosphate. This numbering is maintained in the viral end portion

of the integration intermediate Y-mer substrate, so that the

processed strand nucleotide that is the closest to the junction of the

integration site is assigned #3. The first nucleotide position in the

viral 59 overhang of the non-cleaved strand remains #1 (Figure 1,

orange strand). For the host (target) portion of the Y-mer substrate

Crosslinking Studies of ASV Integrase
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the nucleotide numbering in both strands starts from the junction

of the integration site (See Figure 1, pink and blue strands).

Design of Cys derivatives of ASV IN
Several IN derivatives with cysteine residues positioned at the

putative points of contact with DNA substrates (Figures 2, 3, 4,
5, 6) were created by site-directed mutagenesis (Table 1). These

cysteines were employed as ‘‘anchor’’ amino acids for attachment

of the thiol-specific photoactivatable reagents. A single cysteine

residue in the wild-type core domain of ASV IN (Cys125) was

retained in some of the proteins, or replaced by serine in others.

Positions 64, 124, 146, 157, and 244 were selected for substitution

with cysteine, as follows:

The active site residues Asp64 and Glu157 were obvious choices

for substitution with Cys due to their functional close contact with

the DNA substrate. The other putative contact positions in the

ASV IN-DNA complex were predicted based on crosslinking data

[13,15,16,19], mutagenesis studies [20–22], and structure-based

multiple sequence alignments involving analysis of superimposed

3D structures of individual and two-domain constructs of IN

proteins (PDB codes 1EX4 [23], 1C6V [24], 1C0M [25], and

1K6Y [26], Mu transposase (PDB code 1BCO [10]), and the Tn5

transposase DNA complex (PDB code 1F3I [11].

The choice to substitute Cys for Ile146, located in the flexible

loop near the active site of ASV IN, was based on the results from

a number of previous studies. Chemical crosslinking and

photocrosslinking experiments [13,14,27–29] have suggested that

the flexible loop near the IN active site is likely to make contact

with the 59-end of the non-processed viral DNA. Results of

Esposito and Craigie [14] in which 5-iododeoxyuracil was placed

at the 59-end of HIV-1 non-processed DNA demonstrated a high

efficiency (,10%) of photocrosslinking to residues Tyr143 and

Gln148 in the flexible loop of HIV-1 IN. Q148C was also reported

to chemically crosslink to thiol-modified 59-end of viral DNA [27].

Johnson et al. [28] reported the formation of S-S bond between

Y143C and position 2 next to 59-end of the non-processed viral

DNA. Similar experiments with murine leukemia virus (MuLV) IN

[29] implicated Cys209 as another possible point of contact for the

cognate 59-end. When aligned using the program CLUSTALW,

the positions corresponding to MuLV IN residue 209 in HIV-1

and ASV IN are Ile141 and Ile146, respectively (Figure 2). These

residues are located within the flexible loop region (amino acids

141–149), adjacent to the active site in the core domain of IN.

Consequently, to establish covalent links to the end of the DNA

substrate near the IN active site, we replaced Ile146 with cysteine

(Table 1).

Although retroviral DNA can be inserted by IN into almost any

site in cellular DNA, limited target site preferences have been

described both in vitro and in vivo. Katzman and co-workers

screened HIV-1 infected patient derived integrase sequences for

amino acid changes in the catalytic core of HIV-1 IN and

identified Ser119 as contributing to target site preferences [30], as

assayed by integrase joining in vitro. These researchers were able to

extend their findings to the integrases of a non-primate lentivirus

Visna and the more distantly related alpharetrovirus, ASV [31].

Selection of target DNA sites is therefore likely to be a general

property of the analogous residue in most retroviral integrases.

Indeed, the corresponding residue in PFV is intimately involved in

target DNA binding [6]. Non-conservative amino acid substitu-

tions at this position in all three integrases exhibited a phenotype

in which the processing activity was unaffected but the joining

activity was significantly compromised, and it was hypothesized

that this amino acid may be a critical component of the cellular

DNA binding site on integrase proteins. To test this idea, we

placed a photocrosslinker-anchoring cysteine residue at the

analogous position in ASV IN, Ser124 (Figure 2).

Finally, Gao et al. [19] postulated that the C-terminal domain of

HIV-1 IN makes most efficient contact with position +7 on the

‘‘non-cleaved’’ strand of viral DNA. The preferred site of

interaction was identified as Glu246 of C-terminal domain of

HIV-1 IN. Consequently, the corresponding ASV IN residue,

Arg244, was replaced by a cysteine (Figure 2 and Table 1).

Photocrosslinking of modified IN to DNA substrates
Modification of IN derivatives by photocrosslinkers. In

the initial experiments, photocrosslinking to DNA substrates was

Figure 1. DNA substrates used for crosslinking to ASV IN. The indicated numbering is as used throughout the manuscript. The Y-mer strand
Y4 has non-wild type bases at positions 20 and 21 in order to increase the stability of this arm of the substrate. DNA strands in the Y-mer substrate are
colored for identification as in Figures 3–6. The host portion of strand Y4 is colored in lighter shade of blue to distinguish the host sequence from
the viral sequence after covalent joining to viral DNA. In linear and Ymer DNAs, the conserved adenine preceding the scissile phosphate is shown in
bold.
doi:10.1371/journal.pone.0027751.g001
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performed using wild type ASV IN and the cysteine substituted

derivatives described above and listed in Table 1. These pro-

teins were modified at one or two cysteine positions by coupl-

ing with photoactivatable thiol-specific compounds, either N-

bromoacetyl-N9-{2,3-dihydroxy-3-[3-(3-(trifluoromethyl)diazirin-3-

yl)phenyl]propionyl}-ethylenediamine (BATDHP) [17,18], or

azidophenacylthiopyridine (APTP) [32] (see Methods S1).

Because the N-terminal domain (NTD) of ASV IN contains

three cysteine residues that are either involved in Zn2+

coordination (Cys38, Cys40) or structurally important (Cys23),

Figure 2. Structure-based sequence alignment of full-length ASV, HIV-1, and PFV IN proteins. ASV IN numbering is shown above the
sequences and the structural elements are marked in green; PFV IN numbering and structural elements (black) are shown below. Numbering for HIV-
1 IN is shown at the beginning and end of the lines only. The conserved amino acids, including the catalytic ASV IN residues Asp121 and Glu157, are
red and boxed. Triangles mark residues that were changed to cysteines in ASV IN: red for the amino acids in the active site, cyan for other residues in
the CCD, and magenta for the amino acids in the CTD. The structure of the ASV IN CCD and CTD (PDB code 1COM) with the location of the
introduced cysteines is shown in the upper right corner, with the colors corresponding to the scheme described above.
doi:10.1371/journal.pone.0027751.g002

Crosslinking Studies of ASV Integrase
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Figure 3. A comparison of all the IN-DNA contact points that have been determined experimentally or modeled for the NTD IN. The
amino acid residues are presented in black, unless a particular residue comes from specified IN monomer in PFV intasome structure as in Refs. [6,7].
Specific residues shown to interact with DNA that are either in good correlation with the PFV structural results or do not contradict them are bolded.
# -this amino acid is in contact with DNA, but the nucleotide is not determined. (G377) - The amino acid residues in parentheses indicate structural
analogs to the ones implicated in DNA binding by experimental data. Nucleotides from different strands of DNA substrates are labeled by colors
corresponding to the scheme used in Figure 1 and noted above. ‘‘G5{15}’’ - In this example and throughout Figures 3, 4, 5, 6 the nucleotide
numbers correspond to the numbering scheme shown in Figure 1. The numbers in the curly brackets are as in the structure of PFV IN and the model
of HIV-1 IN [6,7]. If listed, the letter designating a nucleotide comes from the original data. All reported contacts are references to original publications
with numbers in brackets; our data are marked with asterisks (e.g. A3*).
doi:10.1371/journal.pone.0027751.g003

Figure 4. A comparison of all the IN-DNA contact points that have been determined experimentally or modeled for the CCD IN. For
details, see legend to Figure 3.
doi:10.1371/journal.pone.0027751.g004
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reaction conditions were found that favored modification of the

newly introduced solvent accessible cysteines and left those in the

NTD unmodified. These conditions were found empirically by

varying pH, temperature, and time of the reaction. The presence

of the photocrosslinking moiety at selected positions and its

absence in the NTD was confirmed by MALDI-TOF mass-

spectroscopy of tryptic peptides obtained from IN-DNA adducts

excised from gels (data not shown).

