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Abstract

Background: The rapidly expanding field of microbiome studies offers investigators a large choice of methods for each step
in the process of determining the microorganisms in a sample. The human cervicovaginal microbiome affects female
reproductive health, susceptibility to and natural history of many sexually transmitted infections, including human
papillomavirus (HPV). At present, long-term behavior of the cervical microbiome in early sexual life is poorly understood.

Methods: The V6 and V6–V9 regions of the 16S ribosomal RNA gene were amplified from DNA isolated from exfoliated
cervical cells. Specimens from 10 women participating in the Natural History Study of HPV in Guanacaste, Costa Rica were
sampled successively over a period of 5–7 years. We sequenced amplicons using 3 different platforms (Sanger, Roche 454,
and Illumina HiSeq 2000) and analyzed sequences using pipelines based on 3 different classification algorithms (usearch,
RDP Classifier, and pplacer).

Results: Usearch and pplacer provided consistent microbiome classifications for all sequencing methods, whereas RDP
Classifier deviated significantly when characterizing Illumina reads. Comparing across sequencing platforms indicated 7%–
41% of the reads were reclassified, while comparing across software pipelines reclassified up to 32% of the reads. Variability
in classification was shown not to be due to a difference in read lengths. Six cervical microbiome community types were
observed and are characterized by a predominance of either G. vaginalis or Lactobacillus spp. Over the 5–7 year period,
subjects displayed fluctuation between community types. A PERMANOVA analysis on pairwise Kantorovich-Rubinstein
distances between the microbiota of all samples yielded an F-test ratio of 2.86 (p,0.01), indicating a significant difference
comparing within and between subjects’ microbiota.

Conclusions: Amplification and sequencing methods affected the characterization of the microbiome more than
classification algorithms. Pplacer and usearch performed consistently with all sequencing methods. The analyses identified 6
community types consistent with those previously reported. The long-term behavior of the cervical microbiome indicated
that fluctuations were subject dependent.
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Introduction

The cervicovaginal microbiome plays an important role in

female reproductive health, affecting rates of preterm-birth and

neonate mortality; prevalence, susceptibility to and transmissibility

of STD’s (including HIV); and other important clinical conditions

[1,2,3]. Moreover, recent studies indicate bacterial vaginosis,

cervical inflammation and vaginal pH play a role in the

susceptibility to and natural history of cervical HPV infection

and the development of cervical intraepithelial neoplasia [4,5,6]. It

has been suggested [7] that a possible route of bacterial

colonization of intrauterine infections is through the cervix, which

is typically considered a physical barrier aiding the maintenance of

uterine sterility. Recent findings indicate a complex cervicovaginal

microbe ecology that can be broadly characterized as a set of 5

categorical community types [8,9]. Furthermore, differences in the

distribution of these microbiome community types have been

observed amongst women of different races [8,10].
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Next-Gen Sequencing (NGS) allows large numbers of molecules

from single or multiple samples to be sequenced in a single run.

This dramatically expands the horizons of microbiology, as it

represents a departure from dependency on culture-based

methods and low-throughput cloning and sequencing for identi-

fying microorganisms. Two NGS technologies currently dominate

the field. In one run, the Roche 454 GS-FLX system (hereafter

referred to as ‘‘454’’) can produce up to 1 million high-quality

reads, the majority of which are ,500 bp in length. The Illumina

HiSeq2000 platform (hereafter referred to as ‘‘Illumina’’) can

produce up to approximately 450 million reads of high-quality

sequence, with read lengths up to 120 bp. The maximum read

length and number of molecules sequenced continue to grow as

these and other technologies evolve [11].

The advent of NGS has allowed characterization of microbial

life inhabiting specific ecological niches on an unprecedented scale

[12]. This is enabled by amplification and parallel sequencing of

fragments of genes that are highly conserved amongst microor-

ganisms. The most commonly targeted gene, to date, is the 16S

ribosomal RNA subunit gene, present in all known bacteria and

Achaea. Other highly conserved genes with potential for

characterizing communities of organisms in a sample include

RecA and RpoB [13]. Highly conserved regions of the 16S rRNA

gene, which facilitate PCR amplification, flank highly variable

regions (V1–V9) that allow phylogenetic and taxonomic identifi-

cation. Due to the length restrictions of NGS, any individual read

only contains the sequence of a 16S rRNA gene fragment, thus

choices as to which region will be targeted must be made during

experimental design.

A caveat to performing taxonomic classification on short

fragments of DNA arises from the variable taxonomic level to

which any given sequence may be assigned. Fragments of the same

size, from the same relative position in a conserved gene, but from

different organisms, often contain different amounts of sequence

variability that influence the classification to different taxonomic

levels. For example, one fragment may contain only enough

information to be identified to its family, whereas another

otherwise similar fragment from a different organism may be

identifiable below the species level. The latter occurs when the

region in question is more diverse amongst closely related

members of its genus. Each hypervariable region of the 16S

genome spans approximately 100 bp, thus longer read lengths

would be expected to provide more information for discriminating

amongst the lower taxonomic levels by allowing several hyper-

variable regions to be sequenced at once [14].

A further caveat arises from having to accurately assign large

numbers of reads to their originating organisms within a

reasonable amount of computational time. There is no algorithm

that can do this with complete accuracy, since this depends to a

large extent on the quality of multiple sequence alignments, a

notoriously hard problem. Numerous software algorithms exist for

assigning bacterial taxa to NGS reads, however, comparisons of

the performance of the most widely used and/or promising of

these tools for reads generated by different sequencing technolo-

gies are scarce. Furthermore, the corpus of characterized 16S

sequences isolated from existing microbes is incomplete, albeit

rapidly growing [15].

Here, we provide comparisons of the bacterial community

compositions reported by three different sequencing technologies

in combination with three different software analysis pipelines

operating on amplicons of the V6 (143 bp) and V6–V9 (524 bp)

regions of the 16S rRNA subunit gene (see Figure 1 for primer

design), using a fixed database constructed for the cervicovaginal

microbiome. Samples were obtained from a large, population-

based cohort in Guanacaste, Costa Rica designed to study the

natural history of human papillomavirus (HPV) and cervical

neoplasia [16,17]. In addition to the assessment of methodological

variables, we performed an evaluation of the cervical microbiome

and its stability in a subset of women sampled approximately

annually over a 5–7 year period.

