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Abstract

Emerging evidence indicates that CD4+ T cells possess cytotoxic potential for tumor eradication and perforin/granzyme-
mediated cytotoxicity functions as one of the important mechanisms for CD4+ T cell-triggered cell killing. However, the
critical issue is how the cytotoxic CD4+ T cells are developed. During the course of our work that aims at promoting
immunostimulation of APCs by inhibition of negative regulators, we found that A20-silenced M drastically induced
granzyme B expression in CD4+ T cells. As a consequence, the granzyme-highly expressing CD4+ T cells exhibited a strong
cytotoxic activity that restricted tumor development. We found that A20-silenced M activated cytotoxic CD4+ T cells by
MHC class-II restricted mechanism and the activation was largely dependent on enhanced production of IFN-c.
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Introduction

CD8+ T cells are the most cytotoxic T lymphocytes (CTLs) that

directly destroy virus-infected or malignant cells. CD4+ T cells are

recognized for their coordinated orchestration by production of

various cytokines, such as T helper (Th)1 producing interferon

(IFN)-c to promote cellular immunity, Th2 producing interferon

(IL)-4 to potentiate humoral immune response, and Th17

producing IL-17 to facilitate inflammation and autoimmune

diseases. Recent studies further identified different subsets of

CD4+ regulatory T cells which perform immune regulation on

effector T cells by expressing transcription factor FoxP3 or by

secreting anti-inflammatory cytokine IL-10 or transforming

growth factor (TGF)-b. However, emerging evidence indicates

that CD4+ T cells also develop cytotoxic activity to directly

participate in cytolysis of tumor or infected cells. For instance,

tumor-reactive CD4+ T cells were found to develop cytotoxic

activity and eradicate large established melanoma after transfer

into lymphopenic hosts [1,2]. The critical issue is how these

cytotoxic CD4+ T cells are developed.

Macrophages (M s) are initially recognized as phagocytic cells

responsible for pathogen elimination and housekeeping function in

homeostasis and tissue repair. The classically known M s, which

are activated by microbial products or interferon (IFN)-c, produce

large amounts of proinflammatory cytokines, express high levels of

MHC molecules, and function as a potent killer of pathogens and

tumor cells [3]. Dependent on the anatomical location and the

physiological or pathological context, M s can be alternatively

activated by anti-inflammatory cytokines such as IL-4 or IL-13 [4].

The alternatively activated M s produce high amounts of IL-10,

express scavenger receptors, and exhibit anti-inflammatory and

tissue repair functions [5]. Recent studies suggest that M s

represent a very plastic cell population that play an essential role in

the regulation of the pro-inflammation vs anti-inflammation and

in the coordination of the pro-tumorgenesis vs. anti-tumorgenesis

[6]. Classically activated M s and alternatively activated M s

represent two extremes in the spectrum of the phenotype and

functionality of M s [5,7].

To promote the antitumor activity of M , we used an A20

silencing strategy to enhance the classical activation of M . This was

based upon the published studies that A20, a zinc-finger ubiquitin-

modifying enzyme, inhibits several upstream signaling pathways of

NF-kB in a feedback manner by degradation or deactivation of

signaling molecules via its dual functions of ubiquitination and

deubiquitination [8,9,10]; A20-deficient M s display prolonged NF-

kB activity [8,10]; A20-silenced dendritic cells (DCs) express higher

levels of costimulatory molecules and proinflammatory cytokines, and

display a superior immunostimulatory ability [11]. We found that

A20-silenced M not only enhances expression of perforin and

granzyme B in CD8+ T cells and Natural Killer (NK) cells, also

drastically upregulate these cytotoxic molecules in CD4+ T cells. As a

consequence, the granzyme-highly expressing CD4+ T cells exhibited

cytotoxic activity in vitro/vivo. We further defined that A20-silenced

M activated cytotoxic CD4+ T cell response by MHC class-II

restricted mechanism, and the activation was largely dependent on

enhanced IFN-c production.

Results

A20 Controls M Maturation and Immunostimulatory
Activity

To investigate whether A20 controls maturation of M , bone

morrow-derived M s (BMM s) were transduced with adenovirus
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Ad-A20shRNA (Ad-shA20) or Ad-GFPshRNA (Ad-con). Down-

regulation of A20 expression by Ad-shA20 was confirmed via

quantitative RT-PCR (qRT-PCR) at the level of mRNA and via

intracellular staining (ICS) at the level of protein (Fig.S1A&B).

Flow cytometric assay shows that Ad-shA20-transduced BMM s

expressed higher levels of CD80, CD86, CD40 and MHC class-II

molecule I-A/I-E than Ad-con-BMM s under the stimulation of

LPS (Fig.1A). ELISA results show that Ad-shA20-BMM s, but

not Ad-con-BMM s, spontaneously produced large amounts of

inflammatory cytokines such as IL-6, TNF-a, IFN-c and IL-

12p40, and produced larger amounts of these cytokines in

response to LPS stimulation (Fig.1B). Adenoviral vector which

induces maturation of antigen-presenting cells per se [12] may

contribute to the observed ‘‘spontaneous’’ cytokine production by

A20-silenced BMM s. A20-silenced BMM s also produced

higher level of nitric oxide than the control M s (Fig.1C).

Despite the reported anti-apoptotic role of A20 in TNF-treated

cells [9], A20-silenced BMM s showed a comparable viability to

Ad-con-BMM s in cell culture (Fig.S2). Taken together, these

results imply that A20 negatively regulates the maturation and

cytokine production of BMM s.

