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Abstract

Biodiversity assessment remains one of the most difficult challenges encountered by ecologists and conservation biologists.
This task is becoming even more urgent with the current increase of habitat loss. Many methods–from rapid biodiversity
assessments (RBA) to all-taxa biodiversity inventories (ATBI)–have been developed for decades to estimate local species
richness. However, these methods are costly and invasive. Several animals–birds, mammals, amphibians, fishes and
arthropods–produce sounds when moving, communicating or sensing their environment. Here we propose a new concept
and method to describe biodiversity. We suggest to forego species or morphospecies identification used by ATBI and RBA
respectively but rather to tackle the problem at another evolutionary unit, the community level. We also propose that a part
of diversity can be estimated and compared through a rapid acoustic analysis of the sound produced by animal
communities. We produced a and b diversity indexes that we first tested with 540 simulated acoustic communities. The a
index, which measures acoustic entropy, shows a logarithmic correlation with the number of species within the acoustic
community. The b index, which estimates both temporal and spectral dissimilarities, is linearly linked to the number of
unshared species between acoustic communities. We then applied both indexes to two closely spaced Tanzanian dry
lowland coastal forests. Indexes reveal for this small sample a lower acoustic diversity for the most disturbed forest and
acoustic dissimilarities between the two forests suggest that degradation could have significantly decreased and modified
community composition. Our results demonstrate for the first time that an indicator of biological diversity can be reliably
obtained in a non-invasive way and with a limited sampling effort. This new approach may facilitate the appraisal of animal
diversity at large spatial and temporal scales.
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Introduction

Biodiversity assessment is a central and urgent task in

conservation biology, not only to determine species richness but

also to evaluate differences between communities occupying

different areas or changing with time [1–6]. The total species

diversity in a set of communities has been traditionally seen as the

product of the average diversity within communities (a) and the

diversity between communities (b) [1]. There is a variety of

methods of measuring a and b diversity. For example, the diversity

between two communities can be calculated as the average change

(turnover) in species composition between two communities [7].

Quantifying biological diversity mainly relies on species invento-

ries that are both costly and challenging to compile [8–10]. The

assessment of b diversity requires that the identities of species are

known, which has prevented the analysis of b at broad spatial

scales, especially when more than one taxon is considered [7]. This

is particularly true for all-taxa biodiversity inventories (ATBI)

which seek to identify every living species in an area and require

several years of efforts and an important group of specialists [11].

Sampling brings major complications and, in most cases it is

illusory to record and compare absolute species richness of

communities in a short time. Numerous biodiversity indexes have

therefore been invented to extrapolate from limited inventory data

[12]. The consideration of the abundance of species especially led

to biodiversity indexes less sensitive to sample size. These indexes,

however, still require an important sampling effort to produce

reliable estimates. Moreover, using such indexes demands a

considerable sampling effort if diversity in a range of invertebrate

and vertebrate animals needs to be assessed e.g. in high biodiversity

tropical forests. Alternatively, one can focus on one taxon and

assume that it predicts the diversity of other taxa. However, to

claim that this taxon is a reliable indicator, several criteria

regarding its biological properties have to be objectively tested,

again involving a vast sampling effort in at least one ÆÆtypicalææ
location [13]. In addition, hotspots of species richness, for different

taxa rarely coincide with the lowest correlation at finer spatial

scales, which render difficult the definition of an indicator taxon or

even combinations of several indicators supposedly representative

of the diversity in other forms of organisms [14]. The mechanisms

underlying such differences among taxa are still not understood

[4]. A solution is to undertake rapid biodiversity assessment (RBA)

as the Rapid Assessment Program (RAP) undertaken by

Conservation international [15]. These programs rely on para-

taxonomists who only identify morphospecies or ‘‘recognizable

taxonomic units’’ (RTU) [16–18]. This approach does not seem to
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be adequate for species inventories, population ecology or

biogeography but can provide useful data for descriptions and

global comparisons of species richness [19].

Another way to obtain a fast indicator of biodiversity and to

allow inexpensive long-term, large-area monitoring of this

indicator is to take advantage of an indirect cue of diversity.

Several animals–birds, mammals, amphibians, fishes and arthro-

pods–produce sounds incidentally when moving or intentionally

when communicating or sensing their environment with sonar-

like systems [20]. These organisms reveal their presence through

acoustic signals that can be easily detected, recorded, saved and

analysed. A first intuitive approach is to try to automatically

identify assemblages of singing species like bats [21], birds [22],

amphibians or insects [23]. However, automatic species identi-

fication has some limitations: it is sensitive to noise and it requires

extensive preliminary study to establish templates for recognition

processes, detailed acoustic analyses (e.g. dynamic time warping,

cepstral coefficients, linear predictive coefficients, image process-

ing) and complex computational methods (e.g. artificial neural

network, hidden Markov model, Gaussian mixture model) [21–

24]. Even if attractive, these methods have not yet been

mainstreamed as a tool for obtaining a global measure of

biodiversity. Because of their limitations, acoustics have occa-

sionally been used to describe the temporal and spatial structure

of tropical forest communities but very rarely to estimate local

diversity. Using an array of microphones, spectral signatures have

been defined for day, dusk and night times of a Bornean

rainforest canopy [25] and two South American forests [26].