Apart from the activity changes due to Cys substitutions, the

introduction of photocrosslinkers did not result in significant

changes in protein function, as measured by comparison of the

enzymatic activities of the modified and non-modified IN proteins,

Figure 5. A comparison of all the IN-DNA contact points that have been determined experimentally or modeled for the CCD IN
(continued). For details, see legend to Figure 3.
doi:10.1371/journal.pone.0027751.g005

Figure 6. A comparison of all the IN-DNA contact points that have been determined experimentally or modeled for the CTD IN. For
details, see legend to Figure 3.
doi:10.1371/journal.pone.0027751.g006
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using a standard disintegration assay [33] (Figure S1A –

schematics; Figure S1B – results).

The IN-DNA complexes prepared from the modified IN

derivatives and oligonucleotide substrates were irradiated with

long-wavelength UV-light, to activate the photocrosslinkers and

produce covalent links between the IN protein and DNA. The

products were then separated by gel electrophoresis, visualized,

and quantified with a PhosphorImager (see Photocrosslinking in

Materials and Methods).

Procedures for localization of photocrosslinks
To detect the preferred sites of IN photocrosslinking on the DNA

substrates, a photoactivatable reagent with a cis-diol bond in the

linker, BATDHP, was specifically cleaved by mild periodate

treatment. This resulted in the transfer of the bulky aromatic part

of the photocrosslinking reagent from IN to the DNA, thereby

producing a cleavage site for the endonuclease Cel1 (Transge-

nomics, Inc. [34–36]), which cuts double-stranded DNA at

mispaired bases or sites with bulky nucleotide adducts essentially

reporting their location (Figure 7A). Because Cel1 cleaves both

DNA strands at such sites, a separate set of experiments was

performed in which each of the four strands that constituted the Y-

mer (labeled 1–4 as in Figure 1) were separately labeled with 32P at

the 59-end. The crosslinked strands were then identified after

denaturing polyacrylamide gel electrophoresis by their reduced

mobility due to the covalent attachment of IN (Figure S2). As Cel1

occupies about a 10-bp stretch of the DNA substrate and requires

substrates longer than 20 bp to process consistently, this approach

was only used for detection of photocrosslinks on the Y-mer DNA

and not on the shorter linear substrates. Because most of the

crosslinks to the Y-mer DNA mapped to the viral portion, these

results were combined with crosslink locations identified in the

linear substrates and, together with the data published by others,

were used to select positions on linear DNA substrates for placement

of photocrosslinking reagents and chemical crosslinking moieties.

Proximities identified from crosslinking IN residues to the
DNA substrates

WT IN (containing Cys125 as the only cysteine available for

modification with photocrosslinking reagents) was used as a

negative control in all our crosslinking experiments. As that

position was not expected to be in contact with the DNA substrate,

it is not surprising that no significant photocrosslinking was

observed with WT IN (see Fig. S2 and Results S1). Strand 4 on

the Y-mer (see also Figure 1, green strand) was found to be the

most likely target for crosslinking for modified IN derivatives with

Cys residues at positions 146, 244, and 146 plus 244 (Figures S2,

S3 and Results S1). This strand of DNA is analogous to the

newly joined viral DNA strand. Photocrosslinking from Cys124

resulted in covalent binding to the host portion of the Y-mer

substrate, specifically 3 and 8 nucleotides away from the

integration junction (Figure 7C–E). These IN-DNA contacts

are in good agreement with the suggested role of ASV IN residue

Ser124 in host site binding/selectivity [31].

Photocrosslinking from Cys146 resulted in covalent binding to

the viral portion of strand Y4 (Figure 7B–E), primarily one

nucleotide to the 59 side of the scissile phosphate (position 3).

Analysis of phenol/chloroform-separated covalent complexes of

IN-DNA also showed interactions at position 3 of this strand in a

linear substrate (L3). Cel1 cleavage of photocrosslinked products

obtained with the Cys244 derivative uncovered a range of sites

predominantly around positions 9–12 in Y4; 7–10 and 12 in Y3

(Figure 7C–E). Such variability may be due to mobility of the

CTD. The results of these and additional experiments with ASV

IN derivatives are summarized in Table 2.

Photocrosslinking from specific nucleotides in linear DNA
substrates to IN

In order to refine IN-DNA contact localization data for the

CTD, we attached a photoactivatable reagent with a shorter linker

to selected nucleotides on linear substrates for crosslinking to IN.

Three different synthetic DNA substrates were designed with

amino-modified nucleotides introduced in positions 8 and 11 of

strand L3 and position 12 of strand L4 (see Materials and

methods). The amino groups served as specific anchors for DNA

modification with the NHS ester of the carbene-generating (N-

hydroxysuccinimidyl-3-[3-(trifluoromethyl)diazirin-3-yl]benzoate).

The resulting modified DNA oligonucleotides were labeled with
32P and annealed to the corresponding complementary oligonu-

cleotide to form 22 bp linear DNA substrates. The highest

efficiency of crosslinking to WT IN was found for position 11 on

strand L3 and position 12 on strand L4. Efficiency of crosslinking

from position 8 of strand L3 was less than half of that for position

11 on strand L3 (Figure S4). These data show that these positions

are in close contact with IN and together with the results from the

previous experiment suggest a contact between nucleotides at

positions 11-L3 and 12-L4 of the linear substrate and IN position

244 in the CTD.

Chemical crosslinking of modified DNA substrates to
residues near the active center of ASV IN

Mixed disulfide chemical crosslinking has been used previously

to locate points of contact between HIV-1 reverse transcriptase

and DNA with better accuracy and to obtain preparative

quantities of tethered RT-DNA complexes [37]. The information

derived from our photocrosslinking experiments was used to

incorporate mixed disulfide-activated thiol-containing nucleotide

derivatives at specific positions of synthetic 22 bp DNA oligonu-

cleotides, representing the U3 viral end (see Materials and

Table 1. Substitutions in the ASV IN derivatives and their
enzymatic activities (crosslinkers placed at residues that are
bold).

Protein % WT processing1 % WT joining2

Wild-type 100 100

F199K 238 102

C125S, I146C, F199K 80 72

C125S, F199K, R244C ,1 ,1

F199K, R244C ,5–12 ,1

C125S, I146C, F199K,R244C 4 2

I146C, F199K,R244C ,1 ,1

D64C, F199K 4 20

E157C, F199K 6 1

C23S, C125S, E157C F199K ND ,4

C23S, C125S, E157C F199K,W259A ,4 ,4

S124C, C125S, F199K 38 16

The dominant Cys for crosslinking is bolded.
1Processing of viral ends as assayed either by a fluorescence anisotropy release
assay or a radioactively labeled processing assay in 10 mM Mg2+ for 30 min.