Results

Community Compositions by different Methods
Nine methodological pipelines for microbiome characterization

were compared; a flowchart of the experiment is shown in

Figure 2. Clinical samples were initially analyzed using Sanger

sequencing of a mean of 47 (SD = 10) clonal isolates of bacterial

16S V6–V9 amplicons (the ‘‘universal’’ primer sequences can be

found in Fig. 1A). This provided a tractable set of sequences

obtained from readily available molecular biology methods,

against which to compare massive amounts of sequencing data

from emerging, complicated NGS protocols. To date, 454

sequencing has been the most frequently used platform for

microbiome analyses, primarily due to its longer read lengths.

However, its high cost per run is a limiting factor for many

laboratories. We sequenced a mean of 4380 (SD = 3650) V6–V9

amplicons (see Fig. 1A for primers) for each clinical sample using

the 454 system. Illumina platforms provide shorter reads, but

deeper coverage and at significantly lower cost. Using Illumina,

we obtained a mean of 29400 (SD = 13340) reads for each V6

amplicon (see Fig.1B for primers).

Three primary software tools were chosen as a basis for

sequence analyses; assigning each read to its originating genus or

species of microbe. The tools were selected based on their

popularity as inferred from studies presented at the Human

Microbiome Research Conference (St. Louis, MI, USA, in August

of 2010), usearch [18] and RDP classifier [14], and an emerging

software package, pplacer [19], that employs a statistically

rigorous, phylogenetically oriented approach that may provide

important analytical advantages. Numerous manipulations be-

tween data and database formats were required to allow precise

comparison of sequences from the 3 molecular methods, classified

with the 3 software pipelines. These required additional scripts,

developed in-house at Einstein (see Methods section).

The bacterial community composition of every sample deter-

mined by each of the methodological configurations is shown in 9

similarly organized panels of heat-maps (Figure 3). The propor-

tional amount of each genus detected is represented as a colored

cell, with red indicating 100% abundance within a sample and

black indicating #0.1%. A cladogram to the left of the heat-maps

was adapted from a maximum likelihood phylogenetic tree based

on the complete 16S genes of the detected genera and displays the

approximate evolutionary relationship between each bacterial

genus detected within the set of samples. Methodologies were

evaluated at fixed taxonomic levels, as opposed to employing a

floating ‘‘operational taxonomic unit’’ (OTU) classification, to

facilitate direct comparison and visualization. The genus level was

chosen since this is the lowest common taxonomic assignment level

amongst the classification software we employed (i.e., RDP

classifier cannot classify below the genus level). Clinical samples

in Fig. 3 are arranged chronologically from left to right for each

subject. The figure shows that two genera dominate the cervical

microbiota of these subjects across all methodologies: Lactobacillus

and Gardnerella, in agreement with previous studies of female

reproductive tract microbiota [8,9,20,21]. In addition, depending

on the sequencing and classification method, relatively high

proportions of Prevotella, Megasphaera, BVAB1/Clostridiales and

Characterization of the Cervical Microbiome

PLoS ONE | www.plosone.org 2 July 2012 | Volume 7 | Issue 7 | e40425



Howardella were observed (Fig. 3). It should be noted that for some

sequences in the 16S database, the genus to which the isolates

belonged had not been characterized. Nevertheless, there existed

reads that were confidently assigned identities from these

sequences at the genus level or lower. Often the species name

was taken as the genus-level identifier, for example, BVAB1, 2 or 3

are species belonging to the Clostridiales order, where neither

family- nor genus-level information was available. Usearch and

pplacer classified a proportion of reads as either BVAB1, 2 or 3 and

these were thus assigned both as the species and genus name, in

the absence of an appropriate genus-level identifier. However,

RDP Classifier was unable to distinguish between these three

species and could not assign them to separate genus-level

identifiers (note their absence in the RDP Classifier panels, middle

panels in Fig. 3), so they were classified as originating from a genus

within the Clostridiales order (note their presence here for the RDP

Classifier panels in Fig. 3). In all such cases, the named consensus

lineages are annotated (with an *) to indicate that the order or

species name corresponds to an unknown genus. A forthcoming

release of the vaginal microbiome reference package will offer

improved classification of the BVAB species (Frederick Matsen,

personal communication).

To quantitate the changes that resulted from either the same

data being analyzed by different software or data from different

sequencing platforms analyzed by the same software, we produced

boxplots of the proportional reclassification that occurs between

methods (Fig. 4A). To assess which of the genera showed the

largest variability between methods, we show the distributions of

the total proportions of reads assigned to each genus by each

methodological configuration (Fig. 4B).

Transitions between classification algorithms for each sequenc-

ing platform (Fig. 4A, rows 1–9) showed lower median

reclassification of reads than the transitions between sequencing

platforms for each classification algorithm (Fig. 4A, rows 10–18).

Illumina sequencing in combination with the RDP algorithm

produced the most strikingly different community compositions

compared with the other methodological configurations –32%–

41% of reads were reclassified (Fig. 3, top-center panel and

Fig. 4A, rows 1, 3, 13 & 14). The RDP Classifier in conjunction

with 454 or Sanger sequencing produced classifications consistent

with those of the other software methods (Fig. 4A, rows 4, 6, 7 &

9), but was least consistent when compared across sequencing

methods (Fig. 4A, rows 13, 14 & 15 vs. 10, 11, 12, 16, 17 & 18).

Pplacer and usearch gave consistent classifications for each

pairwise comparison between sequencing methods (Fig. 4A, rows

10 vs. 16, 11 vs. 17 & 12 vs. 18), with the Sanger to Illumina

comparisons showing the lowest median reclassification (Fig. 4A,

rows 11 & 17).

The large reclassification that occurred when using RDP

Classifier to catalog Illumina reads accompanied a large increase

in diversity, as measured by the Shannon diversity index (Fig. 5).

All other methodological configurations produced similar median

diversities, suggesting that the anomalously large value produced

by RDP Classifier with Illumina reads occurred as a result of its

purported inaccuracy for sequences ,250 bp in length [22,23].