Next, we tested if A20-silenced BMM s possess an enhanced

immunostimulatory activity. The transduced BMM s were pulsed

with H2-Kb–restricted OT-I (SIINFEKL) or OT-II (ISQAV-

HAAHAEINEAGR) peptide and then co-cultured with CD8+

OT-I or CD4+ OT-II cells isolated from Ovalbumin (OVA)-

specific TCR transgenic mice. Results showed that CD8+ OT-I

cells cocultured with A20-silenced BMM s expressed enhanced

levels of CD25 and CD44 in comparison with those cocultured

with the control BMM s (Fig.S3, left). Moreover, the cocultured

OT-I cells with A20-silenced BMM s produced higher levels of

IFN-c and TNF-a (Fig.S3, right) In parallel, A20-silenced

BMM s also more potently activated CD4+ OT-II cells, as

evidenced by enhanced expression of CD25 and CD69, and

heightened production of IFN-c by the OT-II cells cocultured with

Ad-shA20-BMM s (Fig.S4). A20-silenced BMM s also modestly

enhanced proliferation of both CD8+ OT-I or CD4+ OT-II cells,

as tested by 3H-Thymidine Incorporation Assay (data not

statistically significant and not shown). These results support that

A20-silencing endowed BMM s with an enhanced immunosti-

mulatory activity.

A20 Controls M to Elicit a Cytotoxic CD4+ T Cell
Response

We examined the potential of A20-silenced BMM to activate

cytotoxic cell responses by testing expression of cytotoxic

molecules in the cocultured T cells by ICS. As shown in

Fig.2A, A20-silenced BMM enhanced expression of granzyme

B in co-cultured CD8+ OT-I T cells (upper), but also significantly

enhanced granzyme B expression in co-cultured CD4+ OT-II cells

(lower). In the meantime, we also detected an enhanced

expression of perforin in these co-cultured T cells with A20-

silenced BMM (Fig. S5). To rule out that the observed result is

derived from the adenoviral transduction of M , BMM s were

Figure 1. A20 controls maturation and cytokine production of M . A. Expression of costimulatory molecules and MHC class II molecule on
the adenoviral-transduced BMM in response to stimulation of LPS. B. Production of inflammatory cytokines by the adenoviral-transduced BMM s,
as tested by ELISA. C. NO production by adenoviral-transduced BMM s, as tested by Griess assay. Experiments were repeated three times with similar
results. *p,0.05, **p,0.01 Ad-shA20- vs. Ad-con-transduced M .
doi:10.1371/journal.pone.0048930.g001

A20 Controls Mac to Elicit Cytotoxic CD4+ T Cells
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nucleofected with recombinant plasmid pshuttle-shA20 or pshut-

tle-shGFP according to the manufacturer’s instruction (Amaxa),

which reached ,40% transfection efficiency, as monitored by Ad-

GFP nucleofection in parallel (data not shown). The nucleofected

BMM s were then co-cultured with freshly isolated OT-II T cells

in the presence of the OT-II peptide. ICS assay showed that

pshuttle-shA20-nucleofected BMM s display a more potent ability

to elicit expression of granzme B in the cocultured OT-II cells

(Fig.S6). Furthermore, we also tested the potential of A20-silenced

BMM immunization to induce cytotoxic cell responses in mouse

model. C57BL/6 mice were i.p. immunized with OT-I/OT-II

peptides-pulsed, Ad-shA20 or Ad-con-transduced BMM s or PBS

twice. 7–10 days after the 2nd immunization, spleens and lymph

nodes (LNs) were harvested to analyze granzyme B expression in

effector cells by ICS. In agreement with the in vitro study, ICS

assay explored that A20-silenced BMM s significantly enhanced

expression of granzyme B and perforin in CD4+ and CD8+ T cells

as well as NK cells derived from inguinal lymph nodes (LNs)

(Fig.2B & Fig. S5) or spleen (data not shown) of the

immunized C57BL/6 mice. qPCR assay further confirmed an

enhanced level of granzyme B expressed in CD4+ T cells derived

from OT-II (not OT-I)-pulsed, A20-silenced BMM -immunized

mice (Fig.2C). To exclude the possibility that the OT-I/OT-II-

pulsed, A20-silenced BMM s have any different propensity of

releasing the loaded antigen to endogenous APCs, we in vitro

cultured OVA protein-pulsed, differently transduced BMM s for

one or three days. ELISA analysis revealed that an identical

amount of cell-free OVA protein is present in the culture media of

differently transduced or Mock BMM s (data not shown).

To determine cytolytic activity of these effector cells, the

splenocytes were isolated from the immunized mice and cultured

overnight for the NK-mediated cytotoxicity assay or 5–6 days in

the presence of OT-I or OT-II peptide for CD8+ or CD4+ T cell-

mediated cytotoxicity assay. Due to the low expression of MHC

class-II molecule on the targeted cell, a murine Burkitt lymphoma

cell line B6SJ003, the splenocytes cultured with OT-II peptide

were selected using anti-CD4 beads prior to the cytotoxicity assay.

As shown in Fig.3, A20-silenced BMM immunization enhanced

the activity of NK cells, CD8+ T cells, and CD4+ T cells in killing

their specific target cell compared with control BMM or PBS

immunization. The killing specificity of CD8+ T cells and NK cells

was confirmed by failure of the cytotoxic cells to kill the irrelative

control, such as EL-4 cells. We also found that freshly isolated

CD4+ T cells from A20-silenced BMM -immunized mice

displayed a relatively high non-specific cytolytic activity against

the target cell EL-4, but the in vitro culture of these CD4+ T cells

in the presence of OT-II peptide 5–6 days led these cells to largely

lose their non-specific killing activity. Concanamycin A (CMA)

acidifies intracellular vacuolar granules to degrade the content in

the exocytotic granules [13]. Ethyleneglycotetracetic acid (EGTA)

chelates extracellular free calcium to inhibit exocytosis of cytolytic

granules and pore formation by perforin [14]. To confirm the

CD4+ T cell-associated cytotoxicity is mediated by cytotoxic

molecules, CMA and EGTA were included for blocking perforin/

granzyme activity in some of those cocultures. Data showed that

both CMA and EGTA drastically reduced the cytotoxic activity of

CD4+ T cells (both specific and non-specific), as well as that of

CD8+ T cells derived from A20-silenced BMM -immunized mice.

