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Abstract

Background: Several preprocessing algorithms for Affymetrix gene expression microarrays have been developed, and their
performance on spike-in data sets has been evaluated previously. However, a comprehensive comparison of preprocessing
algorithms on samples taken under research conditions has not been performed.

Methodology/Principal Findings: We used TaqMan RT-PCR arrays as a reference to evaluate the accuracy of expression
values from Affymetrix microarrays in two experimental data sets: one comprising 84 genes in 36 colon biopsies, and the
other comprising 75 genes in 29 cancer cell lines. We evaluated consistency using the Pearson correlation between
measurements obtained on the two platforms. Also, we introduce the log-ratio discrepancy as a more relevant measure of
discordance between gene expression platforms. Of nine preprocessing algorithms tested, PLIER+16 produced expression
values that were most consistent with RT-PCR measurements, although the difference in performance between most of the
algorithms was not statistically significant.

Conclusions/Significance: Our results support the choice of PLIER+16 for the preprocessing of clinical Affymetrix microarray
data. However, other algorithms performed similarly and are probably also good choices.
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Introduction

Preprocessing of raw probe intensities is an essential procedure

in the analysis of gene expression microarray data. Generally,

background correction and normalization are used to reduce the

impact of variations in experimental conditions. Arrays featuring

multiple probes per gene target (such as those from Affymetrix)

require an additional probe-level summarization step to integrate

intensities of the multiple probes into a single expression estimate.

These steps involving background correction, normalization, and

summarization are often combined into a single all-in-one

preprocessing algorithm that takes raw probe intensities as input

and produces gene expression estimates as output. Several such

algorithms have been proposed, each based on a different model

or set of underlying assumptions. Because the choice of algorithm

can affect the conclusions drawn from the data, it is important to

compare the accuracy of these algorithms.

The performance of preprocessing algorithms has been

characterized in several ways, often with the help of data sets

created expressly for this purpose (evaluative data sets). For example,

the Latin square spike-in data sets from Affymetrix are derived

from composite RNA samples, in which a small number of

exogenous RNA species are added at various concentrations to a

fixed background. Here, the known concentrations of the

exogenous genes can be used as a reference to evaluate the

accuracy of the microarray expression values [1,2]. In another

approach, mixture experiments involve two or more biological

samples combined in various ratios, such that many genes are

differentially expressed and the linearity of response can be

quantified [3]. Such data sets have been the basis for systematic

comparison of preprocessing methods [4,5]. However, these data

sets were generated under well-controlled conditions with

relatively little variation in experimental or technical conditions

from sample to sample. In this way, these data are not

representative of typical microarray experiments performed in a

research setting, such as those involving clinical samples [6,7].

Therefore, it is also important to evaluate the performance of

preprocessing algorithms on microarray data created to address

biological or clinical research questions (investigational data sets) [7,8].

In such data, there are no gold standards to use to directly assess

accuracy. Instead, the relative performance of preprocessing

algorithms can be assessed using independent measurements,

such as a second microarray platform or quantitative real-time

PCR (RT-PCR) [9,10]. Unfortunately, only a few algorithms have

been compared in this manner, and the data is not publicly

available.

Here, we aimed to compare Affymetrix preprocessing algo-

rithms using data sets that are representative of our research. We

selected two investigational data sets, each featuring a relatively

large number of matched measurements by Affymetrix micro-
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arrays and RT-PCR, and used these data sets to compare the

accuracy of nine published preprocessing algorithms.

Results

Two representative investigational data sets
We chose to analyze two of our recently published data sets in

which RNA samples had been profiled both on gene expression

microarrays (Affymetrix) and on 96-well RT-PCR arrays (Taq-

Man). The first data set comprises 36 colon biopsies [11], and the

second comprises 29 cancer cell lines grown in vitro [12]. All data

was generated for previously published studies, without consider-

ation for its present use in this study of preprocessing algorithms.

Using current manufacturer-supplied annotations, we selected 84

probe sets in the colon cancer data set and 75 probe sets in the cell

line data set for which we had comparable RT-PCR measure-

ments (i.e. detecting the same set of transcripts). Evaluation of

consistency between the two platforms was restricted to these

matched measurements, which we call ‘‘genes’’ even though some

splice isoforms may not be detected.