Furthermore, although only small numbers of reads were

generated in the cloning and Sanger sequencing approach, it

nevertheless appeared capable of capturing most of the microbial

diversity present in the samples. The implication of this for NGS is

that it should be possible to sequence many thousands of cervical

samples in a single run, without falling below the minimum

necessary depth to capture the majority of the diversity.

Variation in the proportion of reads assigned to each genus

across all 9 methodologies can be seen in Figure 4B. The largest

overall uncertainty occurred for Lactobacillus and Gardnerella, the

two most abundant genera. Megasphaera, although a small

component of the overall microbiome, shows a large degree of

variation relative to its abundance. Prevotella, by contrast, shows a

similar abundance but less than half the variability of Megasphaera.

Most of the variability in BVAB1, 2 and Clostridiales results from

missing information in the database introducing classification

discrepancies between RDP Classifier vs. usearch and pplacer, as

discussed earlier.

Figure 1. Primer design. Panel A shows the primer design for amplifying the V6–V9 16S rRNA gene region analyzed by cloning and Sanger
sequencing and 454 pyrosequencing. Regular (non-encoded) 10 bp barcodes were added to the 59end of the forward PCR primer. Panel B shows the
primers used to amplify the 16S V6 region, analyzed by Illumina sequencing. Hamming barcodes (8 bp in length) [32] and padding sequences were
introduced to the 59 ends of the forward and reverse PCR primers, different for each strand, so that reads from each strand could be distinguished.
Note: the reverse primer sequences shown are the actual oligonucleotide sequences used in PCR amplification (i.e., the reverse complement of the
59–39 target DNA sequence).
doi:10.1371/journal.pone.0040425.g001
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Figure 2. Flowchart of sequencing technologies, methodological pipelines and associated software. Sequencing files in FASTQ or
FASTA, and QUAL formats underwent the following steps shown in the indicated panels: (panel 1) Quality filtering, where short and low quality reads
were discarded and chimeric sequences were detected and removed; (panel 2) Read demultiplexing was performed where reads were assigned
names according to the clinical sample from which they originated based on each unique barcode; (panel 3) Read identification was performed using
(subpanel A) usearch, (subpanel B) RDP Classifier, and (subpanel C) pplacer. For usearch and pplacer, classification involved multiple processing steps
and format modifications (panel 4) to allow for direct comparison between methodological configurations. The data standardizing scripts yielded
tables containing the counts for each detected genus (rows) and clinical sample (columns). Some taxa appeared multiple times in the initial tables,
therefore the counts for these taxa were pooled. Filtering was also applied to discard any counts that constituted ,1% of the total sample
composition. Taxa that were empty of counts across all samples after this low-pass filtering were discarded. Finally, to allow direct comparison, all
nine classification-tables were formatted such that the numbers of rows and columns in each table were equal and contained a union of all taxa and
samples.
doi:10.1371/journal.pone.0040425.g002
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Truncating 454 Reads does not alter the Assigned
Microbiome

Sequence data from the Roche 454, spanning the V6–V9

regions, was truncated to cover just the V6 region (equivalent to

the region determined by Illumina sequencing) and truncated

reads were phylogenetically assigned by pplacer. The normalized

Kantorovich-Rubinstein (KR) distances (Zp) between the place-

ment distributions of truncated 454 reads, the full-length 454

reads, and the Illumina reads (Table 1) with (weighting parameter)

p = 1 [24] were calculated. Classifications using truncated and full-

length 454 reads were nearly identical (Zp = 1.861024), whereas

those between truncated or full-length 454 reads and Illumina

reads had distances two orders of magnitude greater

(Zp = 1.661022). This result supports the notion that PCR bias

due to differential primer specificity is likely to be responsible for

classification differences between sequencing methods, rather than

a difference in information content between longer and shorter

reads.

Community Types and Long-term Stability
To delineate community types, a combination of squash

clustering [25] and scrutiny of the species-level sample classifica-

tions were performed (Fig. 6). Distinct microbial community types

were observed amongst the samples, consistent with existing

reports on vaginal microbiota [8]. Since pplacer provided high

maximum-likelihood (.0.9) classifications of Illumina and 454

sequencing data and is compatible with a variety of useful analysis

algorithms through guppy, we used the results from this software

pipeline to derive categorical community types. Sequencing reads

from both NGS methods organized into 6 distinct clusters (Fig. 6).

Those named I–IV are analogous to the community types defined

by Ravel et al. [8]. We did not observe their type V (dominated by

L. jensenii), whereas our data indicated the presence of 2 additional

Figure 3. Community compositions of cervical samples at the genus level as determined by 9 different methodological
configurations. Heat-maps show the log10 (proportional abundance) of each bacterial genus detected in each clinical sample for each
methodological combination. In the 363 grid of heat-maps, the sequencing method is indicated at the far left and the classification software is
indicated at the top of the panels. The cladograms to the left of the genus names indicate the approximate evolutionary relationships between
genera.
doi:10.1371/journal.pone.0040425.g003

Figure 4. Microbiome reclassification by different methodological configurations. Panel A shows a boxplot of the percentage of total
reads reclassified as different genera for all samples, for each pairwise comparison between methodologies. Outliers beyond the interquartile range
are shown as points. Panel B shows the percentage of total classified reads assigned to each genus. The distributions reflected by the boxplots
indicate the variability of the classification percentages between methodological configurations.
doi:10.1371/journal.pone.0040425.g004
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community types, labeled VI and VII. Type VI is characterized by

the almost exclusive presence of G. vaginalis, whereas type VII has

high, approximately even proportions of G.vaginalis and Lactobacil-

lus spp. along with low abundances of the species found in type IV.

In the Illumina squash clustering (Fig. 6A), we see an additional

cluster that we designated IIIb. Although this group clustered

separately from III, it was also characterized by a predominance of

L. iners.

Four of the community types detected in this study were

similarly derived by Ravel et al [8]. In fact, the current analysis

observed similar proportions of these community microbiome

types across the combined sample set obtained from the

population of Costa Rican women compared to those reported

in the Ravel et al. Hispanic population [8] (Fig. 7A–B).