2Single end joining assessed by a fluorescent joining assay [33].
R244C substitution severely compromises activity in all IN derivatives that
contain it.
doi:10.1371/journal.pone.0027751.t001
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Methods). In addition, the 59-end on the non-cleaved strand of

viral DNA was chosen for S-S chemical crosslinking because

various lines of evidence have indicated that its binding increases

the stability of IN-DNA complex [38–40]. Double-stranded Y-mer

and linear DNA substrates prepared with these oligonucleotides

were subjected to chemical crosslinking with each of the cysteine

derivatives of ASV IN (Table 1). As previous results have

indicated that the viral end binding is facilitated by the

‘‘breathing’’ (or fraying) that normally occurs preferentially at

DNA termini [41–44] most of the linear substrates for S-S

crosslinking were prepared with ‘‘frayed’’ ends (Figure 1).

Because IN-DNA binding efficiency differs from one IN

derivative to another, the crosslinking data can be interpreted

only by comparing the crosslinking yields with substrates modified

at different nucleotide positions (also see Results S1). All

analytical experiments were carried out in physiological buffers,

at low IN concentrations, with the IN:DNA ratio reflecting

theoretical stoichiometry (2:1 for linear DNA and 4:1 for Y-mer

Figure 7. Cel 1-based localization of the crosslinking sites on the Y-mer DNA. (A) The method for detecting specific UV-mediated crosslinks
in Ymer DNA is outlined. (B) Cel 1 cleavage of the photocrosslinked complex of IN I146C. Products from Y-mer DNAs labeled at the 59-end of strand 3
or 4 (marked above each lane) are shown. The filled arrows point to prominent Cel 1 products, indicative of a bulky adduct at the conserved viral CA
dinucleotide in strand 4. Open arrows mark the position of non-cleaved substrate strands. (C) Cel 1 cleavage of various photocrosslinked complexes
of Cys-modified derivatives of IN with Y-mer DNA labeled at strands 2, 3, or 4. Numbers above the gels indicate which DNA strand in the Y-mer was
labeled. Open arrows mark the position of non-cleaved substrate strands. Numbers to the left of the gel indicate length in nucleotides, and arrows to
the right mark the positions of adducts of IN with DNA. In both B and C, products were separated by denaturing gel electrophoresis and then
visualized with a PhosphorImager. (D) Y-mer DNA sequence with positions of preferred crosslinking detected by Cel1 indicated for each IN derivative
by red (I146C), green (R244C) and teal (S124C) arrows; (E) 3-D model of the Y-mer DNA with positions of preferred crosslinking detected by Cel1
indicated for each IN derivative by green (C244), red (C146) and teal (C124) dots.
doi:10.1371/journal.pone.0027751.g007

Crosslinking Studies of ASV Integrase

PLoS ONE | www.plosone.org 8 December 2011 | Volume 6 | Issue 12 | e27751



DNA). The results of these experiments are summarized in

Table 3. Representative data are provided in Figure S5.

Following are our observations with respect to each of the relevant

Cys-substituted IN derivatives:

Cys125. Only low amounts of crosslinking were seen with

linear and Y-mer substrates containing a thiol modification near

the 59 nucleotide on strand 3 and the opposite nucleotides on

strand 4 (Figure 1, orange and green strands, Figure S5,

Table 3). These data were consistent with our photocrosslinking

results suggesting no direct contact between Cys125 and viral

DNA. While small, the Cys125 contribution to IN-DNA

crosslinking was still taken into account in all other chemical

crosslinking experiments where Cys125 remained intact.

Cys146. The most prominent contact with Cys146 (residing

in the flexible loop near the active site in core domain) was

observed at the 39-end nucleotide of the strand L4 (Table 3).

Significant crosslinking was also detected at positions 1 and 2 of

strands L3 and Y3 (Figure S5 and Table 3). These data are in

good agreement with our photocrosslinking results and with

previously reported involvement of the flexible loop with the viral

end of DNA close to scissile phosphate [13,14,27–29].

Cys244. The C-terminal domain Cys244 was found to

crosslink with the viral end of DNA at positions 10 of strand 4

or position 12 of strand 3 in both linear and Y-mer

oligonucleotides, in agreement with our photocrosslinking data

(Figure S5, Table 3). These contact positions differ from the

chemical crosslinking results [19] that placed the homologous

amino acid residue 246 of HIV-1 IN in contact with position 7 of

the non-cleaved strand of viral DNA. This discrepancy could be

attributed to the significant differences in the lengths of the linker

regions between the CCD and CTD in HIV-1 IN (18 aa) and ASV

IN (7 aa), compared to that in PFV IN (48 aa), possibly resulting in

different relative positioning of their CTDs in an intasome.

Chemical crosslinking of modified DNA substrates to
catalytic residues in ASV IN

In order to find the best approach for producing stable IN-DNA

complexes for structural studies, we compared the crosslinking

efficiencies of several full-length ASV IN derivatives carrying Cys

substitutions in the active site, including the metal cofactor binding

residues Asp64 or Glu157, and the Cys already present at position

125. The same substitutions were introduced into the core domain

which was then expressed separately. In some constructs the

Cys125 was substituted with serine, and a W259A substitution was

included. The W259A replacement has been shown to block

formation of ASV IN dimers [45].

The 22-mer dsDNA substrates used in these experiments were

designed to represent the processed (recessed) U3 portion of the viral

genome and contained modified adenosine in the 39 position of the

processed strand (Figure 1). One modified adenosine contained 3-

mercaptopropanol phosphodiester at 39 position of the 39-terminal

desoxyribose; in a second substrate the same desoxyribose was

substituted by N-mercaptoethyl derivative of morpholine. To find

the optimal position for the thiol group in the nucleotide, the

structure of TN5 transposase complexed with Tn5 transposon end

DNA (PDB code 1MUH) was used as a reference. Superposition of

the active sites of TN5 and core domain of ASV IN (PDB code

1VSH) allowed modeling of the 39-end nucleotide in the active site

of ASV IN (Figure 8). Both modified oligonucleotides were

designed to present their thiols for direct interaction with a Cys

residue introduced in the active site of the ASV IN at the positions of

the catalytic residues, Asp64 and Glu157.

Table 2. Preferred position for photocrosslinking of modified IN Cys derivatives to a Y-mer DNA substrate.

ASV IN derivative and DNA type Cys146 Cys146,244 Cys244 Cys124

Cel 1 reaction substrate Y4 Y3 Y4 Y3 Y4 Y3 Y1 Y2

Untreated crosslinking reaction 5,3 12 5,3,1t 3 10,11,1t 6,12,16 3t,8t

NaIO42 treated crosslinking reaction 3 3,11,12, 3 3–5, 1t 8–10, 18 3t,8t

Phenol fraction treated with NaIO4 9,3 3, 7, 8 11 9–12 1–4, 7 4t* 3t,8t

Bold letters stand for the most prominent contacts revealed by Cel 1 endonuclease analysis,
*numbers followed by ‘‘t’’ represent positions in the target DNA portion of the Y-mer substrate.
doi:10.1371/journal.pone.0027751.t002

Table 3. A comparative summary of IN-DNA S-S crosslinking with mixed disulfide–modified substrates.