Moreover, we also directly demonstrated the role of granzyme B in

CD4+ T cell-mediated cytotoxicity in the A20-silenced BMM -

immunized mice. OT-II (not OT-I)-pulsed, differently transduced

BMM s were used to immunize C57BL/6 mice and splenocytes

were harvested for CTL assay after the 2nd immunization. Result

showed that CD4+ T cells derived from the A20-silenced BMM -

immunized mice killed OVA-expressing B6SJ003 with a higher

efficiency, however, Z-AAD-CMK, a weak and specific granzyme

B inhibitor, reduced the CD4+ T cells-mediated CTL activity

when included into the coculture of OVA-B6SJ003 and CD4+ T

cells derived A20-silenced BMM -immunized mice in the CTL

assay (Fig. S7). The results strengthen our contention that the

expressed cytotoxic molecules contribute to CD4+ T cell-mediated

cytotoxicity, as they do in CD8+ T cell-mediated killing.

A20 Controls M to Trigger CD4+ T Cell-mediated Anti-
tumor Immune Protection

C57BL/6 mice were immunized with OT-I/OT-II-pulsed,

control BMM or A20-silenced BMM , or PBS. The immunized

mice were challenged with EG-7 tumor cells two weeks after the

2nd immunization as described [15]. Fig.4A shows that A20-

silenced BMM s fully protect the immunized mice from EG-7

challenge. We further tested the A20-silenced BMM -triggered

immune protection by challenging the immunized mice with a

more aggressive, OVA-expressed melanoma cell line, M05.

Fig.4B shows that A20-silenced BMM s were still superior to

control M in protecting the immunized mice from the M05

challenge.

Recent studies indicated that tumor-reactive CD4+ T cells have

a potential to up-regulate expression of MHC class-II on

melanoma B16 cells, and thereby reject the cells by an MHC-II

restricted mechanism in a mouse model [1,2]. To demonstrate

contribution of CD4+ T cells to A20-silenced BMM -triggered

immune protection, OT-II-pulsed, A20-silenced BMM s were

used to immunize CD42/2mice and the wildtype littermates

followed by a challenge of melanoma M05 cells two weeks after

the 2nd immunization. Fig.4C shows that, in contrast to wild-type

mice, which were protected from tumor occurrence with 80%

efficiency, CD42/2 mice only achieved 20% of protection after

A20-silenced BMM immunization.

To directly confirm cytotoxic CD4+ T cell-mediated immune

protection, naı̈ve C57BL/6 mice were inoculated with 66105

OVA-expressing B6SJ003 followed by adoptive transfer of 56106

in vitro primed CD4+ OT-II cells with OT-II-pulsed, A20-

silenced BMM or control BMM . T cell adoptive transfer was

repeated once at a one-week interval. Fig.4D shows that OT-II

cells primed by A20-silenced BMM are superior to those primed

by control BMM in inhibiting onset and growth of the engrafted

OVA-expressed B6SJ003 tumor. However, treatment of A20-

silenced BMM /OT-II coculture with 100 nM of CMA for 1 hr

prior to OT-II adoptive transfer ablates the superior ability of the

OT-II cells in rejection of the engrafted tumor. Taken together,

the results support that A20-silenced BMM s not only elicit CD8+

T cells and NK cell to combat tumor, also effectively trigger

cytotoxic CD4+ T cell response for anti-tumor immune protection.

A20 Restricts M to Trigger Cytotoxic CD4+ T Cell
Response by Limiting IFN-c Production

As described above, A20-silenced BMM s not only express

enhanced proinflammatory cytokines, also prime the cocultured T

cells to produce higher levels of proinflammatory cytokines. To

determine whether the enhanced cytokine expression relates to the

distinct activity of M in triggering a cytotoxic CD4+ T cell

response, the control, but not A20-silenced, BMM s were

cocultured with CD8+ OT-I or CD4+ OT-II T cells in the

presence of varying doses of IFN-c, IL-12, or IL-6. As shown in

Fig.5A, while the addition of IL-6 did not promote BMM to

trigger granzyme B expression in the cocultured CD4+ OT-II cells

and the addition of IL-12 promoted BMM to trigger granzyme B

A20 Controls Mac to Elicit Cytotoxic CD4+ T Cells

PLOS ONE | www.plosone.org 3 November 2012 | Volume 7 | Issue 11 | e48930



expression in the cocultured CD4+ T cells at a medium level,

addition of IFN-c drastically enhanced BMM to trigger

granzyme B expression in the cocultured CD4+ T cells. Addition

of IFN-c also enhanced the ability of BMM to trigger perforin+-

CD4+ T cell response (data not shown), but the result is not so

convincing likely due to the antibody’s limitation in recognizing

perforin in cocultured T cells. Furthermore, addition of IFN-c was

found to endow BMM with a comparable ability to A20-silenced

BMM in eliciting expression of granzyme B in CD8+ T cells, but

the overall granzme B level in the cocultured CD8+ T cells is much

lower than those in the cocultured CD4+ T cells (Fig.5B &
Fig. 2A). These results suggest that enhanced production of IFN-c
by A20-silenced BMM s may contribute to priming of the

cytotoxic T cells, especially to priming of cytotoxic CD4+ T cells.