Reporting on the succession of different acoustic communities

along the circadian cycle, these analyses did suggest that

biodiversity could be monitored acoustically but, to our

knowledge, a biodiversity index indirectly based on acoustic cues

has only been computed in a single case where a classical

Shannon-Wiener index [27] was based on the occurrence of

twenty cricket species calling in an Amazonian rainforest [28].

Limited to a single insect taxon and preconditioned by a

complete description of the signals produced by each cricket

species, such an estimation is time consuming and difficult to

repeat with other taxa or in other habitats.

Here we propose a new concept and method to describe

biodiversity. We suggest to forego species or morphospecies

identification used by ATBI and RBA respectively but rather to

tackle the problem at another evolutionary unit, the community

level. We first make the simple assumption that the more species

are found in a community the more different signals will be

produced at the same time. This will increase the heterogeneity of

the acoustic environment. In addition, species singing in the same

area and at the same time face the risk of mutual masking

interference [29]. Acoustic space is a single resource that has to be

shared by competitive singing species. As such, signals should show

species-specific frequency and temporal patterns that minimize the

effects of overlap from other species [30]. This leads to a

partitioning of both sender and receiver acoustic space as reported

in several assemblages [28,31–37]. By over-dispersion of temporal

and frequency parameters, partitioning should then also increase

acoustic space heterogeneity. This effect should be even more

significant for stable communities than for perturbed communities

where recent invader species might have changed the acoustic

equilibrium of the community [32]. Using simple signal analysis,

we developed new a and b diversity indexes based on the analysis

of the acoustic choruses. We tested both indexes with simulated

animal communities and applied them two Tanzanian forests

within the hotspot of the Eastern Arc and the Coastal Forests of

Tanzania and Kenya [38].

Materials and Methods

Acoustic Entropy Index (H)
If x(t) is a time series of length n, the amplitude envelope of

oscillation is obtained with the analytic signal j(t) of x(t). The

analytic signal is defined as:

j tð Þ~x tð ÞzixH tð Þ,

where i2~{1 and xH tð Þ is the Hilbert transform of x tð Þ:
ð1Þ

The probability mass function of the amplitude envelope A(t) is

obtained as:

A tð Þ~ j tð Þj j
Pn
t~1

j tð Þj j
, such that

Xn

t~1

A tð Þ~1: ð2Þ

In signal theory [27], the entropy H of a random variable X with

probability mass function pX(x) is defined as [39]:

H Xð Þ~{

ðz?

{?

pX xð Þ|log2pX xð Þdx ð3Þ

Shannon index is the second most used index of diversity in

ecology, after species richness (number of species) [40]. In general, it

is measured on a set of categories differing in frequencies. It

increases with the evenness of the frequencies of the categories and

with the number of categories. In ecology, categories are often

species that differ by their relative abundances in a community.

Here we apply it on a time series sequence of size n, the categories

are the time units and their frequencies are the probability mass

function of the amplitude envelope. The prevalence of Shannon

index over other indices especially the Simpson index has a long

history of debates [12]. Its main characteristic is that it is more

sensitive to rare categories [41]. Therefore by using this index, the

time units with low probability mass function of the amplitude

envelope will still influence the value of the acoustic diversity. The

maximum value of Shannon index depends on the number of

categories (log2(n)). The sounds of animals in field will affect the

amplitude envelope at each time unit. However the number of time

units is fixed by the methodology. Consequently, to obtain an index

that is solely affected by the sounds of animals in field, we divide the

Shannon index by its maximum. The index obtained measures the

evenness of the amplitude envelope over the time units.

The temporal entropy Ht is then computed following:

Ht~{
Xn

t~1

A tð Þ|log2A tð Þ|log2 nð Þ{1
, with Ht[ 0,1½ �: ð4Þ

Similarly, to calculate the spectral entropy, a mean spectrum s(f) is

first computed using a Short Time Fourier Transform (STFT)

based on a non-overlapping sliding function window of sample

width t. This mean spectrum s(f) is similarly transformed into a

probability mass function S(f) of length N used to compute the

spectral entropy Hf:

Hf ~{
XN

f ~1

S fð Þ|log2S fð Þ|log2 Nð Þ{1
, with Hf [ 0,1½ �: ð5Þ
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Eventually, the entropy index H is computed as the product of

both temporal and spectral entropies (H = Ht6Hf, with H[ 0,1½ �). H

will tend towards 0 for a single pure tone, increases with the

number of frequency bands and amplitude modulations, and tends

towards 1 for a random noise. We tested the hypothesis that H

index increases with the number of singing species. To achieve

this, we simulated series of choruses composed of different

numbers of species. Thirty seconds recordings (16 bit digitization,

44.1 kHz sampling frequency) of 45 common singing species of the

western Palaearctic region were first obtained from professional

recordings [42–44] and personal recordings (J. Sueur). These 45

species included 15 avian, 15 amphibian and 15 insect species

(Table S1). All these species can potentially be found singing in

close proximity. These 45 recordings were randomly divided in

three groups of 15 species with 5 avian, 5 amphibian and 5 insect

species each. To generate a series of choruses, ten species

recordings were first randomly taken within a group. Recordings’

amplitudes originally matched but a relative amplitude level

varying from 0.1 to 1 by step of 0.1 was then randomly affected to

each recording. This allowed getting different amplitudes for each

species, a necessary condition to mimic natural conditions. The

recordings were then successively and randomly added leading to

ten different sound files, starting with a sound file with a single

species to a sound file with ten distinct species. This procedure was

repeated 10 times for each group leading to 300 sound files (3

groups610 series610 choruses). Ht was computed with envelopes

lasting 30 s (n = 1 323?106 points). The frequency precision of the

STFT was 83.13 Hz (t = 512 samples). The resulting mean

spectrum used to compute Hf was made of N = 256 elements. H

index could be then calculated for each of the 300 chorus

generated (Fig. S1 and Tables S1, S2).

Acoustic Dissimilarity Index (D)
We extended a measure estimating the compositional dissim-

ilarity between two communities [45] to both envelope and

spectral acoustic data. Envelope dissimilarity between two signals

x1(t) and x2(t) of the same duration digitized at the same sampling

frequency can be estimated by computing the difference between

their envelope probability mass functions divided by 2 to get values

between 0 and 1:

Dt~
1

2

Xn

t~1

A1 tð Þ{A2 tð Þj j, with Dt[ 0,1½ �: ð6Þ

Similarly, spectral dissimilarity can be assed by computing:

Df ~
1

2

XN

f ~1

S1 fð Þ{S2 fð Þj j, with Df [ 0,1½ �: ð7Þ

The dissimilarity acoustic index is computed as the product of

both temporal and spectral dissimilarities (D = Dt6Df, with

D[ 0,1½ �). We tested the hypothesis that D index increases with

the number of unshared species between chorus pairs. We

simulated a new set of choruses based on the same three groups

of 15 species each as for the application of the acoustic entropy

index. In each group, we first randomly chose seven recordings

among the 15 available. Thus seven amplitude-weighted record-

ings were added giving the first chorus of the series. From this

starting chorus, we randomly replaced one of the species

recordings by a new one randomly chosen from the eight

remaining species recordings. We then obtained two choruses

differing in a single species. We repeated this species recording

swap eight successive times knowing that a replaced species could

not be replaced a second time according to a random choice

without replacement. This process led to eight distinct choruses

differing from one to seven species. All this procedure was

repeated ten times generating ten series of eight choruses for each

group. Consequently, we obtain a total of 240 sound files (3

groups610 series68 choruses). Among each series, the D index

was computed between the first and the successive choruses with

similar STFT parameters used when calculating H index (Fig. S1,

Tables S1, S3).

Tanzanian Coastal Forests
Sound recordings were achieved in two Tanzanian coastal forests

located in the Rufiji valley (Rufiji District) and distant of 50 km. The

two dry lowland coastal forests studied are characterized by different

degrees of degradation [46]. Ngumburuni forest, north of the Rufiji

River, has been exploited since German colonial times, especially

for iroko trees (Milicia exelsa) used in joinery, shipbuilding, civil

engineering (Fig. S2a). The second forest, Kichi Hills, is situated

south of the Rufiji River and has been hard to access until the

completion of a bridge in 2003 [47] (Fig. S2b). Prior to 1992 it was

very selectively logged for large Milicia exelsa but it has not been

exploited since. A recording spot was randomly chosen inside each

forest avoiding any edge effect that could affect species richness

(Ngumburuni: UTM 37M 505351–9128198, 41 m altitude; Kichi

Hills: UTM 37L 462443–9088710, 575 m alt). Recordings were

done by a single observer in 2007 from the 4th to the 9th April in

Ngumburuni (spot 1) and from 9th to the 14th April in Kichi (spot 2).