Substrate L4-3 L4-10 L4-12 L3-2 Y3-2 L3-12 Y3-12 L4-3 processed

Cys position

146 ++ + +/-

146, 244 +/- +/- ++ ++ ++

244 +/- +/- +d* ++d*

125 + + +

125, 157 ++ +/- + + ++

The efficiency of crosslinking is shown by a number of (+) signs. The most efficient contact sites are shown in bold (++). The DNA substrates used are shown in the top
row; d* indicates preference for dimer formation. Linear(L) and Y-mer(Y) dsDNA substrates with thiol groups introduced in the bases of certain strand (e.g. L4 carries a
modification in strand 4 (processed strand of viral end) at certain position (e.g. L3-12 is modified at 12th nucleotide from 59-end of the non-processed strand, or L4-3 – at
3rd position (A) of processed strand that is next to scissile phosphate.
doi:10.1371/journal.pone.0027751.t003
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The most efficient crosslinking to E157C and D64C was

observed in the presence of 10 mM MgCl2, indicating that, in

contrast to other IN-DNA contact sites, crosslinking to these

derivatives required the presence of Mg2+ (data not shown). The

fact that the E157C IN construct is capable of binding a metal

cation suggests that the ion binds in site I (Asp64–Asp121), as seen

in previous structures of IN with a disordered region encompassing

the Glu157 residue [46,47]. We also showed in previous

experiments with a D64N derivative that Asp121 alone can bind

a single Zn2+ cation in site I [47]. It is therefore quite plausible that

the D64C derivative could likewise coordinate Mg2+ with Asp121

in site I alone (or perhaps with Glu157 in site II) in the presence of

additional contacts with DNA. Such interactions, in turn, could

stabilize the DNA-IN complex at the active site. A crystal structure

of an ASV IN-DNA complex is required to confirm this

hypothesis.

All active site substituted derivatives were subjected to pH-

dependent and DTNB-mediated protocols to promote formation

of S-S bonds with the DNA substrates, and the results are

summarized in Figure 9. For experiments performed with the full

length E157C IN, the highest yields were observed with the 39-

attached 3-mercaptopropanol phosphodiester modified substrates

(P-SS), similar for both pH and DTNB activation. The C23S/

C125S/E157C/F199K IN derivative (Figure 9A) produced

higher yields of crosslinking than the single E157C IN derivative

(not shown) with both modified DNA substrates, regardless of the

activation method (pH-dependent or DTNB). Crosslinking of the

C23S/C125S/E157C/F199K/W259A IN derivative with both

Figure 8. Design of modified 39-end adenine. A nucleotide at the 39-end of DNA in TN5 transposase structure is shown in blue, morpholino
adenosine analog in yellow, nucleotides with modifications on the C39 and on C29 of ribose,are shown in pink and gray respectively. Catalytic
residues are shown in blue for transposase and in green for ASV IN. Substituted catalytic residues D64C and E157C are shown in magenta.
doi:10.1371/journal.pone.0027751.g008

Figure 9. S-S crosslinking of the ASV IN active site derivatives to modified linear dsDNA substrates. Sample Coomassie–stained
polyacrylamide gels with IN-DNA crosslinks. pH indicates pH-induced crosslinking; DTNB, DTNB-mediated crosslinking; lanes labeled P-SS correspond
to crosslinking to DNA carrying thiol modification on the 39 phosphate, lanes labeled M3 correspond to crosslinking to DNA carrying thiol
modification on the morpholino adenosine analog. The lane marked Neg represents samples with no DNA. 2IN, IN+DNA and 1IN designate dimeric IN
bands, adduct bands and monomeric IN bands, respectively. Molecular weight marker lanes are not shown as IN-DNA the monomer (lower) and
dimer (upper) bands provide internal calibration. The figure shows the results only for full length INs. Panel A shows crosslinking to the C23S/C125S/
E157C/F199K ASV IN derivative (labeled Cys157 after the key mutation); panel B to C23S/C125S/E157C/F199K/W259A (labeled Cys157/Ala259), and
panel C to D64C/F199K (labeled Cys64).
doi:10.1371/journal.pone.0027751.g009
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modified DNA substrates using the pH activation method

produced slightly lower yields than crosslinking of the C23S/

C125S/E157C/F199K IN derivative (Compare Figure 9A and
9B pH-P-SS lanes), and no adduct band was observed above the

position of dimeric IN in Figure 9B. Protein migrating at the 2IN

position and weak bands above this on SDS PAGE represent

covalently linked IN dimers and IN dimers linked to DNA,

respectively. Because the W259A substitution has been shown to

impair dimer formation [45], this result was anticipated. However,

even if the majority of IN was dimeric in complex with DNA (i.e.

W259 containing protein in Figure 9A), the predominant adduct

band is expected to migrate in an SDS gel as a monomer+DNA

adduct, as crosslinks between IN proteins are unlikely with this

experimental design.

After the structure of the PFV intasome became available we

verified that the position of the 39nucleotide in the active site of

TN5 transposase is similar to its counterpart in PFV IN. Although

the orientation of the 39- end nucleotide is slightly different in PFV

IN, the presence of the flexible linkers carrying thiol groups is

likely to have allowed successful crosslinking of both modified

nucleotides to ASV IN D64C and E157C derivatives. The

requirement for metal ions for the efficient crosslinking of Cys

derivatives to substrates containing thiol at the 39-end of the

processed strand indicates that binding to the viral DNA substrate

is preserved upon replacement of one of the catalytic residues of

ASV IN with Cys.

Rationalization of the crosslinking data in the context of
currently available structural information

Photocrosslinking and chemical crosslinking data available to

date, combined with results presented in this study, were

compared with the interactions observed in the recently solved

structures of the PFV intasome. In order to identify corresponding

residues, a structure-based sequence alignment of ASV IN, HIV-1

IN, and PFV IN was created by superimposing the coordinates of

the individual domains of the ASV and HIV-1 INs on the

structure of full-length PFV IN complexed with the viral and

target DNAs (Figure 2). A summary of our analyses is presented

in Figures 3, 4, 5, 6. Comparison of the data from different

sources was complicated by the fact that different ways of

numbering of the nucleotides in the DNA substrates have been

used by various investigators. For example, in several studies

numbering of the cleaved strand starts with the first adenine on the

39-end, resulting in the assigning of the numbers ‘‘21’’ and ‘‘22’’

to the two extra nucleotides on the 59-end of the non-cleaved

strand, (i.e. Gao et al. [19]). In the structures of PFV IN

complexed with DNA, numbering from the 59-end was introduced

for the cleaved strand of viral DNA, placing the 39- end adenine

under number 17. Because the length of the oligonucleotides used

in different studies varies, numbering from the 59-end introduces

additional confusion, as the number designations for the

structurally equivalent nucleotides in the cleaved strands of

different length would be different. We, as well as some others,

elected to number the non-cleaved viral DNA strand from the first

nucleotide at the 59-end. The first nucleotide on the 39- end of the

cleaved strand of processed substrate (closest to the junction in Y-

mer or X-mer integration intermediate substrate) is assigned #3

(Figure 1, green strand). For the target DNA, numbering of both

strands starts from the junction of the integration site (Figure 1,

pink and blue strands). In order to compare our crosslinking results

with IN-DNA contact data from other laboratories, we have

translated all nucleotide numbering of the strands that vary in

substrate DNAs into this format. However, as a reference, we have

included in curly brackets the original numbers from Maertens

et al. [6] and Krishnan et al. [7] for the nucleotides shown to

interact with PFV IN.

To identify the functionally equivalent residues in ASV, HIV,

and PFV INs, the structures of individual NTD, CCD, and CTD

domains were superimposed upon the structure of the complex of

PFV IN with DNA (PDB code 3OS0). Some chemical and

photocrosslinking data identify the individual points of contact

between the proteins and DNA. If a method does not allow one to

specify a single contact point in both protein and DNA, then these

data are not sufficient to establish the exact correlation with results

from crystallography, even when they do not contradict them.

Such data can be categorized only as either ‘‘do not contradict,’’ if

IN and DNA are in proximity to each other in the PFV IN

structure, or ‘‘no contact,’’ if IN is remote from substrate DNA in

the PFV intasome. Specific residues shown to interact with DNA

that are either in good correlation with the PFV structural results

or do not contradict them are bolded in Figures 3, 4, 5, 6. The

tabulated results show that the correlation between the PFV crystal

structures and experimental data from crosslinking, mutagenesis,

protease mapping, and mass spectrometry for ASV, MuLV, and

HIV-1 IN proteins is highest for the CCD (Figures 4,5 with color

coding as in Figure 1). The crosslinking results that pinpoint

individual IN-DNA contacts in the NTD and CTD of HIV-1 and

ASV IN proteins show low correlation with the interactions

observed in the structure of PFV IN complexed with DNA.