Examining the stability of the cervical microbiome over

relatively long periods of time, (5–7 years), we observed that the

categorical cervical microbiome composition appeared capable of

both relative stability over years and fluctuations between a small

number of defined community types (Fig. 7C–D). The 454

sequencing (Fig. 7C) and Illumina sequencing (Fig. 7D) experi-

ments resulted in different community type assignments for some

samples.

Figure S1 shows plots in the first three principal components

(PCs) of species level classifications performed by the pplacer

pipeline on 454 (Fig. S1B, D) and Illumina data (Fig. S1A, C). We

observed fluctuation between approximately 3 clusters (Fig. S1B,

D) and no consistent time-dependent trends across the 5–7 year

study period for these 10 women. Points from the same

community types were observed to cluster mostly together within

the first three PCs (Fig. S1B, D). Movement between restricted

regions of composition space indicated long-term stability of what

may be thought of as stationary points in the cervical microbiome

dynamical system. Figures S2A and S2B show correlation of the

first two principal components with the original dimensions

(species) for the 454 and Illumina data, respectively, as analyzed

by pplacer. The PCA heat-maps (Fig. S2A–B) showed inverse

relationships between L. iners, L. crispatus and G. vaginalis. L. iners

and L. crispatus were thus somewhat mutually exclusive, as were

both with G. vaginalis. Edge principal component analysis (Edge-

PCA - [25]) confirmed that the overwhelmingly dominant

community transition (explaining .80% of variance in the data)

is mostly accounted for by a shift between L. iners and G. vaginalis

(Fig. S3).

We compared inter- and intra-subject microbiome variability

using PERMANOVA [26], a non-parametric multivariate analysis

of variance test that employs a permutation procedure to test the

null hypothesis that there is no difference between and within

subjects. A pairwise distance matrix of KR values (with KR

weighting parameter, p = 1) between the microbiota of all samples

was generated. When grouping by subject (i.e., subject was the

factor), the calculated PERMANOVA F-test was 2.86 (p = 0.018),

indicating a significant difference of microbiota within subjects

compared to between subjects. Additionally, exploratory analyses

of associations of cervicovaginal microbiome with HPV status

(positive or negative by PCR), vaginal pH and time since last

menstrual period (LMP) were performed using GEE logistic

regression models with an autoregressive correlation structure to

account for repeated sampling. For the Illumina-generated data,

we detected an unadjusted association between cervical micro-

biome dichotomized according to squash clustering (Fig. 6–

following the deepest bifurcation of the clustering trees) and HPV

status (effect size = 21.421, p,0.005). When adjusting for all 3

variables in the model, no statistically significant associations were

found for data generated by either sequencing platform and the

relatively small sample number limited our statistical power.

Discussion

We undertook a comparison of the classifications of cervical

microbiota produced by 3 different sequencing methods in

combination with 3 analysis pipelines based on distinctly different

classification algorithms. In addition, sampling subjects over the

course of 5–7 years allowed us to assess long-term stability of the

cervical microbiome in the early-sexual life of women. Our results

indicate that the BLAST-like usearch algorithm and the maxi-

mum-likelihood phylogenetic placement algorithm, pplacer, in

Figure 5. A comparison of the Shannon diversity indices for
each methodology. The Shannon diversity index (H’) was calculated
based on the genus-level classification tables produced by each
combination of sequencing method and software pipeline. The
boxplots show the distribution of H’ values across all samples. For a
given sequencing method, the Shannon diversity index appears
consistent across classification software, except for the Illumina and
RDP Classifier combination, where a large increase in apparent diversity
occurs.
doi:10.1371/journal.pone.0040425.g005

Table 1. Comparing the overall Kantorovich-Rubinstein
distance between truncated and full-length sequencing data.

Sample 1 Sample 2 KR-Distance

454 Truncated 454 1.861024

454 Illumina 1.661022

Illumina Truncated 454 1.561022

Quality controlled 454 sequencing data longer than 120 bp was truncated and
processed using the pplacer pipeline (Fig. 2). Merged placements from the
truncated data for all 60 samples were compared to the same full-length (454
and Illumina) data by calculating the tree-length normalized KR distances
between all pair-wise combinations of the three data sets.
doi:10.1371/journal.pone.0040425.t001
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combination with the guppy classifier, generated similar classifi-

cations for Roche 454 and Illumina HiSeq2000 reads. The Naı̈ve

Bayes RDP classifier produced similar results to those of usearch

and pplacer on the longer 454 reads, but differed significantly

when classifying the shorter Illumina reads [23].

Squash clustering and examination of species associated with

the clusters demonstrated the presence of distinct bacterial

community types within the cervix (Fig. 6). Their broad agreement

with those found in the vaginal microbiome literature [8,21]

indicates that despite reported differences between the communi-

ties present at different sites within the reproductive tracts of

individual women [9], overall compositions from different women,

different analyses and different laboratories generate remarkably

similar overall patterns. In addition, it further validates the

approach of characterizing cervicovaginal bacterial communities

into a small number of discrete states, or ‘‘community types’’.

Comparing the phylogenetic read placement of trimmed 454

data (V6) to full-length 454 data (V6–V9) produced very similar

placements (Table 1) and suggests that discrepancies between the

Illumina and 454 data are the result of differential PCR

Figure 6. Categorical community types by squash clustering and prevalence of species. Reads from the 454 (panel A) and Illuimna (panel
B) platforms were classified at the species level by pplacer and guppy, and clustered using squash clustering [25]. The figure shows the distributions
of reads between species for each clinical sample as heat-maps, on a logarithmic scale, arranged according to the squash clustering. The tree
produced by the clustering algorithm is shown at the top of the heat-map, with community type designations appearing below; the type names are
in accord with those proposed by Ravel et al. [8].
doi:10.1371/journal.pone.0040425.g006

Figure 7. Time courses and distribution of microbiome community types. Panels A and B show the proportions of samples assigned to each
community type using 454 and Illumina, respectively, for the whole study population (10 women) across all time points (561). Experimental
replicates are excluded. Community types III and IV constitute over half of the cervical microbiome from these women. Panels C and D show the
microbiome community types over time, as characterized by 454 and Illumina, respectively, when using pplacer and guppy to classify and cluster the
reads.
doi:10.1371/journal.pone.0040425.g007
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amplification bias between the two primer sets. Nevertheless,

based on the high average level of reproducibility observed (Fig.