In both forests the dawn-dusk choruses, known to be the noisiest

periods of the day in tropical forests [48], were recorded within a ten

day period (4 to 14 April 2007) with 5 consecutive days spent in each

forest. They were made at three day times corresponding to the

highest acoustic activity period in the forests: (1) dawn chorus from

6.00 am to 6.15 am, (2) first dusk chorus from 5.30 pm to 5.45 pm

and (3) second dusk chorus from 6.30 pm to 6.45 pm. This resulted

in 30 recording sessions (2 sites65 days63 day times) for a total of

450 minutes. One recording in Kichi had to be withdrawn from the

analysis because of a heavy rain generating important noise. In all

cases, weather conditions were assessed during each recording

session by measuring the ambient temperature (61uC) and the

relative humidity (60.5%). This was completed by relative indexes

referring to discrete meteorological scales. The scale describing

cloud cover was: (0) no clouds, (1) 1–50% cloud cover, (2) 50–75%

cloud cover, (3) 100% cloud cover, and (4) rain. The scale reporting

wind force was: (0) no wind, (1) leaves motion, (2) leaves and

branches motion, (3) leaves, branches and trunks motion. The

recording equipment consisted in an omni-directional Sennheiser

K6/ME62 microphone (frequency response: 62.5 dB between

0.02 and 20 kHz) connected to an Edirol R-09 digital recorder (16

bit digitization at 44.1 kHz sampling frequency). The recording

level was similarly set up for all recording sessions. The microphone

was always held vertically by hand at a height of 2 m. Before

processing entropy and dissimilarity analyses, a 170 Hz high-pass

filter was applied to all sound files. This selectively removed the

lowest frequencies due to wind noise only. Ht was computed with

envelopes lasting 900 s ( = 3 969?107 points). The frequency

precision of the STFT was 83.13 Hz. The resulting mean spectrum

used to compute Hf was made of 256 elements. H index was then

computed for each recording session. D index was estimated for

every pair of recording sessions.

All statistics were computed using R [49]. H and D indexes were

computed by writing specific R functions specifically implemented

in the free package seewave [50].

Biodiversity Acoustic Survey

PLoS ONE | www.plosone.org 3 December 2008 | Volume 3 | Issue 12 | e4065



Results

Development and test of a and b acoustic indexes
H values ranged between 0.369 and 0.948 and increased with

species richness S following a logarithmic model (Fig. 1, Fig. 2a,

Audio S1). Heterogeneity of the sound emitted by the community

is then positively linked to the number of species within the

community. As shown by standard deviation which decreases from

0.140 for single species choruses to 0.051 for choruses including

ten species, the variability of H decreases with S. D index is null for

similar signals and tends towards 1 for completely different signals.

To test D, we randomly generated 240 choruses differing in the

number of species they share. We used the same 45 species sample

when testing H. We found that, in average, D increases linearly

from 0.02260.017 (n = 30 pairs of simulated choruses differing by

a single species) to 0.19160.040 (n = 30 pairs of simulated choruses

differing by all the seven species they include) with the number of

unshared species between pairs of choruses (Fig. 2b).

Application of the acoustic indexes to two African coastal
forests

Ngumburuni degraded forest appeared to be warmer (Kruskal-

Wallis x2 = 14.102, P = 0.002), dryer (Kruskal-Wallis x2 = 17.784,

P = 2.475?1025), less windy (Kruskal-Wallis x2 = 7.174, P = 0.007)

and less cloudy (Kruskal-Wallis x2 = 9.804, P = 0.002) than Kichi

intact forest (table S4). These meteorological differences may have

had some effect on animal activity. However, temperature, which

is the main factor regulating acoustic behaviour of exothermal

animals, ranged in an interval (25.09uC62.66, min = 21.7uC,

max = 31uC) where sound production is not constrained [51–52].

We computed H index for each forest at three times of the day

(dawn chorus, and two dusk choruses). We found that H values

were significantly higher for the intact forest (H = 0.89160.023,

n = 14) than for the degraded forest (H = 0.83660.030, n = 15)

(Fig. 3a; Kruskal-Wallis x2 = 15.420, df = 1, P = 8.57?1025) sug-

gesting a higher diversity. Furthermore, we found increasing H

values with low variance from dawn to dusk in the intact forest

(Kruskal-Wallis x2 = 7.790, df = 2, P = 0.020) but not in the

degraded forest (Kruskal-Wallis x2 = 0.560, df = 2, P = 0.756).

We then applied D index between every recording session pair.