To verify the effect of the cytokines, the coculture of A20-

silenced BMM s with T cells was added with anti-IFN-c or anti-

IL-12 to neutralize activity of these cytokines. Fig.6A showed that

neutralization of IFN-c, but not IL-12, dramatically reduced A20-

silenced BMM to stimulate production of granzyme in the

cocultured OT-II cells. Fig.6B showed that neutralization of

either cytokine IL-12 or IFN-c reduced A20-silenced BMM to

produce granzyme-expressing OT-I cells to a certain extent. As

individually neutralizing IL-12 or IFN-c does not reduce

expression of the cytotoxic molecule to the level in cocultured

OT-I with con-BMM s (data not shown) or OT-I culture alone

(Fig.6B), a synergistic effect of these cytokines may be required for

BMM to optimally stimulate a cytotoxic CD8+ T cell response, at

least on the cellular level. The results suggest that A20-silenced

BMM s provoke cytotoxic CD8+/CD4+ T cells likely through

different mechanisms. A20-silenced BMM s have a superior

ability to trigger a cytotoxic CD4+ T cell response largely by

enhancing the production of both autocrine and paracrine IFN-c.

To confirm the observed in vitro effect of IFN-c in immunized

mice, groups of C57BL/6 mice were immunized twice as the

indicated in Fig.7. All the BMM s were pulsed with OT-I/OT-II

prior to immunization. Antibody (250 ug/mouse) was adminis-

trated (i.p) one day before BMM immunization, or IFN-c (1 ug/

mouse) administered on the same day as the BMM immuniza-

tion and two days later. ICS analysis of the inguinal LNs showed

that immunization of control BMM s with the IFN-c co-

administration dramatically activated granzyme B expression in

CD4+ T cells, whereas, immunization of A20-silenced BMM

with the anti-IFN-c co-administration drastically reduced gran-

zyme B expression in these CD4+ T cells (Fig. 7A). In parallel, co-

Figure 2. A20-silenced M enhances expression of granzyme B in CD4+ T cells, CD8+T cells or NK cells. A, adenoviral-transduced
BMM s were cocultured with freshly isolated OT-I (upper) or OT-II cells (lower) at a raito of 1:10. 3–5 days later, the cocultured T cells were
harvested for analyzing expression of granzyme B by ICS. The data is shown as a representative of 3 independent experiments. (p,0.05, OT-I/shA20-
M vs. OT-I/con- M ; p,0.01, OT-II/shA20-M vs. OT-II/con-M ). B, C57BL/6 mice (5–6 mice/group) were immunized (i.p) twice with different
adenoviral-transduced M s or PBS. Lymphocytes were isolated from the inguinal LNs to analyze expression of granzyme B in NK cells, CD8+ or CD4+ T
cells by ICS. C. C57BL/6 mice were immunized (i.p) twice with OT-II-pulsed, different adenoviral-transduced BMM s or PBS. Splenocytes were
harvested and in vitro restimulated with OT-II peptide for 48 hrs. CD4+ T cells were isolated for analysis of granzyme B expression by qPCR. The data
is shown as a representation of three independent experiments. (* p,0.01, shA20- M -mice vs. con- M -mice).
doi:10.1371/journal.pone.0048930.g002
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administration of IFN-c was found to enhance control BMM to

stimulate CD8+ T cells, while co-injection of anti-IFN-c attenu-

ated A20-silenced BMM to stimulate CD8+ T cell response

(Fig.7B). Injection of IFN-c alone did not achieve significantly

cytotoxic T cell responses (Fig.7A&B). A similar but not identical

response pattern was obtained from analysis of splenic CD4+/

CD8+ T cells (Fig.S8). These results highlight that IFN-c is critical

for M to activate a cytotoxic CD4+ T cell response and that A20

controls M to activate cytotoxic T cells by limiting IFN-c
production.

A20-silenced M Elicits a Cytotoxic CD4+ T Cell Response
by Activation of IFN-c Signaling as Well as by an MHC-
class-II-restricted Mechanism

IFN-c exerts its effects on cells by interacting with a specific

receptor composed of two subunits, IFNGR1 and IFNGR2, and

thereby phosphorylating Jak/Stat1 signaling molecules [16]. To

demonstrate A20-silenced BMM s provoking potent cytotoxic T

cell response through activation of IFN-c signaling, A20-silenced

BMM s and control pulsed with OT-I/OT-II were used to

immunize IFNR12/2 mice and their wildtype littermates. ICS

analysis of the inguinal LNs showed that A20-silenced BMM s

had an equivalent or higher efficacy than the control BMM s to

induce CD4+/CD8+ cytotoxic T cell responses in IFNGR12/2

mice, but had a significantly lower efficacy compared with what

they did in wildtype mice (Fig. 8A). The result implies that IFN-c
receptor is required for A20-silenced BMM to elicit cytotoxic T

cell responses, but other signaling pathways also contribute some

to the function of A20-silenced BMM s. Furthermore, A20-

silenced or control BMM s were used to immunize Stat12/2 mice

in parallel with their wildtype littermates. As Stat12/2 mice are

under the 129S background, OVA protein instead of the peptides

was used to pulse the BMM for immunization. Again, ICS

showed that A20-silenced BMM had an equivalent or higher

efficacy than the control BMM to induce CD4+/CD8+ cytotoxic

T cell responses in Stat12/2 mice, but the efficacy is significantly

lower than what they did in wildtype mice (Fig. 8B), which

supports that IFN-c-triggered Stat1 signaling is required but not

the only for A20-silenced BMM to elicit cytotoxic T cell

responses. Indeed, Zimmermann et al reported that IFN-c directly

activates Stat2 signaling for the antiviral potency [17]. We also

Figure 3. A20-silenced M immunization enhances NK cell-, CD8+ T cell- and CD4+ T cell-mediated cytotoxicity. Splenocytes pooled
from 2–3 immunized mice were cultured overnight for NK-mediated cytotoxicity assay or 5–6 days in the presence of OT-I or OT-II peptide for T cells-
mediated cytotoxicity assay. The splenocytes cultured with OT-II peptide were selected using anti-CD4 beads prior to cytotoxicity assay. Cytotoxic
activities were analyzed by LDH release assay as described in Material and Methods. Experiments were repeated three times with similar results.
*p,0.05, Ad-shA20-M immunization vs. Ad-con-M immunization for specific killing.
doi:10.1371/journal.pone.0048930.g003
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analyzed splenocytes from the immunized IFNR2/2 mice and

Stat12/2 mice and obtained similar but not identical results (Fig.
S9A&B).