S4), it would seem that the degree of PCR bias is consistent for a

given set of PCR primers and target region. This result becomes

important for future studies of any microbial environment using

16S rRNA and massively parallel short-read sequencing. It further

suggests that PCR-independent library preparation, where possi-

ble, should reduce bias and improve accuracy. In addition,

obtaining a complete and accurate representation of microbiome

composition may require assaying multiple genes or gene regions.

The methodological comparisons and the processes involved in

producing each of the sets of data served to illuminate pros and

cons of the different methodologies for different sets of circum-

stances. Cloning and Sanger sequencing yielded a tractable set of

data and was sufficient for low-depth analysis of a microbiome,

which in many cases would serve to accurately detect the

abundances of the predominant microbes (see Figs. 3 and 4). In

fact, a rarefaction analysis indicated that somewhere between 100

and 500 random reads should be sufficient to accurately

characterize the cervicovaginal microbiome diversity (see Fig.

S5). This fact should guide future studies to reduce wasted depth of

sequencing. Nevertheless, cloning and sequencing suffers from

being labor- and resource-intensive and a cost-per base that is

several orders of magnitude higher than for the NGS platforms. In

general, the Illumina platform provides a greater number of reads,

similar ability to distinguish between bacteria (often down to the

species level) and for a fraction of the cost of 454 pyrosequencing.

The usearch pipeline is useful for searching against a custom

database, as a simple unaligned FASTA format file of reference

sequences is all that is required. With appropriate parameters it

appears that the classifications produced are very similar to those

produced by pplacer for both read lengths. A drawback of usearch

potentially occurs when two sequences in the database match a

read equally well; since by default, it yields only the first best

match. Reporting all best matches by manipulating the parameters

and using some additional post-classification software would,

however, allow one to overcome the problem to some extent. A

user-friendly software pipeline for microbiome classification now

exists for usearch, called ‘‘otupipe’’. RDP Classifier and pplacer

have stringent reference database requirements and it is often far

from trivial to produce high-quality custom databases for use with

these pieces of software. Moreover, it has been shown that the

reference database significantly affects the quality of classification

results [15] and therefore, it is a step deserving time and effort. In

addition, well-curated and frequently updated databases are

available for many common applications. If a database is available,

RDP Classifier produces classifications with the least amount of

additional pre- or post-processing and performs rapidly and

consistently with other methods where reads are .250 bp [22]. It

should be noted that recent advances in Illumina technology

(26150 bp) pushes maximum read lengths towards RDP Classi-

fier’s high-accuracy range. Pplacer, though requiring a number of

pre- and post- processing steps to produce classification tables (see

Fig. 2), offers many sophisticated analysis options for use with its

output, as well as the placement of all reads on a reference

phylogenetic tree, based on high performance algorithms and

rigorous statistical methods [19,24,25].

Analysis of the multiple and long-term sampling of microbiota

in these cervical specimens showed fluctuation within a narrow

region of composition space and supports the hypothesis that a

small number of stationary points exist between which the cervical

microbiome can fluctuate following sources of perturbation (Figs. 6,

7C–D and S2). No substantial divergence from this behavior was

observed over the 5–7 year period, although our sample size was

relatively small and additional studies are needed. Our samples

were selected from young Costa Rican women, but taken with the

rest of the current cervicovaginal microbiome literature, suggest

that the hypothesis is likely to apply for all sexually active women

[27]. Furthermore, the observed dependence of microbiome

composition and variability upon subjects (the PERMANOVA

analysis) highlights the importance of longitudinal data in

microbiome studies of the cervix. We believe the emphasis now

lies on determining the association of these characterized

microbiome states (i.e., community types) with the factors that

drive microbiome transitions and with pathological outcomes in

long-term prospective studies (for recent review see [3]).

Methods

Sample Collection and Study Design
Cervical samples were obtained from a large population-based

cohort study (10,049 women) conducted in Guanacaste, Costa

Rica, previously described [17,28,29]. For the current study, 10

women who recently initiated sexual activity and had yearly

samples available were randomly selected for this analysis [29].

Samples were obtained during a pelvic exam by specially trained

nurses using a nonlubricated sterile speculum. The cervical

specimens for the microbiome analyses were initially collected

for HPV DNA testing using a Dacron swab (Digene, Gaithers-

burg, MD; now part of Qiagen, Hilden, Germany) that was

swabbed over the ectocervix and rotated in the endocervical canal

and placed into either ViraPap DNA transport medium or sample

transport medium (STM) (Digene), as described [16]. The total

observation period for each woman spans 5–7 years. Costa Rican

and National Cancer Institute of the United States institutional

review boards and the Committee on Clinical Investigation at the

Albert Einstein College of Medicine approved all study protocols.

All participants signed an informed consent form.

DNA Extraction and Amplification
Briefly, an aliquot of each cervical sample was incubated with a

proteinase K and sodium laureth-12 sulfate solution and DNA was

then precipitated in a 0.825 M ammonium acetate/ethanol (AAE)

solution, pelleted by centrifugation and resuspended in TE, as

described previously [17,28]. Samples for analyses by cloning and

Sanger sequencing and for sequencing by Roche 454 were PCR

amplified using primers to an approximately 525 bp region

spanning the V6–V9 region (target primer sequences were kindly

provided by Julie Segre [30]). Samples for sequencing by Illumina

were PCR amplified using primers to an approximately 145 bp

region spanning the V6 region (target primer sequences obtained

from [31]). For all samples, a unique DNA barcode was

introduced to the PCR amplicons by the PCR primers. Barcodes

used for Roche 454 sequencing were 10 bp in length and were

appended to the 39 terminal end of the amplicon, whereas

barcodes used for Illumina sequencing were 8 bp Hamming

barcodes [32] and different codes were appended to 39 and 59

terminal ends of PCR amplicons to allow separation of forward

and reverse sequences. Figure 1 shows primer design and target

primer sequences for both sets of primers. Successful amplification

of the predicted fragment size was confirmed and amplicon

concentration estimated by relative band brightness against a

control using gel electrophoresis [33].