To assess whether these two data sets were representative of

typical clinical data sets, we utilized three ‘‘bias metrics’’ as

indicators of technical variation [13]. These bias metrics, which

are calculated from the raw probe intensities, correspond to

technical aspects of the experiment, such as hybridization

conditions or RNA quality. In general, the expression values of

many genes are correlated with these bias metrics [13]. Thus, the

variation in bias metrics is an estimate of one type of noise that we

expected to be higher in clinical data sets than in spike-in data sets.

We compared the variation in bias metrics among several data

sets: the two data sets analyzed in this paper, two Latin square

spike-in data sets, and five tumor data sets that are relevant to our

research interests [14–18]. We found that the colon and cell line

data sets analyzed in this study are comparable to the tumor data

sets, whereas the spike-in data sets exhibited much lower variation

in the bias metrics (Figure 1). Thus, by this measure, the two data

sets analyzed in this study are representative of ‘‘typical’’ clinical

data sets, whereas the spike-in data sets are not.

Preprocessing algorithms
Several preprocessing algorithms for Affymetrix-type oligonu-

cleotide arrays have been proposed, but we evaluated only

algorithms that were published or referenced in peer-reviewed

journals and that were implemented in the R statistical

environment. We identified the following nine algorithms meeting

these criteria: DFW [19], FARMS [20], GCRMA [21], MAS5

[22], MBEI [23], PLIER [24], RMA [25], and VSN [26]. Two of

these algorithms, MBEI and PLIER, were not implemented in R

by the original authors, so we used published implementations of

these algorithms [27,28]. Although all of these algorithms have

adjustable parameters, we generally used the default parameter

values. As an exception, alternative parameter values for PLIER

were chosen by the manufacturer for use in a large evaluative

study, so we evaluated these settings (PLIER+16) in addition to the

defaults [3]. By evaluating only previously published parameter

values, we avoided problems of selection bias or overfitting that

would result if we had tested additional parameter values.

Evaluation of consistency between platforms
To a first approximation, the measured probe intensity is

proportional to its target transcript concentration, but is also

affected by other factors such as probe sequence. Therefore, the

absolute expression of a single gene in a single sample is not

directly comparable between different gene expression platforms.

However, the relative expression of a gene between two samples

should be directly comparable, as long as the normalization factor

is comparable. Microarray data is often normalized globally,

meaning that the distribution of expression levels of all genes is

assumed to be constant in all samples. On the other hand, RT-

PCR data is often normalized using a small number (e.g., one) of

housekeeping genes that are assumed to be constant. For our

study, to make the normalization of the microarray and RT-PCR

data as similar as possible, we normalized each sample according

to the median expression value of the common genes. This

additional normalization step increased concordance in both data

sets (data not shown).

To assess concordance between the two platforms, we treated

each gene as an independent measurement. For each gene, we

calculated the Pearson correlation coefficient (PCC) between the

log2-transformed expression values as measured by microarray

and those measured by RT-PCR. We then compared the

distributions of PCCs obtained using the various preprocessing

algorithms (Figure 2). Using the median of the PCC distribution as

the criterion to choose the most accurate algorithm, FARMS was

the most accurate on the colon data set, while PLIER+16 was

most accurate in the cell line data set. In both data sets, the

Figure 1. The colon and cell line data sets are representative of clinical microarray data. For several Affymetrix data sets, box-and-
whiskers plots indicate the distribution of three bias metrics: a) RNA degradation slope, b) median perfect-match probe intensity, and c) fraction of
probe sets called present. A narrower distribution indicates greater consistency in technical conditions. LatinSquare133 and LatinSquare95 are spike-in
data sets produced by the microarray manufacturer [1]; Gyorffy_cells and Gyorffy_colon are the data sets analyzed in this paper [11,12]; the other five
are publicly-available clinical data sets [14–18].
doi:10.1371/journal.pone.0005645.g001
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difference between the majority of the algorithms was not

statistically significant (Figure 2).