Ultimately, we tested whether A20-silenced BMM uses a

MHC class-II-restricted mechanism to induce cytotoxic T cell

response. BMM s were prepared from MHCII2/2 mice or

wildtype littermates. The OT-I/OT-II-pulsed, adenoviral-trans-

duced BMM s were used to immunize wildtype C57BL/6 mice as

described. ICS analysis of inguinal LNs shows that A20-silenced

MHCII2/2 M , equivalent to the control MHCII2/2 M ,

displayed a significantly lower efficacy than their wild-type

counterpart in the activation of cytotoxic CD4+ T cells. However,

A20-silenced MHCII2/2 M s barely lost their ability in activation

of cytotoxic CD8+ T cells when compared with A20-silenced wild-

type BMM s (Fig. 8C). A similar but not identical result was

obtained from ICS analysis of the immunized splenocytes (Fig.
S9C). These results support that A20-silenced BMM s activate a

cytotoxic CD4+ T cell response in an MHC class-II restricted

manner. A20 controls M s to activate cytotoxic T cell responses

largely by limiting IFN-c signaling.

Discussion

Cytotoxic CD4+ T cells were detected in both mouse and

human over 20 years ago. The early evidence claimed that distinct

from cytotoxic CD8+ T cells, CD4+ T cells use the FAS/FAS

ligand system for the cytolytic activity [18,19]. Recent studies

strongly supported that granule exocytosis of perforin/granzymes

represents the main pathway of cytotoxicity in both CD4+ and

CD8+ T cells [20,21,22,23,24,25]. In line with these studies, our

study suggested that granzyme B as well as possible perforin can be

induced in CD4+ T cells by A20-silenced M s and the resultant

CD4+ T cells rejected engrafted tumors in a perforin/granzyme-

dependent manner. Although freshly isolated CD4+ T cells from

A20-silenced M immunized mice display some nonspecific

cytotoxicity, the isolated CD4+ T cells after in vitro re-stimulation

use MHC class-II restricted mechanism to kill tumor cells. CD4+

Figure 4. A20-silenced M immunization induces enhanced immune protection. A & B. C57BL/6 mice (5–6 mice/group) were immunized
twice. The mice were s.c. injected with 56105 EG-7 (A) or M05 (B). Tumor growth was monitored on the indicated days. * p,0.05, Ad-shA20-M
immunization vs. Ad-con-M immunization. C. CD42/2 C57BL/6 or the wildtype littermates (5–6 mice/group) were immunized with OT-II-peptide-
pulsed, Ad-shA20-transduced BMM s twice followed by s.c. injection of 56105 M05 tumor cells. Tumor occurrence and growth were monitored on
the indicated days. **p,0.01, wild-type mice vs. CD42/2 mice. D. Transferred OT-II-specific immune pretection. In vitro primed OT-II T cells (56106)
were transplanted into naı̈ve RAG2/2C57BL/6 mice (5 mice/group) by retro-orbital injection following s.c injection of OVA-expressed B6SJ1003 tumor
cells (66105). The transplantation of OT-II T cells was repeated one week later. One group of mice were transplanted with CMA-treated, Ad-shA20-
transduced M -primed OT-II T cells. Tumor growth was monitored on the indicated days. *p,0.05, Ad-shA20-M -primed OT-II T cell transfer vs. Ad-
con-M -primed OT-II T cell transfer, or Ad-shA20-M -primed OT-II T cell transfer vs. Ad-shA20-M -primed OT-II T cell+ CMT transfer. All the
experiments were repeated with similar results.
doi:10.1371/journal.pone.0048930.g004
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T cell killing of infected or malignant cells in MHC-class II-

restricted manner has been reported in several studies [23].

Quezada et al. and Xie et al. recently further claimed that tumor-

reactive CD4+ T cells secrete a copious amount of IFN-c to

upregulate expression of MHC-class-II molecules on tumor cells

and make them the target of cytotoxic CD4+ T cells after transfer

into lymphopenic hosts [1,2]. Thus, our reported, A20-silenced

M induced, CD4+ T cells exhibit common functional features to

those in vivo or ex vivo differentiated cytotoxic CD4+ T cells. It is

worth mentioning here that throughout the whole study, we

persistently detected a higher level of perforin in either stimulated

or immunized T cells by A20-silenced M s and the expressing

pattern of perforin in these T cells resembled the expression of

Figure 5. IFN-c enhances MF to prime cytotoxic T cells response in vitro. BMM s were transduced with Ad-con and cocultured with CD4+

OT-II (A) or CD8+ OT-I (B) T cells in the presence of the different doses of IL-6, IL-12 or IFN-c (2.5 ug/ml or 10 ug/ml ) for 3–5 days. A20-silenced MF
priming OT-II or OT-I T cells was used as positive control. Expression of granzyme B in T cells was assessed by ICS assay. The data is a representative of
three independent experiments. p,0.01, OT-II/con-M +IFN-c(10 ug/ml) vs. OT-II/con-M or OT-I/con-M +IFN-c (10 ug/ml) vs. OT-I/con-M .
doi:10.1371/journal.pone.0048930.g005