DNA Sequencing
The three sequencing techniques used in this study were (1)

cloning + dideoxy sequencing (Sanger sequencing on an ABI 3730

DNA Analyzer), (2) direct pyrosequencing (Roche 454 GS-FLX)
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and, (3) short-read sequencing-by-synthesis (Illumina HiSeq2000).

Short reads from all three platforms were deposited in the NCBI

Sequence Read Archive (SRA - http://www.ncbi.nlm.nih.gov/

sra) under SRA052206.

Cloning and Sanger Sequencing
Thirty of the 50 PCR amplicons of the 16S V6–V9 region were

cloned into E. coli using the One ShotH MAX EfficiencyH
DH5aTM-T1R TOPO-TA cloning kit (Invitrogen Corporation,

Carlsbad, CA, USA). Between 50 and 94 colonies per sample were

selected and sequenced by Genewiz (South Plainfield, NJ, USA),

of which 30–81 were successfully sequenced. The first, last and

middle time point for each of the 10 women were used for this

analysis.

Massively Parallel Sequencing
Prior to sending samples for NGS, barcoded PCR products

from all clinical samples were pooled at approximately equal

molar DNA concentrations and run on a preparative agarose gel.

The correct sized band was excised, the DNA was electroeluted,

precipitated in ethanol and resuspended in TE buffer as previously

described [33]. One aliquot of pooled, purified, barcoded DNA

amplicons was sequenced on a Genome Sequencer FLX System

(Roche 454 Life Sciences, Branford, CT, USA), with long-read

Titanium chemistry, by SAIC-Frederick, Inc., National Cancer

Institute (Frederick, MD, USA), another similarly prepared pool of

amplicons was sequenced on an Illumina HiSeq2000 (Illumina

Inc., San Diego, CA, USA) by the Epigenomics and Genomics

Core Facility, Albert Einstein College of Medicine (Bronx, NY,

USA) using single-end reads.

Software
To process the Sanger, Roche 454 and Illumina reads that

allowed comparison between classification results produced by the

3rd-party taxonomy software used (usearch [18], RDP Classifier

[14], and pplacer [19]), a number of python v.2.7, shell and sqlite3

scripts were developed in-house (Fig. 2). These have been bundled

and are available for download as a python package called

‘‘mubiomics’’ on sourceforge (http://www.sourceforge.net/

projects/mubiomics) and github (http://www.github.com/

benjsmith/mubiomics). The functions of the quality control and

demultiplexing software were inspired by QIIME [34]; but, at the

time of study it was necessary to develop in-house scripts to process

the millions of short Illumina reads, since these were not handled

by the QIIME pipeline. Later releases of QIIME do handle

Illuimna reads. Preliminary 454 data was processed with QIIME,

however all data analyzed in this report was processed with the in-

house software, for consistency.

In addition to usearch, RDP Classifier and pplacer, other

available software was used to facilitate the analysis and

comparison of data. Guppy (http://matsen.fhcrc.org/pplacer/)

was used to analyze the placements produced by pplacer, produce

phylogenetic trees with branch line widths proportional to the

number of assignments, perform squash clustering, edge principle

component analysis (EdgePCA), calculation of Kantorovich-

Rubinstein (KR) distances (equivalent to the weighted UniFrac

distance [24,35]), and production of phylogenetic trees for

visualizing pairwise KR distance. Archaeopteryx [36] was used

for visualizing trees in XML format produced by guppy, and

FigTree v1.3.1 (http://tree.bio.ed.ac.uk/software/figtree) was

used to visualize trees in Newick format produced by guppy’s

squash clustering program.

Bioinformatics
Several bioinformatics pipelines, consisting of a combination of

publicly available software and those developed in-house to handle

the different data and formats for this study were used for

analyzing the nucleotide data output by the various sequencing

methods. Figure 2 shows a flow chart of the pipelines and

associated software. These include, as shown in panel 3, (A) an

enhanced BLAST-like algorithm (usearch [18]), (B) a naı̈ve Bayes

classifier (RDP classifier [14]), and (C) a phylogenetic placement

algorithm (pplacer [19]). Parameter settings can be obtained from

the authors upon request. Briefly, from the Sanger sequencing we

obtained ABI files containing both sequence and quality data;

from the Roche sequencer, we obtained a pair of FASTA and

QUAL files containing sequence and quality data, respectively;

and from the Illumina sequencer, we obtained a FASTQ file

containing both sequence and quality data. All pipelines then

performed the following steps as shown in Figure 2: Quality

control filtering (panel 1); Read demultiplexing (i.e., assigning

original sample identities to reads according to DNA barcode –

panel 2); Read identification (i.e., assigning a bacterial identity to a

sequence – panel 3); Sample composition reporting (i.e., consol-

idating results from individual reads into an identical table for each

pipeline – panel 4).

To produce the classification tables from which Figure 3 was

generated (panel 4 in the flowchart of Fig. 2), compositions were

summarized by proportion at the genus level. All sequences that

were assigned a taxonomic identifier at levels above this, e.g.

family, were not included in the analyses, whereas all sequences

that were assigned at levels below this, e.g. species, were grouped

by their corresponding genera. In some cases (e.g., the BVAB

strains), reads were identified as originating from sequences in the

database with incomplete taxonomic information (i.e., although

classified at the genus level, an official genus-level taxonomic

identifier wasn’t present in the database). In such cases, an

appropriate identifying name was assigned at the genus level (e.g.,

the species name for Parvimonas micra, the strain names for BVAB1,

2 and 3, and the order name for the genus below Clostridiales), this

is reflected in the figures by the presence of an asterisk. The set of

genera that constitute the rows in the heat-maps of Figure 3 is a

union across all 9 proportional compositional tables. That is, each

genus shown in Figure 3 appeared in at least 1 sample in at least 1

of the 9 methodological configurations, with sufficient reads to

survive the filtering (i.e., each genus constitutes $1% of a sample’s

community).

For all analysis methods, read classification was performed

against the vaginal microbiome 16S rRNA database ([19] -

bundled with pplacer at the time of writing). In order to train this

database for use with RDP Classifier, a custom python script

(‘‘taxtastic2rdp.py’’) was written to convert the available files to

requisite input files for the RDP Classifier training software. This

can be found in the mubiomics package (see software section

above).