Interactions between DNA and the NTD. Very limited

crosslinking data are available for the NTD. Both subdomains of

the NTD of PFV (NED and the conserved subdomain) interact

with viral DNA in the PFV intasome crystal. There is no target

DNA in the proximity of the NTD of PFV, and no viral DNA in

the proximity to the region analogous to the HIV-1 NTD peptide

(amino acids 1–12) reported to interact with viral DNA by Heuer

et al. [15,16]. Two HIV-1 IN amino acids in the NTD, Lys14 and

Lys34, were implicated as having contacts with DNA by mass

spectrometry [48] and proteolysis mapping [49], respectively, but

only Lys34 (Val90 in PFV) appears to be relatively close (,9 Å) to

nucleotides 9–11 of the non-cleaved viral strand in the PFV IN

structure, whereas Lys14 lies more than 20 Å away from the

DNA. It should be noted that only two of the four PFV NTDs are

visible in the intasome crystal complexes, and alternate NTD

positions for these unseen NTDs could account for proximity data

for various solution experiments.

Interactions between DNA and the CTD. For the CTD,

none of the individual contacts revealed in ASV and HIV-1 IN

proteins by crosslinking or other methods can be correlated with

those observed in the crystal structures of PFV IN-DNA

complexes (Figure 6). Our crosslinking results with ASV IN

show contacts of Arg244 to both strands of viral DNA at positions

10–12. However, in the PFV intasome structure [6], the

equivalent residue, Asn348, is separated from the corresponding

positions on DNA by the linker regions that connect the CCD with

the NTD and CTD (Figure 10A). We note that while not seen in

the PFV intasome structure, CTD interactions with the trans viral

DNA remain a possibility and could be accomplished with minor

movement of the domain. Results of Gao et al. [19], indicate that

residues Ser230 and Glu246 of HIV-1IN interact with bases 1 and

7 of the non-cleaved strand of viral DNA, respectively.

Crosslinking experiments based on the electron microscopy

model obtained by Michel et al. [50] provided evidence for

contact between Lys266 in HIV-1 IN and nucleotides 6–7 in the

non-cleaved strand of viral DNA. These results are not in

agreement with the HIV-1 model of Krishnan et al. [7], which was

derived from the PFV crystal structure. Contact between the CTD

of HIV-1 IN and the base of thymidine 6 of the non-cleaved strand
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of viral DNA as reported by Esposito et al. [14], faces the same

problems as the contact of nucleotide 7 with residue 246 [19], as

the linker regions separate the protein and DNA in the PFV

intasome.

Residues Leu234, Arg262, Arg263 and Arg269 in the CTD of

HIV-1 IN, which have been shown to interact with DNA by

modeling and/or experimental studies, were also implicated as

interacting with DNA by several mass-spectrometry and muta-

genesis studies (Figure 6). Residues that are structurally

equivalent to Arg262 in HIV-1 IN are Ile366 and Ser262 in

PFV and ASV INs, respectively. Because of the different sizes of

the side chains of these residues in the three INs, analogous

contacts cannot be made with PFV IN, and for ASV IN this seems

problematic. Similarly, the capability of Leu234 and Arg263 in

HIV-1 IN to contact DNA appears to correlate with the presence

of arginine at structurally equivalent positions in ASV and MuLV

IN proteins. However, HIV-1 IN Arg269 and PFV IN Ser373

both interact with DNA. The segment containing Ser373 is

located at the very end of the visible CTD of PFV IN, and the

flexibility of this part of the protein may facilitate interaction with

DNA.

Heuer et al. [15] showed that the azidophenacyl photocrosslin-

ker, attached to unique phosphorothioate located between

nucleotides 6 and 7 of the cleaved strand of viral DNA, could

be crosslinked to the peptide comprising residues 247–270 of HIV-

1 IN. While some residues from the corresponding range in PFV

IN are within reach of equivalent nucleotides 6 and 7 in the crystal

structure, the specific residues in HIV-1 IN that are involved in

these interactions are unknown.

Interactions between DNA and the CCD. Much more

information regarding the sites of contact with DNA is available

for the CCDs of various INs. Out of twenty-seven individual

residues and 7 peptide ranges identified in 50 experimental data

points that were analyzed and presented in Figures 4,5 as

making contact between the CCD and DNA, thirty-seven IN-

DNA contacts corresponded to residues analogous with those

observed to interact with DNA in the crystal structure of the PFV

intasome.

Our photocrosslinking data indicate that S124C of ASV IN

makes contact with the third nucleotide of the cleaved strand of

target DNA, and a minor contact with nucleotide 8 of the same

strand (Figure 10B). In the crystal structure of the PFV intasome

the analogous residue makes contacts with nucleotides 3 on the

cleaved and 6 on the non-cleaved strands of the target DNA

(shown in red in Figure 10B, they correspond to nucleotides 3

and 3, respectively, in the numbering system used here). The

nucleotide corresponding to nucleotide 8 on host DNA complexed

to ASV IN (minor contact) is not visible in the structure of the PFV

intasome due to the mobility of the ends of the host DNA in the

absence of contacts with the protein. This crosslink might be

attributed to the flexibility of the photocrosslinking tether

combined with mobility of the ends of host DNA (see Materials

and Methods).

Photo- and chemical crosslinking data for I146C of ASV IN

identified nucleotide 3 of the cleaved strand of viral DNA as the

point of contact. Contact between I146C and nucleotide 2 of the

non-cleaved strand of viral DNA was also detected by chemical

crosslinking (Tables 2, 3). In MuLV, the structural equivalent of

this residue is Cys209. Photo- and chemical-crosslinking experi-

ments on MuLV by Vera et al. [29] confirmed the involvement of

this residue in the interactions with the viral end of DNA in the

active site area. Cys209 in MuLV IN is reported to make contact

with nucleotide 1 on the non-cleaved strand of viral DNA

(Figure 4). The corresponding residue in PFV IN, Thr210, also

contacts the base of nucleotide 3, as in ASV IN, but in the non-

cleaved DNA strand. All chemical crosslinks involving the ASV

I146C derivative are maintained with the bases of the corre-

sponding nucleotides. The contacts between Thr210 and DNA in

PFV IN are localized in the minor groove between two strands;

therefore the data from ASV IN correlate reasonably well with the

PFV structure (Figure 10C). Residue 146 in ASV IN and the

corresponding residues in HIV-1 and PFV INs are located within

the active site flexible loop, which has been shown to adopt

multiple conformations in different IN structures with various

inhibitor, substrate, and pH/buffer conditions. The tip of this loop

can move up to 7 Å under conditions that do not alter the overall

three-dimensional structure of the CCD. In the PFV intasome, this

loop is inserted between the ends of the complementary strands of

viral DNA (Figure 10C). Therefore, if a similar position is

assumed by the ASV loop when complexed with viral DNA, 146C

would be able to interact with nucleotides on both strands.

Photo- and chemical crosslinking data for CCD-DNA contacts

have been reported by several other groups. The contact for the

HIV-1 residue Lys159 reported by Jenkins et al. [13] is with A3

nucleotide at the 39-end of the processed strand. This amino acid is

equivalent to Lys228 in PFV IN, and it interacts with the

phosphate backbone between the nucleotides 3 and 4. The

crosslinking observed in [13] between HIV-1 Lys159 and N7 of

the base of A3 requires some adjustment of the orientation of A3

base, as seen in the PFV intasome structure.