D index essentially reveals a difference between the two forests

(distance-based redundancy analysis [53] with 1,000 permutations,

df = 1, F = 46.730, P,0.001). A Ward’s hierarchical cluster

analysis correctly classified all recordings except one according

to sites (Fig. 3b). In addition, D exhibits differences in the course of

the day that are obvious in the intact forest (distance-based

Figure 1. Example of a random simulated chorus. Waveform and spectrogram showing frequency profile over time, amplitude being depicted
with a relative decibels (dB) colour scale. The chorus, which originally lasted 30 s, includes 5 birds (Fringilla coelebs, Parus major, Strix aluco,
Troglodytes troglodytes, Turdus merula), 5 amphibians (Alytes obstetricans, Bufo bufo, Hyla arborea, Pelodytes punctatus, Rana ridibunda), and 5 insects
(Chrysocraon dispar, Cicada orni, Gryllus campestris, Metrioptera bicolor, Oecanthus pellucens).
doi:10.1371/journal.pone.0004065.g001
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redundancy analysis [53] with 1,000 permutations, df = 2,

F = 11.100, P,0.001) but less strong in the degraded one even if

significant (distance-based redundancy analysis [53] with 1,000

permutations, df = 2, F = 3.270, P,0.001, Fig. 3a). One recording

made in the degraded forest is misclassified in the intact forest

(Fig. 3b). This dusk recording is distinguished by the absence of

acoustic activity in the range of 7–15 kHz usually occupied by one

cicada species (Fig. 4, Figs. S3, S4, S5, S6, S7, S8 and Audio S2,

S3, S4, S5, S6, S7).

Discussion

Global biodiversity assessment at large spatial and temporal

scales needs fast and reliable methods to rapidly assess and

compare species richness in both accessible and remote habitats.

Taking advantage of the sound produced by active animals, our

objective was to build diversity indexes easy to compute and

repeat. Tested with artificial choruses for which the number of

species is known, we have shown that an a diversity index, H,

derived from the Shannon information statistic [27] increases from

0 to 1 with signal entropy, or heterogeneity. Higher values of H

would then indicate richer habitats. The variability of H decreases

with the number of species indicating that some error can be

expected for communities with very few species. This can occur,

for instance, when a single species produces a sound covering a

broad spectrum of frequencies. This was particularly the case with

cicada species that emit noise-like songs and where seasonality

might introduce a bias. Similarly, some noise due to wind, running

water, or human activities could reduce the reliability of the H

index. However, as achieved with the recordings made in

Tanzania, a high-pass filter with a cut-off frequency around

200 Hz can be used to selectively remove the low frequency

components due to noise only. To help conservation planners in

their decisions, it is necessary to compare areas in order to locate

the centers of maximal diversity and above all the temporal

changes in the diversity of a region. We designed a b diversity

index, D, based on surface differences between envelopes and

spectral content of the signals to be compared. When applying D

index between pairs of artificial communities, results clearly show

a linear increase of D values with the number of unshared species.

Even if we were not able to estimate the upper threshold of D

values, these tests clearly indicate that D could be used to infer

differences between community compositions.

Figure 2. Acoustic entropy H index and dissimilarity D index tested with simulated choruses. (a) evolution of H index in relation with the
number of species composing the chorus. H was calculated for eight chorus series among which the number of species per chorus varied from one to
10. Non-linear regression: H = 0.11766log(S)+0,6107, n = 300. (b) evolution of D index in relation with the number of unshared species between
choruses. D was calculated for eight chorus series including seven species each among which the number of species differed from one (14.3%) to
seven (100%). Linear-regression with null intercept: D = 0,02686S9, F = 2054, R2 = 0.908, n = 240. Error bars indicate standard deviation. Regressions are
plotted with solid lines and their 95% confidence intervals with dotted lines.
doi:10.1371/journal.pone.0004065.g002
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All these preliminary tests were achieved with random

simulated choruses that have not been shaped by selective forces.

We then applied our method to two dry lowland coastal forests of

Tanzania which rank eighth on the biodiversity hotspot list [38].

These forests are of primary interest due to high concentrations of

endemic species and are threatened by conversion to agriculture,

charcoal production and logging [54]. Species inventories have

already been undertaken but there is still a dramatic need for

biodiversity measurement and mapping [55]. The two dry lowland

forests are characterized by different degrees of degradation

mainly due to an historical natural barrier to human impact until

2003 [46–47]. We found that H values were significantly higher

for the intact forest than for the degraded one and they increased

with low variance from dawn to dusk in the intact forest but not in

the degraded forest. The D index clearly highlights differences

between the two forests leading to a high-level in their acoustic

classification (Fig. 3). This index also reveals important differences

between the three periods of the day for the intact forest. These

results first suggest a higher diversity in the intact forest. This

would also indicate the existence of at least three acoustic

communities with few overlap between species songs in the intact

forest whilst there might be only a single community in the

degraded forest with more acoustic interference between species.

Degradation might have then changed both composition and time

activity pattern of the Ngumburuni communities. The degraded

Ngumburuni forest was probably occupied by communities with

overlapping compositions during the day. This was mainly due to

the presence of a cicada species at the three periods of the day.

The peak due to this cicada species was the most striking difference

between the two forests at 5.30–5.45 pm (dusk1) as shown by the

frequency spectrum of the degraded forest when the cicada species

was exceptionally absent (Fig. 4). However, this was not the only

source of difference. At 6.00–6.15 am (dawn) the peaks at low

frequency in the intact forest are absent from the degraded forest.