Statistical and Comparative Analyses
All plotting and statistical comparisons were performed in R

v2.12.2 using a script developed in-house (available upon request).

Difference matrices used to compare sequencing methods (Fig. 4A)

were calculated by subtracting one proportional composition

matrix from another. To compare each combination of sequenc-

ing technology and analytical pipeline, columns in which data

were present were averaged across samples and across genera. To

assess the degree of reclassification for each genus (Fig. 4B), counts

for each genus were summed over samples and divided by the total

number of counts in the classification table, to produce a
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proportion of reads assigned to each genus. This was done for each

methodological configuration and the distributions visualized as

boxplots. Shannon diversity indices (Fig. 5) were calculated in R

using the standard formula for Shannon entropy [37].

Squash clustering [25] (trees at top of Fig. 6A–B), which is based

on KR distance [24] (a generalized version of the UniFrac distance

[35]), between samples was performed using the guppy squash

subcommand with p = 1 [24,25]. As the value of parameter p is

increased in the KR distance metric, the weighting of the distance

value shifts from emphasizing the amount of phylogenetic distance

travelled to the number of reads repositioned [24].

To evaluate the effects of PCR bias, 454 reads longer than

120 bp were truncated and processed according to the pplacer

pipeline (Fig. 2, box C). The read placements from all 60 samples

for the full-length 454 reads, the truncated 454 reads and the

Illumina reads were pooled and the guppy kr subcommand [19] was

used to calculate the tree-length normalized KR distance (Zp)

between all pair-wise combinations of the three data sets. Since

many more reads were generated in the Illumina run, we set p = 1

to give more weight to the distance of transport.

Principal component analysis (Figs. S1, S2) was performed in R

v.2.12.2 using the prcomp function. Figure S3 was calculated using

the guppy pca subcommand with the default parameters and

visualized using Archaeopteryx (described under ‘‘Software’’,

above). For Figure S4 (reproducibility analysis), all pairwise KR-

distances between samples were calculated using the guppy kr

subcommand with p = 1 [24,25] and normalizing with respect to

the diameter of the reference tree. Rarefaction curves (Fig. S5)

were calculated using the rarecurve function in R’s vegan package.

Input data were species-level classification tables produced by

running the pplacer pipeline on reads generated by the 3

sequencing platforms. The PERMANOVA analysis [26], with

subject as the grouping factor, was performed using the betadisper

and permutest functions in R’s vegan package.

Explorations of associations amongst the microbiome, HPV

status (positive or negative by PCR) [29], vaginal pH [5], and days

since last menstrual period (LMP) were calculated via a Logistic

Regression GEE model. The auto-regressive correlation structure

(AR1) was used due to the longitudinal sampling of the data. The

microbiome was dichotimized based on the squash clustering, cut

at the first (deepest) bifurcation of the tree. This corresponded to

community types IV+VI vs. everything else (see Fig. 6). HPV was a

categorical variable based on status while pH and LMP were

considered interval data. Analyses were performed using SAS

Version 9.2 (SAS Institute, Cary, NC).

Reproducibility
Experimental reproducibility was assessed by repeat testing of

10 of the 50 samples. Figures S4A and S4B show a high

correlation between the proportions of species produced by

original samples and their repeat measurements (R2 = 0.995 for

454 (Fig. S4A) and Illumina (Fig. S4B)). Figure S4C shows the

results of a KR dissimilarity analysis, performed on assignments

generated by pplacer on the repeat measurements of truncated

454 reads, full-length 454 reads, and Illumina reads. Both methods

also exhibited a similar level of reproducibility by this analysis

(Illumina proportional normalized KR distance (Z1): medi-

an = 0.020, mean = 0.066, IQR = 0.087; 454 (truncated and full

length) Z1: median = 0.036, mean = 0.052, IQR = 0.029). Since

the normalized KR distance is presented here as a proportion of

the maximum normalized KR distance observed between any two

samples within a set of experimental conditions, Figure S4C can

be interpreted as showing the amount of experimental error

relative to the largest differences observed in the experiment. In

this analysis (Figure S4C), the pairwise KR distances between

samples and their repeats (calculated by guppy, as described

above), were normalized with respect to the diameter of the

reference tree and divided by the largest observed KR distance

amongst all samples for the relevant sequencing method.

Supporting Information

Figure S1 Principal component analysis of cervical
microbiota. Panels A and C contain histograms showing the

proportion of variance associated with the first 10 principal

components (PCs) of species-level composition matrices (classified

by pplacer and guppy) for 454 and Illumina sequencing runs,

respectively. Panels B and D contain PCA plots showing the

degree of correlation of samples with principal components 1, 2

and 3 (PC1, PC2, and PC3) for 454 and Illumina, respectively.

Points were colored according to the categorical microbiome

community type to which they belonged as indicated by the legend

in the box above the plots. The dropdown lines indicate the

position of PC3 on the PC1 and PC2 two-dimensional plane.

(TIFF)

Figure S2 Correlation of first three principal compo-
nent dimensions with categorical species types. Principal

components analysis finds linear combinations of the original

dimensions of a set of high-dimensional data to form new

dimensions that explain decreasing proportions of the variance

within the data. The heat-maps in panels A and B show the

correlation of the first three transformed dimensions- PC1, PC2,

and PC3 with the original dimensions (species) for 454 and

Illumina data, respectively, as classified by pplacer. This figure can

be viewed in conjunction with Fig. S1 in order to understand the

composition of PCs 1, 2, and 3.

(TIFF)

Figure S3 Edge principal component analysis. The figure

shows the first principal component of an EgdePCA [25]

performed using the Illumina sequence data that was phylogenet-

ically sorted by pplacer. Branches are fattened according to the

quantity of reads that comprise the 1st edge principal component

and colored according to whether reads moved towards (blue) or

away (red) from the root.

(TIFF)

Figure S4 Reproducibility analysis. Roche 454 (panel A)

and Illumina (panel B) scatter plots show the proportion of each

species present in the original samples and their repeats, using

species-level composition tables produced from pplacer classifica-

tions. Correlations between the data are shown at the top of the

plots (R2 values). The sample names displayed in the legend reflect

patient by number and sampling time point by the succeeding

letter and correspond to those in Figs. 3 and 6. Panel C, KR

dissimilarity boxplot shows the median, interquartile range and

spread of tree-length normalized Kantorovich-Rubinstein (KR)

distances between samples and their repeat measurements, plotted

as proportions of the largest normalized KR distance observed

between any samples.