The results of S-S crosslinking [28] of both blunt and processed

DNA substrates and the results of photocrosslinking [14] of blunt

DNA substrates to HIV-1 IN Q148 implicate two neighboring

nucleotides of the non-cleaved strand of viral DNA, #2 and #1,

respectively, for interaction. Although these nucleotides are found

in the crystal structure of PFV IN in the vicinity of S217

(analogous to Q148 in HIV-1 IN), their bases, modified for

crosslinking experiments, point away from the side chain of S217.

As suggested by Krishnan et al. [7], such discrepancies can be

attributed to the experimental setup (blunt vs. processed substrates)

or to conformational mobility of the crosslinker.

Several amino acid residues of HIV-1 IN were reported by

Alian et al. [27] to be involved in crosslinking, but these results do

not match the IN-DNA contacts found in the PFV intasome

structure for the corresponding pairs. There was a very low

correlation of crosslinking data for HIV-1 residues 143, 160, and

164 using processed DNA with the model of HIV-1, which is

Figure 10. Structural interpretation of crosslinking data for ASV IN. (A) Superposition of a section of the DNA complex of PFV IN (cartoon)
containing the two viral DNAs (sticks) with the individual CCD and CTD domains of ASV IN. Individual protomers of the PFV IN tetramer are colored
gray and yellow, with Asn348 shown as sticks in corresponding colors. CCDs of ASV IN are magenta and blue and one CTD of ASV is shown in
magenta, with Arg244 shown in sticks in corresponding colors. The linker region of PFV is shown in yellow. Nucleotides 10–12 of the non-cleaved viral
DNA strand are shown in dark violet, nucleotides 11 and 12 of the cleaved viral DNA strand are shown in magenta, nucleotide 7 of the non-cleaved
viral DNA strand is shown in cyan. (B) Superposition of the CCDs of ASV IN (blue) onto PFV IN (gray). The viral DNA after the integration step is shown
in green and the host target DNA in orange. Nucleotides 3 and 8 on the host DNA are red and the substituted residue S124C is shown as sticks. (C) An
analogous superposition, with viral DNA in red (non-cleaved strand) and pink (processed strand). A flexible loop contains the substituted residue
I146C. Nucleotide 2 on the non-cleaved strand and the first nucleotide on the 39-end of the cleaved strand are shown in green.
doi:10.1371/journal.pone.0027751.g010
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derived from the PFV intasome structure [7]. Nucleotide A1 of the

non-cleaved strand of viral DNA identified by crosslinking to

interact with all HIV-1 IN three residues (Figure 4) cannot reach

the corresponding residues in the crystal structure of PFV IN.

Only one contact was detected between HIV-1 Y143 and

nucleotide A1 when a blunt ended substrate was used [27]. The

same contact was identified by Esposito et al. in photocrosslinking

experiments with blunt DNA substrates [14]. Alian et al. [27]

suggested that the loop comprising HIV-1 residues 160–164 comes

in close proximity to the 59-end of the non-cleaved strand of viral

DNA only during strand transfer. This hypothesis is inconsistent

with the HIV-1 IN model [7]; as Lys 160 lies within contact range

of G8 and quite far from the integration center, HIV-1 Y143 is not

listed as a possible contact with viral end DNA by Krishnan et al.

[7] but is positioned in close proximity to processed target DNA

nucleotides (#1, 2, 3, 21, 22, and 23) closest to the integration

site. It should be noted that, under some conditions, DTNB

activation can produce nonspecific crosslinks [19].

Gao et al. detected contacts between HIV-1 I191C and two

nucleotides, 1 and 7 of non-processed viral DNA by S-S

crosslinking [19]. In the PFV intasome structure [6], the amide

of V260 (I191 in HIV-1 IN) is located 4.5 Å away from the

phosphate of nucleotide #7 of the non-cleaved strand of viral

DNA, which is reasonable if the length of the thiopropyl linker is

taken into account.

While the photocrosslinking experiments in which interactions

between specific modified nucleotides and HIV-1 IN [15] in most

cases do not provide exact localization of the contact sites on the IN

protein, comparison of the relative positions of identified peptides

(49–69, 51–64, 139–152, and 158–198) and DNA show good

correlation for 11 out of 13 reported crosslinking contacts when

compared to the PFV intasome structure [7], the ASV IN two-

domain structure (PDB code1C0M) [7] superimposed on the

corresponding domains of the PFV intasome, and the model of the

HIV-1 intasome [7]. Some of these peptides have been targeted

from multiple locations on DNA. For example, HIV-1 peptide 49–

69 comes into close proximity to the viral processed DNA

(phosphate between C4 and G5, G5 base [15]), non-processed

viral DNA (A1 base, and the phosphate between G4 and C5 [15]),

and non-cleaved strand of target DNA (backbone of G1, G2, and

C(22), G(23) [15]). The latter contacts are located on the opposite

sides of the same strand of target DNA from the integration site (a

similar spatial relationship is illustrated in Figure 1 for ASV IN

substrate) and are made with residues from two IN monomers in the

model of HIV-1 IN [7] Introduction of the photoactivatable

nucleotide analogs I-dU and I-dC into positions 3 of the cleavable

strand and 1 and 2 of non-cleavable strand of blunt viral DNA

substrates resulted in the crosslinks with CCD, although the exact

positions in the protein were not elucidated [15]. Nucleotides in

these positions are also found to be in close proximity to the active

site of the CCD in the PFV intasome [7].

Mutagenesis experiments carried out by Chen et al. [21] on HIV-

1 IN provided a list of residues (V54, V72, T124, T125, S153,

K156, E157, K160, G193, 54–57) likely to be important for DNA

binding and substrate specificity. Circular dichroism, fluorescence,

and NMR experiments involving a synthetic analog of a4 helix of

HIV-1 CCD and U5 LTR end [51] revealed that the HIV-1 IN

residues E152, S153, N155, K156, and K159 were likely to make

contact with DNA. Protease mapping with HIV-1 IN [49] assigned

a similar role to the residues K111, K136, K159, E138, K185,

K186, and K188, and mass spectrometry footprinting experiments

[48] indicated that K159 and K160 are involved DNA interactions.

The corresponding residues in the PFV IN-DNA complex structure

are within range to establish contacts with target or viral DNAs.

However, the PFV equivalents of some residues in HIV-1 IN

implicated in DNA binding in these experiments (e.g. 161, 162, 171,

172, 197 and 201 and peptides 128–130, 163–165), are not in a

suitable range to contact DNA in the PFV intasome. Several

positions in the fragment comprising residues 207–219, shown to

interact with DNA by protease mapping [49] and mass spectrom-

etry [48], belong to the linker region between the CCD and CTD.

This region differs in length in HIV-1, ASV, and PFV INs and

exhibits little sequence homology. The HIV-1 IN model built by

Krishnan et al. [7] allows for the residues from this fragment to

maintain contacts with non-cleaved strand of viral DNA

(Figures 4,5), correlating with the mapping data listed above.

Mutagenesis experiment by Esposito et al. [14] indicated that

nucleotides 3 ,4, 12, and 13 of the cleaved strand of viral DNA and

nucleotide 2 of the non-cleaved strand participate in CCD-DNA

interactions. The contacts of the nucleotides 2, 3,and 4 are in good

agreement with the model of the HIV-1 intasome and structural

data from PFV IN. Similarly, the loop comprising residues 207–

209 of HIV-1 IN is in close proximity to nucleotides 12 and 13 of

the cleaved strand. While the mutagenesis results [14] do not

contradict the structural data, they do not locate the contact

residues in the protein. In contrast, our S-S crosslinking data

identify both counterparts in the ASV IN-DNA interactions. For

example, results with the I146C derivative of ASV IN implicate

this residue in interactions with nucleotide 3 of the cleaved strand

and nucleotide 2 of the non-cleaved strand of viral DNA.