At 6.30–6.45 pm (dusk2), other peaks at high frequencies

characterized the intact forest only. Our diversity index H

measures the evenness of the acoustic space. Consequently, if a

few species dominate the acoustic space, then the diversity will be

low. More abundant species might then notably reduce the

acoustic diversity of a habitat, as it reduces classical index of

diversity such as Simpson and Shannon indexes. Furthermore, if

few species are widespread and dominate in an area, then the

differences between local communities (D index) will be low even if

secondary species make sounds at different frequencies but low

Figure 3. Acoustic richness and dissimilarity of two Tanzanian lowland coastal forests. (a) Variation of H within and among forests. (b)
Ward’s hierarchical cluster analysis applied to D index. The orange dot refers to the single misclassified recording between sites. ‘‘Dawn’’ = chorus
from 6.00 am to 6.15 am, ‘‘dusk1’’ = chorus from 5.30 pm to 5.45 pm, ‘‘dusk2’’ = chorus from 6.30 pm to 6.45 pm. Boxes are bounded by the first
quartile, median, and third quartile; whiskers are 1.5 times the interquartile range; points outside the whiskers are outliers.
doi:10.1371/journal.pone.0004065.g003
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amplitude. As forest degradation is known to change communities’

composition [10], the ecological success of the cicada species may

have contributed to a decrease in diversity. The highest diversity

detected in the intact forest seems to be due to a higher number of

species and to equilibrium in their relative abundance. The

spectral profiles show indeed a higher dispersion of amplitude

peaks along the frequency axis, suggesting that species share the

available acoustic space more equitably. The following hypothesis

can be drawn from our results: the intact forest would be close to

an acoustic stable state while the degraded forest would have

moved away from this acoustic homeostasis.

Even if our method need to be tested over larger samples in

nature and for habitats which the fauna has been previously listed,

we have shown that as more species occupy the same habitat the

soundscape they generate is more heterogeneous. We have also

shown that differences between acoustic communities could be

evaluated through simple signal analysis. As our method does not

require specific skills, biodiversity estimation through acoustics can

be undertaken by non-scientists. This will, eventually, allow

monitoring at large spatial and temporal scales, opening up new

opportunities in biodiversity research.

Supporting Information

Figure S1 Protocol principle followed to simulate choruses used

when testing H and D indexes. See text for details.

Found at: doi:10.1371/journal.pone.0004065.s001 (0.23 MB

PNG)

Figure 4. Spectral profiles of two Tanzanian lowland coastal forests. Mean spectral profiles of the two forests at tree times of the day. The
plots depict variations of amplitude (sound energy) over frequencies. Each line corresponds to one recording session. Arrow indicates the cicada
species singing in Ngumburuni. The orange profile refers to the recording misclassified (Fig. 3). ‘‘Dawn’’, ‘‘dusk1’’ and ‘‘dusk2’’ refers to three
recording times along the day, see Fig. 3 for details.
doi:10.1371/journal.pone.0004065.g004
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Figure S2 Trails in both Tanzanian forests where recording

were achieved: (a) the degraded Ngumburuni forest, (b) the intact

Kichi Hills forest.

Found at: doi:10.1371/journal.pone.0004065.s002 (1.01 MB

PNG)

Figure S3 Sample of a dawn chorus [6.00–6.15 am] recorded in

the degraded Ngumburuni forest. Waveform and spectrogram

showing frequency profile over time, amplitude being shown with

a relative decibels (dB) colour scale. 7th April 2007, 24.5uC, 81%

h.r. 170 Hz high-pass filtered to remove noise due to wind. See

Sound S2.

Found at: doi:10.1371/journal.pone.0004065.s003 (0.56 MB

PNG)

Figure S4 Sample of a first dusk chorus [5.30–5.45 pm]

recorded in the degraded Ngumburuni forest. Waveform and

spectrogram showing frequency profile over time, amplitude being

shown with a relative decibels (dB) colour scale. 7th April 2007,

28.9uC, 74% h.r. 170 Hz high-pass filtered to remove noise due to

wind. See Sound S3.

Found at: doi:10.1371/journal.pone.0004065.s004 (0.55 MB

PNG)

Figure S5 Sample of a second dawn chorus [6.30–6.45 pm]

recorded in the degraded Ngumburuni forest. Waveform and

spectrogram showing frequency profile over time, amplitude being

shown with a relative decibels (dB) colour scale. 6th April 2007,

28uC, 84% h.r. See Fig. S4. 170 Hz high-pass filtered to remove

noise due to wind. See Sound S4.

Found at: doi:10.1371/journal.pone.0004065.s005 (0.19 MB

PNG)

Figure S6 Sample of a dawn chorus [6.00–6.15 am] recorded in

the intact Kichi Hills forest. Waveform and spectrogram showing

frequency profile over time, amplitude being shown with a relative

decibels (dB) colour scale. 10th April 2007, 22.8uC, 94% h.r. Hz

high-pass filtered to remove noise due to wind. See Sound S2.