However, the use of PCC as measurement of concordance can

be problematic for two important reasons. First, a gene that is

essentially unchanging often has low PCC due to random noise,

even if both platforms agree that the gene is unchanging. Second,

a gene can have high PCC even if the two platforms are highly

discordant in magnitude; for example, when one platform

experiences compression due to chemical saturation at higher

intensities.

We sought to define a second metric for cross-platform

comparison that more intuitively indicates the agreement or

disagreement between sets of measurements. In practice, we are

most interested in the extent to which a gene measured on the two

platforms has the same log ratio for a given pair of samples. Thus,

for each gene g we define the log-ratio discrepancy (LRD) as:

LRDg~
2

N N{1ð Þ
XN{1

i~1

XN

j~iz1

log2

xgi

xgj

� �
{log2

ygi
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where N is the number of samples, and xgs and ygs are the expression

values of gene g in sample s, as measured on each platform. In

simpler terms, the LRD of a gene is the absolute difference in log-

ratio as measured between platforms, averaged over all possible

pairs of samples. Therefore, the LRD has a minimum possible value

of zero (perfect agreement) and a maximum value limited only by

the dynamic range of the two platforms. An R script implementing

the LRD is available in Text S1.

We calculated the LRD between the microarray and RT-PCR

expression values for each gene and compared the LRD

distribution between the nine preprocessing algorithms (Figure 3).

Using the median of the LRD values as the criterion to choose the

best performing preprocessing algorithm, we found PLIER+16 at

the top of the list in both data sets. Again, several other algorithms

showed similar performance, and the difference between the top

few algorithms was not statistically significant (Figure 3).

Discussion

Several preprocessing algorithms have been proposed for

Affymetrix arrays, but so far it is unknown whether one particular

algorithm provides more accurate results. Several important studies

attempting to answer this question using artificially produced RNA

samples have been a key source of guidance for investigators [2,4].

Until now, there has been a lack of systematic comparisons of the

Figure 2. Pearson correlation coefficients between microarray and RT-PCR. The distribution of Pearson correlation coefficients for each
microarray preprocessing algorithm is indicated by a box plot, for a) the colon cancer data set (84 genes, 36 samples), and b) the cell line data set (75
genes, 29 samples). The box indicates the 25th to 75th percentile, and the heavier line indicates the median. Algorithms are displayed in decreasing
order of the median, such that the more accurate algorithms are at the top. The colorgrams on the right-hand side indicate P values (Wilcoxon test)
comparing each pair of algorithms.
doi:10.1371/journal.pone.0005645.g002
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performance of preprocessing algorithms in investigational studies. In

this study, we have evaluated nine preprocessing algorithms in two

complementary data sets that are representative of typical microarray

experiments that we generate and analyze in our research. Because

none of the true gene expression levels are known exactly, we assessed

the accuracy of the various preprocessing algorithms by comparing

the generated expression values with those measured independently

on RT-PCR arrays.

RT-PCR is often used to ‘‘confirm’’ microarray results because

of its relatively accurate measurements over a wide dynamic range.

However, the interpretation of these results can be problematic

because RT-PCR expression values can vary based on choice of

normalization controls [29]. Although our study has been designed

in a way to avoid standard housekeeping gene-based normaliza-

tion of RT-PCR data, this task is important for accurate results in

actual research situations. Despite the fact that no single gene is

expressed at a constant level in all biological samples, RT-PCR

measurements are often normalized to a single gene. Several

publications have introduced more rational normalization meth-

ods for RT-PCR. A model-based variance estimation approach

was introduced to identify genes with the lowest variance in a

given type of data set and therefore best suited for normalization

[30]. In another approach, the geometric average of multiple

control genes was found to be an accurate normalization factor for

RT-PCR measurements [29].