(TIFF)

Figure S5 Species rarefaction curves for each sequenc-
ing method. Panels A, B, and C show how species richness in a

sample depends on the number of 16S amplicons sequenced by

Sanger, 454 and Illumina platforms, respectively. A maximum of

12 (panel A), 13 (panel B), and 10 (panel C) species were observed

in any one sample analyzed by the Sanger, 454 and Illumina

platforms, respectively. The predicted diversity in a number of

samples wasn’t completely captured by sequencing ,100
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molecules (Panel A), but it was nearly always obtained when

sequencing .500 molecules (panels B and C).

(TIFF)
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advances in understanding the microbiology of the female reproductive tract and

the causes of premature birth. Infect Dis Obstet Gynecol 2010: 737425.

8. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, et al. (2011) Vaginal
microbiome of reproductive-age women. Proc Natl Acad Sci U S A 108 (Suppl.

1): 4680–4687.
9. Kim TK, Thomas SM, Ho M, Sharma S, Reich CI, et al. (2009) Heterogeneity

of vaginal microbial communities within individuals. J Clin Microbiol 47: 1181–

1189.
10. Zhou X, Brown CJ, Abdo Z, Davis CC, Hansmann MA, et al. (2007)

Differences in the composition of vaginal microbial communities found in
healthy Caucasian and black women. ISME J 1: 121–133.

11. Niedringhaus TP, Milanova D, Kerby MB, Snyder MP, Barron AE (2011)
Landscape of next-generation sequencing technologies. Anal Chem 83: 4327–

4341.

12. Nealson KH, Venter JC (2007) Metagenomics and the global ocean survey:
what’s in it for us, and why should we care? ISME J 1: 185–187.

13. Wu D, Wu M, Halpern A, Rusch DB, Yooseph S, et al. (2011) Stalking the
fourth domain in metagenomic data: searching for, discovering, and interpreting

novel, deep branches in marker gene phylogenetic trees. PLoS One 6: e18011.

14. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for
rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl

Environ Microbiol 73: 5261–5267.
15. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, et al. (2012)

Impact of training sets on classification of high-throughput bacterial 16s rRNA
gene surveys. ISME J 6: 94–103.

16. Herrero R, Hildesheim A, Bratti C, Sherman ME, Hutchinson M, et al. (2000)

Population-based study of human papillomavirus infection and cervical
neoplasia in rural Costa Rica. J Natl Cancer Inst 92: 464–474.

17. Herrero R, Schiffman MH, Bratti C, Hildesheim A, Balmaceda I, et al. (1997)
Design and methods of a population-based natural history study of cervical

neoplasia in a rural province of Costa Rica: the Guanacaste Project. Rev Panam

Salud Publica 1: 362–375.
18. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST.

Bioinformatics 26: 2460–2461.

19. Matsen F, Kodner R, Armbrust EV (2010) pplacer: linear time maximum-
likelihood and Bayesian phylogenetic placement of sequences onto a fixed

reference tree. BMC Bioinformatics 11: 538.

20. Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, et al. (2004)
Characterization of vaginal microbial communities in adult healthy women

using cultivation-independent methods. Microbiology 150: 2565–2573.
21. Srinivasan S, Liu C, Mitchell CM, Fiedler TL, Thomas KK, et al. (2010)

Temporal variability of human vaginal bacteria and relationship with bacterial
vaginosis. PLoS One 5: e10197.

22. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, et al. (2010)

Comparison of two next-generation sequencing technologies for resolving highly
complex microbiota composition using tandem variable 16S rRNA gene regions.

Nucleic Acids Res 38: e200.
23. Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, et al. (2009)

Comparative analysis of pyrosequencing and a phylogenetic microarray for

exploring microbial community structures in the human distal intestine. PLoS
One 4: e6669.

24. Evans SN, Matsen FA (2012) The phylogenetic Kantorovich-Rubinstein metric
for environmental sequence samples. Journal of the Royal Statistical Society:

Series B 74: 569–592.
25. Matsen FA, Evans SN (2011) Edge principal components and squash clustering:

using the special structure of phylogenetic placement data for sample

comparison. arXiv:11075095v1 [q-bioPE].
26. Anderson MJ (2001) A new method from non-paramteric multivariate analysis

of variance. Austral Ecology 26: 32–46.
27. Gajer P, Brotman RM, Bai G, Sakamoto J, Schutte UM, et al. (2012) Temporal

dynamics of the human vaginal microbiota. Sci Transl Med 4: 132ra152.

28. Castle PE, Schiffman M, Gravitt PE, Kendall H, Fishman S, et al. (2002)
Comparisons of HPV DNA detection by MY09/11 PCR methods. J Med Virol

68: 417–423.
29. Rodriguez AC, Burk R, Herrero R, Hildesheim A, Bratti C, et al. (2007) The

natural history of human papillomavirus infection and cervical intraepithelial
neoplasia among young women in the Guanacaste cohort shortly after initiation

of sexual life. Sex Transm Dis 34: 494–502.

30. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, et al. (2009)
Topographical and temporal diversity of the human skin microbiome. Science

324: 1190–1192.
31. Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes

and primer design for 16S ribosomal DNA amplicons in metagenomic studies.

PLoS One 4: e7401.
32. Hamady M, Walker JJ, Harris JK, Gold NJ, Knight R (2008) Error-correcting

barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat
Methods 5: 235–237.

33. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory
manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.

34. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010)

QIIME allows analysis of high-throughput community sequencing data. Nat
Methods 7: 335–336.

35. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for
comparing microbial communities. Appl Environ Microbiol 71: 8228–8235.

36. Han MV, Zmasek CM (2009) phyloXML: XML for evolutionary biology and

comparative genomics. BMC Bioinformatics 10: 356.
37. Shannon CE (2001) A mathematical theory of communication. SIGMOBILE

Mob Comput Commun Rev 5: 3–55.

Characterization of the Cervical Microbiome

PLoS ONE | www.plosone.org 13 July 2012 | Volume 7 | Issue 7 | e40425