Found at: doi:10.1371/journal.pone.0004065.s006 (0.38 MB

PNG)

Figure S7 Sample of a first dusk chorus [5.30–5.45 pm]

recorded in the intact Kichi Hills forest. Waveform and

spectrogram showing frequency profile over time, amplitude being

shown with a relative decibels (dB) colour scale. 9th April 2007,

25.6uC, 81% h.r. 170 Hz high-pass filtered to remove noise due to

wind. See Sound S3.

Found at: doi:10.1371/journal.pone.0004065.s007 (0.56 MB

PNG)

Figure S8 Sample of a second dawn chorus [6.30–6.45 pm]

recorded in the intact Kichi Hills forest. Waveform and

spectrogram showing frequency profile over time, amplitude being

shown with a relative decibels (dB) colour scale. 12th April 2007,

23.5uC, 93% h.r. 170 Hz high-pass filtered to remove noise due to

wind. See Sound S4.

Found at: doi:10.1371/journal.pone.0004065.s008 (0.75 MB

PNG)

Table S1 List of the 45 species recordings used when testing H

and D indexes. They were randomly divided in three groups of

five birds, five amphibians and five insects each.

Found at: doi:10.1371/journal.pone.0004065.s009 (0.05 MB

DOC)

Table S2 Reference chorus series used when testing the H test.

Ten series of ten choruses were generated with the recordings

listed and coded in Table S1.

Found at: doi:10.1371/journal.pone.0004065.s010 (0.04 MB

DOC)

Table S3 Reference chorus series used when testing the D index.

Ten series of eight choruses were generated with the recordings

listed and coded in Table S1.

Found at: doi:10.1371/journal.pone.0004065.s011 (0.06 MB

DOC)

Table S4 Local meteorological conditions during recording

sessions in the two Tanzanian lowland coastal forests. Results are

given as mean6sd (sample size).

Found at: doi:10.1371/journal.pone.0004065.s012 (0.03 MB

DOC)

Audio S1 Example of a simulated chorus. The chorus, which

originally lasts 30 s, includes 5 birds (Fringilla coelebs, Parus

major, Strix aluco, Troglodytes troglodytes, Turdus merula), 5

amphibians (Alytes obstetricans, Bufo bufo, Hyla arborea,

Pelodytes punctatus, Rana ridibunda), and 5 insects (Chrysocraon

dispar, Cicada orni, Gryllus campestris, Metrioptera bicolor,

Oecanthus pellucens). See Fig. 1.

Found at: doi:10.1371/journal.pone.0004065.s013 (0.07 MB

MP3)

Audio S2 81% h.r. 170 Hz high-pass filtered to remove noise

due to wind. See Fig. S3.

Found at: doi:10.1371/journal.pone.0004065.s014 (0.24 MB

MP3)

Audio S3 Sample of a first dusk chorus in the degraded

Ngumburuni forest. 7th April 2007, 28.9uC, 74% h.r. 170 Hz

high-pass filtered to remove noise due to wind. See Fig. S4.

Found at: doi:10.1371/journal.pone.0004065.s015 (0.24 MB

MP3)

Audio S4 Sample of a second dusk chorus in the degraded

Ngumburuni forest. 6th April 2007, 28uC, 84% h.r. 170 Hz high-

pass filtered to remove noise due to wind. See Fig. S5.

Found at: doi:10.1371/journal.pone.0004065.s016 (0.24 MB

MP3)

Audio S5 Sample of a dawn chorus in the intact Kichi Hills

forest. 10th April 2007, 22.8uC, 94% h.r. 170 Hz high-pass

filtered to remove noise due to wind. See Fig. S6.

Found at: doi:10.1371/journal.pone.0004065.s017 (0.24 MB

MP3)

Audio S6 Sample of a first dusk chorus in the intact Kichi Hills

forest. 9th April 2007, 25.6uC, 81% h.r. 170 Hz high-pass filtered

to remove noise due to wind. See Fig. S7.

Found at: doi:10.1371/journal.pone.0004065.s018 (0.24 MB

MP3)

Audio S7 Sample of a second dusk chorus in the intact Kichi

Hills forest. 12th April 2007, 23.5uC, 93% h.r. 170 Hz high-pass

filtered to remove noise due to wind. See Fig. S8.

Found at: doi:10.1371/journal.pone.0004065.s019 (0.24 MB

MP3)
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Jérôme Casas (Université de Tours, France), for their helpful comments on

the manuscript. We also thank Haji H. Mkungura, Kassim Kindinda and

Biodiversity Acoustic Survey

PLoS ONE | www.plosone.org 8 December 2008 | Volume 3 | Issue 12 | e4065



Bernard Lumongolo for their assistance during field work. We thank Klaus

Riede and an anonymous reviewer for their constructive comments.
Author Contributions

Conceived and designed the experiments: JS SP OH SD. Performed the

experiments: JS OH SD. Analyzed the data: JS SP. Contributed reagents/

materials/analysis tools: JS SP. Wrote the paper: JS SP OH SD.