Although the accuracy of preprocessing algorithms for Affyme-

trix microarrays could be compared in numerous ways, we have

used two performance metrics. First, we used the PCC because it is

intuitive and because it gives a useful measure of concordance

under many conditions. Additionally, we introduced the log-ratio

discrepancy, which we believe is a more useful assessment of

expression value accuracy in the context of our biomarker research

due to its ability to take into consideration the impact of genes that

do not change their expression across the various samples in the

cohort. Researchers using microarrays for other types of

experiments may find other performance metrics to be more

relevant to their research, and our results should be considered in

this context. For example, the LRD penalizes compression-type

artifacts; whereas PCC does not. Such artifacts may be acceptable

for simple analysis such as searching for differentially expressed

genes between two relatively homogeneous groups. However, such

artifacts are not acceptable when the response must be linear, e.g.

in principal components analysis. An open question is whether the

optimal choice of preprocessing algorithm is dependent on the

type of data, or on the biological question being asked. For

example, some analysis, such as regulatory network reconstruc-

Figure 3. Log-ratio discrepancy between microarray and RT-PCR. The distribution of the log-ratio discrepancy for each microarray
preprocessing algorithm is indicated by a box plot, for a) the colon cancer data set, and b) the cell line data set. Algorithms are displayed in order of
the median, such that the more accurate algorithms are at the top. The colorgrams on the right-hand side indicate P values (Wilcoxon test)
comparing each pair of algorithms.
doi:10.1371/journal.pone.0005645.g003

Microarray Algorithms

PLoS ONE | www.plosone.org 4 May 2009 | Volume 4 | Issue 5 | e5645



tion, may be highly sensitive to random correlations, in which case

concordance with RT-PCR measurements may not be the only

consideration for selecting an algorithm [13,31].

Naturally, our choice of data sets from colon biopsies and cancer

cell lines reflects our research interests. These data sets, like many

recent large-scale data sets, were generated using the HG-U133A or

HG-U133 Plus 2.0 microarrays, which use a 39-biased amplification

protocol and a transcript-based probe set design. In contrast, the

newer generation of microarrays from Affymetrix utilizes a whole-

transcript amplification protocol and an exon-based probe design,

which may offer a more specific portrait of expressed sequences

[32]. Preprocessing algorithms that perform well in the U133 arrays

should also perform well in the newer arrays, but it will be important

to confirm this as researchers adopt the newer platforms.

Several other studies have compared preprocessing algorithms

using different data sets and/or different metrics. Cope et al.

described a series of tests to evaluate preprocessing algorithms using

the spike-in data set from Affymetrix and the dilution data set from

Genelogic. They generally observed better performance from RMA

and MAS5 than from dChip (MBEI), which is consistent with our

findings. Choe et al. generated a spike-in data set with a defined

background, in contrast to the Affymetrix spike-in data sets, which

use HeLa RNA as background [2]. Instead of comparing all-in-one

preprocessing algorithms as we did, they evaluated the relative merit

of the individual background correction, normalization, and

summarization steps. Dallas et al. compared Affymetrix arrays with

RT-PCR measurements of 48 genes in various human samples

using PCC as the performance metric [8]. They evaluated only

MAS5 and RMA and found that the two algorithms had

comparable performance. Qin et al. compared microarrays to

RT-PCR using mouse heart tissue and Pearson correlation of fold

change as a performance metric, and found that MAS5, dChip-

with-mismatch, and GCRMA outperformed dChip-without-mis-

match (analogous to our ‘‘MBEI’’), RMA, and VSN [7]. Barash et

al. used variability in redundant measurements to estimate noise,

and found that RMA outperformed dChip and MAS5 without

decreasing the number of differentially expressed genes [6]. There is

some disagreement between these results and ours, which might

stem from differences in data sets and methodology.

It is our impression that the most commonly used algorithms are

MAS5, MBEI, and RMA [33]. This may be partially due to their

relatively early availability (2001–2003) or partially due to their

packaging within relatively user-friendly software (MAS5 and

MBEI) or fast computation in R (RMA). Therefore, it is reassuring

that these three algorithms performed well in our tests, although

MBEI was slightly weaker. We were somewhat surprised by the

performance of the MAS5 algorithm, which has not always

performed well in earlier comparisons [21,25]. Notably, MAS5 is

the only algorithm in our comparison that operates on a single

array at a time, a feature that is advantageous for diagnostic use

but may represent a handicap compared to the other algorithms,

which theoretically gain accuracy by considering an entire series of

arrays in a single statistical model. The good performance of the

MAS5 algorithm has been noted by others [34].