Figure 6. Neutralization of IFN-c reduces A20-silenced MF to prime cytotoxic T cell response in vitro. BMM s were transduced with Ad-
shA20 and cocultured with CD4+ OT-II (A) or CD8+ OT-I (B) T cells in the presence of the different doses of anti-IL-6, anti-IL-12 or anti-IFN-c (2.5 ug/ml,
10 ug/ml, or 20 ug/ml ) for 3–5 days. Expression of granzyme B in T cells was assessed by ICS assay. The data is a representative of three independent
experiments. p,0.01, OT-II/AdshA20-M vs. OT-II/AdshA20-M +anti-IFN-c(20 ug/ml).
doi:10.1371/journal.pone.0048930.g006
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Figure 7. IFN-c impacts MF to trigger cytotoxic T cell responses in immunized mice. C57BL/6 mice (2–3 mice per group) were immunized
twice with 1, PBS plus IgG; 2, PBS plus IFN-c; 3, Ad-con-M ; 4, Ad-con-M plus IFN-c; 5, Ad-shA20-M plus IgG; or 6, Ad-shA20-M plus anti-IFN-c.
Two weeks after the 2nd immunization, inguinal lymph nodes were harvested to analyze expression of granzyme B in CD4+ T cells (A) (p,0.05, shA20-
M + anti-IFN-c immunization vs. shA20-M +IgG immunization; p,0.01, con-M + IFN-c immunization vs. con-M immunization) or CD8+ T cells (B)
(p,0.01, shA20-M + anti-IFN-c immunization vs. shA20-M +IgG immunization; p,0.05, con-M + IFN-c immunization vs. con-M immunization) by
ICS assay.
doi:10.1371/journal.pone.0048930.g007

Figure 8. A20-silenced M elicits a cytotoxic CD4+ T cell response via activation of IFN-c signaling and by an MHC-class-II-restricted
mechanism. A. Adenoviral-transduced BMM s were used to immunize IFNGR2/2 mice or the wildtype littermates (2–3 mice/group) twice. The
inguinal LNs were harvested for analyzing expression of granzyme B in CD4+ or CD8+ T cells by ICS. p,0.01 Ad-shA20-IFNGR KO mice vs. Ad-ShA20
WT mice. B. Adenoviral-transduced BMM s were used to immunize Stat12/2 mice or the wild-type littermates twice (2–3 mice/group). The LNs were
harvested for analyzing expression of granzyme B in CD4+ (p,0.05, Ad-shA20-Stat1 KO mice vs. Ad-shA20-WT mice) or CD8+ T cells by ICS. C. BMM s
were prepared from MHCII2/2 mice or the wild-type littermates. The adenoviral-transduced BMM s were used to immunize wild-type mice (2–3
mice/group) twice. The LNs were harvested for analyzing expression of granzyme B in CD4+ (p,0.01, Ad-shA20-MHC-II KO M immunization vs. Ad-
shA20-WT M immunization) or CD8+ T cells by ICS. Experiments were repeated with similar results.
doi:10.1371/journal.pone.0048930.g008
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granzyme B, but the results may not be convincing due to the

antibodies’ limitation.

Cytotoxic CD4+ T cell differentiation occurs under different

physiological or pathological conditions. Recent studies further

investigated cytotoxic CD4+ T cells by adoptive cellular transfer

(ACT) of antigen-specific CD4+ T cells or creation of antigen-

specific TCR-transgenic mice. Brown et al. explored that virus-

specific TCR transgenic CD4+ cells acquired perforin-mediated

cytolytic activity after adoptive transfer into influenza-infected

mice, and that the perforin-dependent cytolysis represents one of

the important mechanisms to protect mice from lethal influenza

infection [26]. Xie et al. and Quzezada et al. reported that naı̈ve

tumor-specific CD4+ T cells develop cytotoxic activity and

eradicated established melanoma after transfer into lymphopenic

hosts [1,2]. Corthay et al. unveiled that primary antitumor

immune response can be triggered by transgenic ID-specific

CD4+ T cells in immune deficient SCID mice [27]. All these

studies revealed a dominant type-I immune response environment

associated with the cytotoxic CD4+ T cell differentiation. For

example, EBV-specific CD4+ T cells represent one of the earliest

defined cytolytic CD4+ T lymphocytes. Paludan et al. reported

that EBV infection triggers CD4+ T cell to primarily differentiate

into IFN-c-producing Th1-type [28]. Xie et al and Quzezada et al

adoptively transferred tumor antigen-specific CD4+ T cells into

lymphopenic mice. Their studies also claimed that Th1 polariza-

tion is a default pathway in lymphopenic host [1,2]. Corthay et al

found that transgenic ID-specific CD4+ T cells infiltrate into

tumors and produce Th1 cytokines in mice with an immune

deficient background [27]. Recently, Muranski et al. discovered

that Th17-polarized tumor-reactive CD4+ T cells are capable of

rejecting established melanomas [29]. Their subsequent study

informed that Th17 cells are metastable and able to gradually

acquire a Th1-like phenotype secreting less IL-17A and more IFN-

c [30]. Our reported A20-silenced M s produce high levels of

proinflammatory cytokines and preferentially prime IFN-c/TNF-

a-producing T cells, which further supports type-I immune

environment promotes cytotoxic CD4+ T cell development.

Our study further defined that IFN-c is crucial for A20-silenced

M to induce cytotoxic CD4+ T cell differentiation. IFN-c impact

on cytotoxic CD4+ T cell responses has been implicated in many

published studies. Mumberg et al. reported that anti-IFN-c
treatment abolishes the CD4+ T cell-mediated rejection of the