References

1. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon

21: 213–251.
2. Peet RK (1974) The measurement of species diversity. Ann Rev Ecol Syst 5:

285–307.
3. Pimm SL, Russel GJ, Gittleman JL (1995) The future of biodiversity. Science

269: 347–350.

4. Pimm S, Lawton L (1998) Ecology: planning for biodiversity. Science 279:
2068–2069.

5. Purvis A, Agapow P-M, Gittleman JL, Mace GM (2000) Nonrandom extinction
and the loss of evolutionary history. Science 288: 328–330.

6. Balmford A, Crane P, Dobson A, Green RE, Mace GM (2005) The 2010

challenge: data avaibility, information needs and extraterrestrial insights. Phil
Trans R Soc B 360: 221–228.

7. McKnight MW, White PS, McDonald RI, Lamoreux JF, Sechrest W, et al.
(2007) Putting beta-diversity on the map: broad-scale congruence and

coincidence in the extremes. PLoS Biology 5: e272.
8. Heywood VH (1995) Global biodiversity and assessment. New York: Cambridge

University Press. 1152 p.

9. Hill D, Fasham M, Tucker G, Shewry M, Shaw P (2005) Handbook of
biodiversity methods: survey, evaluation and monitoring. Cambridge: Cam-

bridge University Press. 588 p.
10. Lawton JH, Bignell DE, Bolton B, Bloemers GF, Eggleton P, et al. (1998)

Biodiversity inventories, indicator taxa and effects of habitat modification in

tropical forest. Nature 391: 72–76.
11. Rossman AY (1998) Protocols for an All Taxa Biodiversity inventory of fungi in

a Costa Rican conservation area. Boone, N.C.: Parkway Publishers. 196 p.
12. Magurran AE (2004) Measuring biological diversity. Malden, USA: Blackwell.

260 p.

13. Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of
biodiversity. Phil Trans R Soc Lond Ser B: Biol Sc 345: 75–79.

14. Ricketts TH, Dinerstein E, Olson DM, Loucks C (1999) Who’s where in North
America? BioScience 49: 369–381.

15. Mittermeier RA, Forsyth A (1993) Conservation priorities: the role of RAP. In
Parker TA, Holst BK, Emmons LH, Meyer JR, eds. Rapid assessment program:

a biological assessment of the Columbia River Forest Reserve, Toledo District,

Belize. Washington DC: Conservation International. ii p.
16. Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species:

a case study. Cons Biol 10: 99–109.
17. Basset Y, Novotny V, Miller SE, Pyle RL (2000) Experience with paratax-

onomists and digital photography in Papua New Guinea and Guyana.

Bioscience 50: 899–908.
18. Janzen DH (2004) Setting up tropical biodiversity for conservation through non-

damaging use: participation by parataxonomists. J Appl Ecol 41: 181–187.
19. Krell F-T (2004) Parataxonomy vs. taxonomy in biodiversity studies - pitfalls and

applicability of ‘morphospecies’ sorting. Biodiv Cons 13: 795–812.
20. Bradbury JW, Vehrencamp SL (1998) Principles of animal communication.

Sunderland, Massachusetts: Sinauer Associates. 882 p.

21. Parsons S, Jones G (2000) Acoustic identification of twelve species of
echolocating bat by discriminant function analysis and artificial neural networks.

J Exp Biol 203: 2641–2656.
22. Chen Z, Maher RC (2006) Semi-automatic classification of bird vocalizations

using spectral peak tracks. J Acous Soc Am 120: 2974–2984.

23. Brandes TS, Naskrecki P, Figueroa HK (2006) Using image processing to detect
and classify narrow-band cricket and frog calls. J Acous Soc Am 120:

2950–2957.
24. Chesmore ED (2001) Application of time domain signal coding and artificial

neural networks to passive acoustical identification of animals. Appl Acous 62:
1359–1374.

25. Riede K (1997) Bioacoustic monitoring of insect communities in a Bornean

rainforest canopy. In: Stork NE, Adis J, Didham RK, eds. Canopy arthropods.
London: Chapman & Hall. pp 442–452.

26. Hammer Ø, Barret N (2001) Techniques for studying the spatio-temporal
distribution of animal vocalizations in tropical wet forests. Bioacoustics 12:

21–35.

27. Shannon CE, Weaver W (1949) The mathematical theory of communication.
Urbana: Illinois University Press. 144 p.

28. Riede K (1993) Monitoring biodiversity: analysis of Amazonian rainforest
sounds. Ambio 22: 546–548.
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