Overall, if we had to choose a single preprocessing algorithm,

we would choose PLIER+16. However, several other algorithms

performed in a comparable manner. Ultimately, it is likely that

any of the top algorithms would be suitable for most purposes.

Materials and Methods

Samples
36 colon biopsies were taken during routine endoscopical

intervention before treatment at the 2nd Department of Internal

Medicine at the Semmelweis University Budapest and have been

described previously [11]. The biopsies were classified as adenoma

with (n = 6) or without dysplasia (n = 6), ulcerative colitis (n = 7),

Crohn’s disease (n = 1), colon cancer Dukes B (n = 6), colon cancer

Dukes C-D (n = 5) and normal tissue (n = 5). 29 human cancer cell

lines representing various cancer types were cultured under

identical conditions and collected during logarithmic growth

phase and have been described previously [12].

At the beginning of sample collection the written informed

consent of patients was obtained for the use of their samples for

diagnostic and scientific purposes. At the beginning of data

processing all samples received a unique three digit number, and

during further analyses this number was used without referring to

the patient’s name. The ethical committee of the Semmelweis

University approved the study; the study conformed to the

principles outlined in the Declaration of Helsinki.

Measurements
Samples were profiled using HG-U133A or HG-U133 Plus 2.0

microarrays (Affymetrix, Santa Clara), and RT-PCR measure-

ments were made on TaqMan 96-well arrays (Applied Biosystems,

Foster City) as described [12]. Some of the genes on the TaqMan

arrays were selected to validate our previous microarray studies

and have been published earlier [12], while others were selected

based on published clinical associations (e.g. colon cancer

associated genes) or as normalization controls. One sample from

the cell line data set was identified as low-quality (based on a very

low number of genes detected as present on the microarray) and

was removed from further analysis. Nonetheless, we have made

the raw, unfiltered data sets publicly available in their entirety

(GEO accession numbers GSE4183 and GSE11812 for micro-

arrays; Dataset S1 and Dataset S2 for RT-PCR).

Identification of common genes
We identified the targets (gene symbol and Refseq accession

numbers) of the RT-PCR probes using online annotation provided

by the manufacturer (accessed May 23, 2008). We identified the

targets of the microarray probe sets using annotation files

downloaded from the manufacturer’s website (dated March 18,

2008). To find comparable sets of measurements made on both

platforms, we identified RT-PCR probes and microarray probe

sets that queried not only the same gene, but also the same set of

transcript isoforms as determined by Refseq accession numbers.

For several genes, multiple microarray probe sets matched an RT-

PCR probe; in this case we chose the probe set with the most

individual probes matching the queried gene, and if this criterion

was not sufficient to choose a single probe set, we arbitrarily chose

the first probe set from those matching the criteria. By this

procedure we identified 84 genes in the colon cancer data set and

75 genes in the cell line data set measured by both platforms

(Table S1). Only these genes were used to assess agreement

between platforms.

Data analysis
All analysis was performed using the R statistical environment

(www.R-project.org) with Bioconductor packages (www.biocon-

ductor.org). All calculations and comparisons were performed

using log2-transformed expression values; all preprocessing

algorithms except MAS5 and MBEI return such values by default.

RT-PCR log2 expression values are given as the negative of the CT

(threshold cycle). All results can be reproduced using the scripts

provided in Text S1.

Microarray Algorithms
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Supporting Information

Dataset S1 A tab-delimited text file containing raw RT-PCR

CT values for the cell line data set.

Found at: doi:10.1371/journal.pone.0005645.s001 (0.03 MB

TXT)

Dataset S2 A tab-delimited text file containing raw RT-PCR

CT values for the colon data set.

Found at: doi:10.1371/journal.pone.0005645.s002 (0.03 MB

TXT)

Table S1 An Excel spreadsheet listing the comparable RT-PCR

probes and microarray probe sets used in this study.

Found at: doi:10.1371/journal.pone.0005645.s003 (0.03 MB

XLS)

Text S1 A PDF document providing R code to reproduce the

analysis described in the manuscript.

Found at: doi:10.1371/journal.pone.0005645.s004 (0.32 MB

PDF)
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