In conclusion, the high degree of correlation between the

structural and biochemical data on IN-DNA contacts in the CCD

indicate that the mode of binding DNA to this domain is highly

conserved in PFV, HIV-1, and ASV INs. Differences in protein

structure and composition may explain the lack of correspondence

in details of DNA binding by the NTD and CTD of PFV in the

crystal structure of the intasome, when compared with data

obtained from analysis of crosslinking and other experiments

performed with ASV and HIV-1 IN proteins. The presence of an

additional domain at the N terminus of PFV IN (the NED) certainly

sets it apart from the other two retroviral IN proteins. In addition,

variations in length and sequence of the linker regions between the

NTD and CCD, and the CCD and CTD, suggests that residues at

different positions in these domains could have been selected to

perform analogous functions during the course of evolution of these

viruses. On the other hand, depending on the concentration, IN

proteins can exist in a variety of multimers in solution (dimers,

tetramers, and higher forms), each of which might interact with

DNA in unique ways during the assembly of a functional intasome.

Such interactions may be detected in biochemical experiments, but

not represented in the intasome crystal. Furthermore, the same

amino acid in individual subunits might make different contacts

with DNA in one or more of these multimers. We note that the

NTDs and CTDs of only two of the four component subunits are

visible in the crystal of the PFV intasome, and it is unknown if or

how these domains in the other two subunits might interact with

DNA. Additional crystal structures, including those of other

retroviral intasomes, could help to resolve some of these issues.

However, until we understand more about the dynamic properties

of IN, and the conformational changes that accompany intasome

assembly, it will be important to keep all of these factors in mind

when interpreting both structural and biochemical data.

Materials and Methods

Photocrosslinkers
Heterobifunctional photoactivatable thiol-specific reagents, a

carbene-generating N-bromoacetyl-N9-{2,3-dihydroxy-3-[3-(3-
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(trifluoromethyl)diazirin-3-yl)phenyl]propionyl} ethylenediamine

(BATDHP) [17] and nitrene-generating azidophenylthiophtali-

mide (APTP) from Sigma [32] were used. Photocrosslinking

reagents were prepared as 10–20 mM stock solutions in DMSO

and stored in the dark at 220uC for no longer than 30 days. These

reagents were coupled to the SH- group of the engineered Cys-

containing IN derivatives. Amino-reactive photocrosslinking

reagent N-hydroxysuccinimidyl-3-[3-(trifluoromethyl)diazirin-3-

yl]benzoate was used for modification of NH2-derivatized

thymidines in DNA substrates to complement our data obtained

with Cys-substituted modified proteins.

Thiol modification
Modification and crosslinking procedures with IN were

performed as previously described [17,18]. The IN proteins were

modified with the photocrosslinking reagents via a single Cys

residue. 50 mL of 30 mM solutions of IN were treated with 5 mM

DTT on ice for 30 min to reduce the SH group. DTT was then

removed by gel filtration using Sephadex G50 Centrisep desalting

columns (from Princeton Separations, Adelphia, NJ) in buffer 1

(40 mM HEPES pH 6.5, 500 mM NaCl, 5% glycerol). The

reduced IN was allowed to react with 10-fold molar excess of a

photoreagent in dark vials on ice for 12 hr after raising the pH of

reaction mixtures from 6.5 to 7.8 by addition of 1 M Tris-HCl

pH 8.0. The appropriate amounts were extrapolated for small

volume reactions (20–100 ml) from test-titration of a 100 ml

mixture without protein and DNA. Excess photocrosslinking

reagent was removed by gel filtration with buffer 1. All subsequent

manipulations were carried out under reduced light levels.

Mass spectrometry
Mass spectrometry, performed at the Fox Chase Cancer Center

Shared Facility, was used to determine the number and position(s)

of modifications to ensure that Cys residues in the Zn-coordinating

motif of the NTD were not modified with crosslinking reagents. IN

modified with either BATDHP or APTP was digested with

trypsin. Tryptic peptides containing modifications were identified

by matrix-assisted laser desorption time-of-flight (MALDI-TOF)

spectrometry.

DNA substrates
Amino-derivatized and non-modified DNA oligonucleotides

synthesized using the phosphoroamidite method with subsequent

PAGE purification were obtained from commercial sources

(Oligos, Etc.). Oligonucleotides were tagged by 59 labeling with

c32P-ATP using T4 polynucleotide kinase (T4 PNK) obtained

from Boehringer Mannheim.

The following sequences were prepared:

1 59 GCTGTTGAATACCATCTAATCGTGTCGGGTCT-

CGTACTGCGGAA 39

2 59 TCCGCAGTACGAGACCCG 39

3 59 AATGTAGTCTTATGCAATAGC 39

39 59 AATGTAGTCTTATGCAATACTC 39

3f 59 ATTGTAGTCTTATGCAATACTC 39

4 59 GCTATTGCATAAGACTACAACACGATTAGATG-

GTATTCAACAAGC 39

49 59 GAGTATTGCATAAGACTACATT 39

4f 59 GAGTATTGCATAAGACTACAAT 39

NH2-3.8 59 AATGTAGTCTTATGCAATACTC 39

NH2-3.11 59 AATGTAGTCTTATGCAATACTC 39

NH2-4.12 59 GAGTATTGCATAAGACTACATT 39

where amino-modified nucleotides are shown underlined and in

bold.

DNA strands 1–4 were mixed in equal concentrations and

annealed to prepare the Y-mer substrate; strands 39 and 49 were

mixed in equal concentrations and annealed to prepare the linear

substrate. Oligonucleotides 3f and 4f were used for preparation of

frayed-end substrates with the appropriate modified complemen-

tary strands. Amino-modified oligonucleotides were used to

introduce the NHS-[3-(3-(trifluoromethyl)diazirine-3-yl]benzoate

photoreagent by a procedure similar to modification of IN, except

the reducing step.

For chemical crosslinking, oligonucleotides with thiol-modified

adenosines and guanidines were prepared similarly to the method

of Erlandson et al. [52] (See Methods S1 for details).

Oligonucleotide SH 4.3-P carried a mercaptopropanol phosphate

ester -O3P-O-(CH2)3-SH in place of scissile phosphate. In SH 4.3-

M the 39 terminal desoxyribose was substituted with N-

mercaptoethyl morpholine. Modified positions below are bolded

and underlined; numbering is as in Figure 1. For description of

synthetic pathways and structures, see Methods S1.

SH3.1,7 59 AATGTAGTCTTATGCAATACTC 39

SH3.1,12 59 AATGTAGTCTTATGCAATACTC 39

SH3.2 59 AATGTAGTCTTATGCAATACTC 39

SH3.12 59 AATGTAGTCTTATGCAATACTC 39

SH4.13 59 GAGTATTGCATAAGACTACATT 39

SH4.11 59 GAGTATTGCATAAGACTACATT 39

SH4.3 59 GAGTATTGCATAAGACTACATT 39

SH4.3-P 59 GAGTATTGCATAAGACTACA 39

SH4.3-M 59 GAGTATTGCATAAGACTACA 39

Photocrosslinking
10 mM IN and 0.05 mM DNA substrate (59-labeled with c32P

ATP at one of the component oligonucleotides) were incubated in

buffer 2 (40 mM HEPES pH 6.5, 150 mM NaCl, 5% glycerol) for

15 min at 0uC and then UV-irradiated with a hand-held lamp

placed 1 cm away from the samples on ice for 15 min using a glass

plate as additional filter (cutoff 315 nm). Non-reducing denaturing

PAGE was used to separate crosslinked IN from the non-

crosslinked protein, as well as to remove any DNA that was not

crosslinked. The products were visualized and quantified with a

PhosphorImager (Storm 860 from Molecular Dynamics, Inc.,

Sunnyvale, CA). The efficiency of crosslinking was calculated as

the percent of radioactivity in the IN-DNA bands relative to the

total amount of radioactivity in the lane. As an excess of IN

protein was used, and both the DNA and IN were present at

concentrations significantly higher than the IN-DNA binding

constant, all DNA is assumed to be bound to the enzyme. The

negative control samples were obtained by UV-irradiation of

reaction mixtures with non-modified INs and by analyzing non-

irradiated samples.