tumor cells in SCID mice [31]. Corthay explored that CD4+ T

cells mediate tumor rejection by producing IFN-c to activate M -

associated antitumor activity [27]. Perez-diez et al. revealed that

CD4+ T cells obtain the maximal antitumor effect by partnering

with NK cells, an innate source of IFN-c [32]. Furthermore, both

Xie et al. and Quezada et al. defined that IFN-c facilitates

cytotoxic CD4+ T cells to reject malenoma by up-regulation of

MHC class-II expression on tumor cells [1,2]. In our present

study, IFN-c is found to directly promote expression of cytotoxic

molecules in CD4+ T cells, which is consistent with an early report

that activation of IFN signaling was required for expression of

perforin and granzyme in CD8+ T cells and NK cells in melanoma

patients [33]. Thus, IFN-c exhibits comprehensive functions

associated with cytotoxic CD4+ T cell response, while our present

result suggested a novel mechanism for IFN-c functioning CD4+ T

cell-mediated cytotoxicity. Our study further indicated that A20-

silenced M -induced cytotoxic CD4+ T cell differentiation is

MHC class-II restricted, which coincides with published studies

that tumor-reactive CD4+ T cells develop cytotoxic activity in an

MHC class-II-dependent manner [34] and priming of tumor-

reactive CD4+ T cells requires MHC class-II expression on

recipient or host cells, not on tumor cells [1,2,27]. Most

intriguingly, Corthay et al identified that tumor infiltrated

macrophages are an important component to re-activate tumor-

specific CD4+ T cells by presenting tumor-derived peptides on

their MHC-II molecules [27]. Our study further suggested that the

re-activation step also triggers CD4+ T to express and exocytose

cytotoxic molecules for directly killing MHC-II-restricted tumor

cells and MHC-II-non-restricted tumor cells in the close proxim-

ity.

Ex vivo generated, tumor-reactive, autologous CD4+ T cell

clones have successfully been used to treat melanoma patients

[35]. Our study may provide a platform for in vitro generating

antigen-specific cytotoxic CD4+ T cells for adoptive tumor

immunotherapy.

Methods

Mice
C57BL/6, H-2Kb/OT-I–TCR (OT-I) transgenic mice, H-

2Kb/OT-II–TCR (OT-II) transgenic mice, CD4 knockout

(CD42/2) mice, IFNGR1 knockout (INFGR2/2) mice, MHC

class-II knockout mice (MHCII2/2), and Stat1 knockout (Stat12/

2) mice were purchased from Jackson Laboratories or Taconic

Farms. All the mice were maintained in a mouse facility at USC

according to institutional guidelines. This study was approved by

the Institutional Animal Care and Use Committee of USC.

Peptides, Proteins and Cell Lines
H2-Kb–restricted OT-I and OT-II peptides were synthesized by

Genemed Synthesis. OVA protein was purchased from Sigma-

Aldrich. The B6SJ003 Burkitt lymphoma cell line (H2-Kb, MHC-

II-expressed) was kindly provided by Herbert C. Morse III at the

NIAID/NIH [36]. OVA-expressing B6S1003 was generated by

stable transfection of OVA gene. B16-OVA melanoma cell line

M05 (H2-Kb) was kindly provided by R. Dutton at the Trudeau

Institute [37]. Lymphoma cell EG-7 (H2-Kb) which engineeringly

expresses OVA was purchased from ATCC.

M Immunization and Tumor Models
Mouse BMM s were generated by culturing BM cells in the

presence of macrophage colony-stimulating factor (M-CSF). The

differentiated BMM s were incubated with Ad-shA20 or Ad-con

at a multiplicity of infection (MOI) of 500, which allows ,60% of

M s to be transduced as demonstrated by Ad-GFP transduction of

M in parallel (data not shown). The transduced M s were pulsed

with H2-Kb-restricted OT-I or OT-II peptide, followed by ex vivo

maturation with LPS (100 ng/ml). The M s (0.5–16106) were

then i.p. injected into C57BL/6 mice twice at a one-week interval.

For tumor challenge, two weeks after the 2nd immunization, the

mice received s.c. injection of 56105 EG-7 or M05. Tumor onset

and growth were monitored weekly.

In vitro T Cell Priming
T cells were purified from OT-I or OT-II transgenic mice using

the MACS CD8+ or CD4+ T cell isolation kits (Miltenyi Biotec).

56104 purified T cells and 56103 adenoviral-transduced, OT-I or

OT-II peptide-pulsed BMM were cocultured in RPMI 1640

medium supplemented with 10 U/ml of IL-2. In some experi-

ments, anti-IFN-c or anti-IL-12 was added into the co-cultures at

the final concentration of 2.5 ug/ml, 10 ug/ml, or 20 ug/ml, or

IFN-c, IL-12 or IL-6 was added at the final concentration of

2.5 ug/ml or 10 ug/ml. After 3–5 days of coculture, T cells were

harvested to analyze the indicated cytokines by ICS assay.
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Adoptively Transfer Assay
The isolated OT-II cells were cocultured with adenoviral-

transduced, OT-II peptide-pulsed BMM s for 3–5 days at M :T

ratio of 1:10. The cocultured OT-II cells (56106) were harvested

and transplanted into naı̈ve RAG2/2C57BL/6 mice by retro-

orbital injection followed by tumor challenge. The transplantation

of OT-II T cells was repeated one week later.

Flow Cytometric Analysis
For ICS assay, lymphocytes were harvested from draining

lymph nodes or spleens of immunized mice and cultured with

20 ug/ml of OT-I or OT-II peptide for 6–10 hours at 37uC in the

presence of GolgiPlug (BD Biosciences/Pharmingen). After surface

staining with anti-CD8 or anti-CD4, cells were permeabilized and

stained for intracellular cytokines, as previously described [38,39].

All the antibodies and matched isotype controls were purchased

from BD PharMingen or eBioscience. Stained cells were analyzed

on a FACSaria (Becton Dickinson) flow cytometer and FloJo

software.

CTL and NK Assays
Different numbers of effector cells (56105, 2.56105 or

1.256105) were cocultured with a certain number (5000 cells) of

Yac-1 (for NK assay), EG-7 (for CD8+ T cell assay), or OVA-

expressed B6SJ1003 (for CD4+ T cell assay) for 5 hrs. EL-4 tumor

cell line was used as a non-specific control. Some of the cocultures

were added with 3 nM CMA or 1 mM EGTA to inhibit activity of

perforin and granzyme. The supernatants were harvested and

analyzed by LDH release assay (Roche Diagnostics).

Statistical Analysis
We used the Student’s t-test. A 95% confidence limit was used

to assess results for statistical significance, defined as P,0.05.