Localization of the preferred sites of crosslinking
Localization of the preferred sites of IN photocrosslinking to

different DNA substrates under various conditions was performed

using Cel 1 ‘‘Surveyor’’ endonuclease from Transgenomics, Inc.

(Rockville, MD) [34–36,53]. Samples of the UV-crosslinked IN-

DNA complexes were prepared and 2–3 mL aliquots were used to

analyze the crosslinking efficiency by PAGE and PhosphorImager.

The reaction mixtures were extracted twice by phenol-chloroform.

Aqueous fractions that contained non-crosslinked DNA were

pooled together, precipitated with ethanol and saved as a negative

control for Cel1 analysis. Phenol/chloroform fractions containing

covalent IN-DNA complexes were pooled together, divided in

half, and one half was treated with 10 mM NaIO4 (30 min. at

room temperature), while the other half was left untreated. Both

phenol-extracted samples were ethanol-precipitated and dissolved
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in 20 microliters of water. We used non-treated 32P-labeled DNA

substrates, as well as crosslinking reaction mixtures and cross-

linking reaction mixtures after treatment with 10 mM NaIO4 as

controls for each Cel1 assay. The Cel1 assays were performed

according to manufacturer’s instructions. The reactions were

terminated by adding the formamide gel loading buffer and

heating to 90uC. Reaction mixtures were separated by Urea-

PAGE using 6% and 20% gels and analyzed with Phosphor-

Imager.

Chemical crosslinking
Reducing denaturing PAGE was used to break the covalent

linkage between DNA and IN in order to confirm that the DNA

was in fact crosslinked by a disulfide linkage. Crosslinking

reactions were performed by mixing 25 mM IN with correspond-

ing concentration of DNA to produce a desired ratio of IN-DNA

in 40 mM HEPES pH 6.5, 150 mM NaCl, 1 mM EDTA and 5%

glycerol. After 1 hr preincubation on ice, the pH of the reaction

mixture was adjusted to 7.8 by addition of 1 M Tris-HCl pH 8.0

and then left on ice for 10–15 hr to allow crosslinking. PAGE gel

analysis with Coomassie staining was used to separate and quantify

the products of reactions by densitometry.

Crosslinking experiments with IN derivatives that contained

Cys substitutions in catalytic residues D64 and E157 of ASV IN

were performed essentially as described above, with minor

modifications. The processed, recessed linear DNA substrate

(Figure 1) was used with the ‘‘processed’’ strand comprising either

SH4.3-M or SH4.3-P.

The oligonucleotides were mixed in equimolar quantities and

annealed prior to reduction with 100 mM b-ME on ice for 12 hr.

The excess of reducing agent was removed by gel filtration on

Centrisep spin-columns in 150 mM NaCl. IN was concentrated to

,5–6 mg/ml in Buffer 1. The concentrated protein was treated

with b-mercaptoethanol on ice for 12 hr for reduction of the

surface Cys. The excess of reducing agent was removed by gel

filtration into Buffer 1. The DNA was then added to a protein

solution for a final molar ratio of protein to DNA of 2:1 or 1:1.

The complex was incubated on ice for 30 min in Buffer 1 before

adjustment of NaCl concentration to 250–300 mM and pH to 7.5.

The reactions were carried out with and without 10 mM MgCl2.

Alternatively, for the catalytic Cys derivatives, S-S bond

formation was facilitated with DTNB as in [27]. 1 mM DTNB

was added to each of the reduced oligonucleotide substrates and

the mixture was incubated for 2 hr at room temperature. Excess

DTNB was also removed by gel filtration in 20 mM Tris-HCl

pH 8.0, 150 mM NaCl. IN proteins were prepared as above in

Buffer 1. 50 mM DNA was added to 50 mM IN protein at either

2:1 or 1:1 molar ratio and incubated on ice for 10 min, diluted

1.5-fold with 20 mM Tris-HCl pH 8.0, 150 mM NaCl. Reactions

were initiated by adding MnCl2 to a final concentration of

10 mM. After overnight incubation on ice, the yields of cross-

linking were determined by PAGE after overnight incubation on

ice.

Supporting Information

Figure S1 Disintegration reactions of the modified IN
proteins with Y-mer substrate. A) Schematic depicting

integrase-catalyzed disintegration and joining reactions of the Y-

mer substrate superimposed on a generic tetramer model for

integrase (left). The liberated viral DNA (right) is the same DNA as

seen in a pre-cleaved end, with the cleaved portion of strand 4

indicated by ‘‘4-’’. B) Disintegration activity of WT and ASV IN

derivative proteins before and after modification with photo-

crosslinking reagents [54]. Upper band on each gel represents the

44-mer product of reaction, lower bands correspond to the 19-mer

substrate (59 32P-labeled Y-mer strand 2*). Due to increased

exposure times of the four gels on the right, the contaminating 18-

mer fragments of the substrate are also visible. Reaction times

were 0–1200 s; increasing time is indicated by the wedge above gel

lanes. ‘‘noXL’’ stands for no IN modification with photocrosslin-

ker.

(TIF)

Figure S2 Strand specificity of photocrosslinking of
modified Cys residues in substituted derivatives of
ASV IN. A sample of gels accompanied by bar graphs with the

photocrosslinking yields (%) presented. The position of modified

Cys residues in the IN derivatives is noted above the bar graph.

The crosslinker used is also listed above the graph (noXL stands

for no IN modification with photocrosslinker). DNA strands in the

Ymer substrate are labeled according to Figure S1, and the

labeled strands are indicated below each graph. Brackets on the

right show the bands corresponding to IN-DNA adducts and free

DNA.

(TIF)

Figure S3 Comparison of the efficiency of photocros-
slinking of APTP- and BATDHP-modified ASV IN
derivatives to Y-mer (Y3,Y4) and linear (L3, L4) DNA
substrates. Labeling is as in Figure S2.

(TIF)

Figure S4 Comparison of UV photocrosslinking yields
of wild type ASV IN to dsDNA substrates modified with
diazirine photocrosslinkers. Positions of the modified bases

are bolded and the conserved A is underlined.

(TIF)

Figure S5 A sample of Coomassie-stained gels with S-S
crosslinked IN-DNA complexes. The substrates are labeled

above the lanes. Y stands for Y-mer DNA, L for linear; letters are

followed by strand numbers, thiol modified positions are shown

after dash. Bands corresponding to crosslinked complexes are

marked by arrows. The negative controls are marked with a dash

above the left-most lane of each gel. 1IN and 2IN with

arrowheads designate monomeric and dimeric IN bands,

respectively. The stemmed arrows point to IN-DNA adduct

bands. Molecular weight marker lanes are not shown, since the

monomer (lower) and dimer (upper) strong bands provide

internal calibration.

(TIF)

Methods S1 A more detailed description of the materi-
als and methods utilized in this work.

(PDF)

Results S1 A more detailed analysis of the enzymatic
activity of IN and of the chemical crosslinking of
modified DNA substrates to ASV IN.

(PDF)
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