Results are typically presented as means 6 standard error.

Supporting Information

Figure S1 Ad-shA20 reduces expression of A20 mRNA in
transduced BMM . BMM s were transduced with Ad-shA20,

Ad-con, or PBS. 24 hr later, the M s were stimulated with

100 ng/ml LPS or none for overnight. A, relative expression of

A20 mRNA in the transduced BMM s was evaluated by qRT-

PCR. * p,0.05, Ad-shA20- M vs. Ad-con-M . B, A20 protein

expression in the transduced BMM s was evaluated by ICS. The

anti-A20 was purchased from Santa Cruz. Experiments were

repeated twice with similar results.

(TIF)

Figure S2 Ad-shA20 barely enhances apoptosis of the
transduced BMM s. BMM s were transduced with Ad-shA20

or Ad-con. 24 hr later, the M s were stimulated with PBS, anti-

CD40 (10 ug/ml), or LPS (100 ng/ml) for overnight. The treated

BMM s were analyzed with Annexin V-APC Apoptosis Detection

Kit (BD Bioscience). Experiments were repeated with similar

results.

(TIF)

Figure S3 A20-silenced M promotes proinflammatory
status of the cocultured OT-I T cells. The adenoviral-

transduced M s were cocultured with freshly isolated OT-I T cells

in the presence of OT-I peptide at the ratio of 1 to 10. 3–5 days

later, the OT-I T cells were harvested and analyzed for expression

of surface markers CD25, CD69, CD44, and CD62L by cell

surface staining and for production of proinflammatory cytokines

IFN-c and TNF-a by ICS. Experiments were repeated with

similar results.

(TIF)

Figure S4 A20-silenced M promotes proinflammatory
status of the cocultured OT-II T cells. The adenoviral-trans-

duced M s were cocultured with freshly isolated OT-II T cells in the

presence of OT-II peptide at the ratio of 1 to 10. 3–5 days later, the

OT-II T cells were harvested and analyzed for expression of surface

markers CD25 and CD69 by cell surface staining, and for production of

inflammatory cytokines IFN-c, TNF-a and IL-4, as well as transcription

factor FoxP3 by ICS. Experiments were repeated with similar results.

(TIF)

Figure S5 A20-silenced M enhances expression of
perforin in CD4+ T cells, CD8+T cells or NK cells. A,
adenoviral-transduced M s were cocultured with freshly isolated

OT-I (upper) or OT-II cells (lower) at a raito of 1:10. 3–5 days

later, the cocultured T cells were harvested for analyzing

expression of proferin by ICS. The data is shown as a

representative of 3 independent experiments. B, C57BL/6 mice

(5–6 mice/group) were immunized (i.p) twice with different

adenoviral-transduced M s or PBS. Lymphocytes were isolated

from the inguinal LNs to analyze expression of proferin in NK

cells, CD8+ or CD4+ T cells by ICS. The data is shown as a

representation of three independent experiments.

(TIF)

Figure S6 pshuttle-shA20-transfected M s prime cyto-
toxic OT-II T cell response in vitro. BMM s were neuclo-

fected with pshuttle-shGFP or pshuttle-shA20. 24 hrs later, the

transfected BMM s were cocultured with freshly isolated OT-II T

cells in the presence of OT-II peptide for 3–5 days. OT-II T cells

were harvested for analyzing expression of granzyme B and perforin

by ICS. Experiment was repeated once with similar results.

(TIF)

Figure S7 Z-AAD-CMK inhibited CTL activity mediated
by A20-silenced M -immunzed CD4+ T cells. OT-II (not

OT-I)-pulsed, differently transduced BMM s were used to

immunize C57BL/6 mice and splenocytes were harvested and

restimulated with OT-II peptide for 5–6 days. Various ratios of the

splenocytes and target cells (OVA-expressing B6SJ003) were

cocultured with or without 75 uM of Z-AAD-CMK for 6 hrs.

Cytotoxic activities were analyzed by LDH release assay as

described in Material and Methods. Experiments were repeated

once. *p,0.05, Ad-shA20-M immunization vs. Ad-shA20-M

immunization plus the Z-AAD-CMK treatment.

(TIF)

Figure S8 IFN-c impacts MF to trigger cytotoxic T cell
responses in immunized mice. C57BL/6 mice were

immunized twice with 1, PBS plus IgG; 2, PBS plus IFN-c; 3,

Ad-con-M ; 4, Ad-con-M plus IFN-c; 5, Ad-shA20-M plus

IgG; or 6, Ad-shA20-M plus anti-IFN-c. Antibody (250 ug/

mouse) was i.p administrated one day before M immunization,

and IFN-c (1 ug/mouse) was given on the same day as the M

immunization and two days later. Two weeks after the 2nd

immunization, splenocytes were harvested for intracelluar gran-

zyme staining of CD4 T cells (A) or CD8 T cells (B).

(TIF)

Figure S9 A20-silenced M elicits a cytotoxic CD4+ T
cell response via activation of IFN-c signaling and by an
MHC-class-II-restricted mechanism. A. Adenoviral-trans-

duced BMM s were used to immunize IFNGR2/2 mice or the

wild-type littermates twice. Splenocytes were harvested for
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analyzing expression of granzyme B in CD4+ or CD8+ T cells by

ICS. B. Adenoviral-transduced BMM s were used to immunize

Stat12/2 mice or the wild-type littermates twice. Splenocytes were

harvested for analyzing expression of granzyme B in CD4+ or CD8+

T cells by ICS. C. BMM s were prepared from MHCII2/2 mice or

wild-type littermates. The adenoviral-transduced BMM s were

used to immunize wild-type mice twice. Splenocytes were harvested

for analyzing expression of granzyme B in CD4+ or CD8+ T cells by

ICS. Experiments were repeated with similar results.

(TIF)
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