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Abstract

Background: Identification of human leukocyte antigen class I (HLA-I) restricted cytotoxic T cell (CTL) epitopes from
influenza virus is of importance for the development of new effective peptide-based vaccines.

Methodology/Principal Findings: In the present work, bioinformatics was used to predict 9mer peptides derived from
available influenza A viral proteins with binding affinity for at least one of the 12 HLA-I supertypes. The predicted peptides
were then selected in a way that ensured maximal coverage of the available influenza A strains. One hundred and thirty one
peptides were synthesized and their binding affinities for the HLA-I supertypes were measured in a biochemical assay.
Influenza-specific T cell responses towards the peptides were quantified using IFNc ELISPOT assays with peripheral blood
mononuclear cells (PBMC) from adult healthy HLA-I typed donors as responder cells. Of the 131 peptides, 21 were found to
induce T cell responses in 19 donors. In the ELISPOT assay, five peptides induced responses that could be totally blocked by
the pan-specific anti-HLA-I antibody W6/32, whereas 15 peptides induced responses that could be completely blocked in
the presence of the pan-specific anti-HLA class II (HLA-II) antibody IVA12. Blocking of HLA-II subtype reactivity revealed that
8 and 6 peptide responses were blocked by anti-HLA-DR and -DP antibodies, respectively. Peptide reactivity of PBMC
depleted of CD4+ or CD8+ T cells prior to the ELISPOT culture revealed that effectors are either CD4+ (the majority of
reactivities) or CD8+ T cells, never a mixture of these subsets. Three of the peptides, recognized by CD4+ T cells showed
binding to recombinant DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 molecules in a recently developed biochemical
assay.

Conclusions/Significance: HLA-I binding 9mer influenza virus-derived peptides induce in many cases CD4+ T cell responses
restricted by HLA-II molecules.
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Introduction

Influenza is a highly contagious, airborne respiratory tract

infection associated with a significant disease burden during

seasonal influenza outbreaks every year. In addition, the

emergence of a new influenza subtype A (H5N1) [1], which can

be directly, although rarely, transmitted from birds to humans,

and especially the recent outbreak of swine-origin H1N1 virus

which is transmitted to and spread among humans are potential or

actual pandemic flu threats, respectively [2,3]. Currently,

vaccinations using inactivated or live-attenuated influenza virus

preparation remain the primary method of prevention, both of

which are dominated by the antibody-mediated immune responses

to the highly variable surface glycoproteins, hemagglutinin (HA)

and neuraminidase (NA). However, the virus escapes vaccine-

induced neutralizing antibodies through constantly changing the

composition of its surface antigens. This complicates the develop-

ment of cross-protective immunity i.e. the ability to cover several

different isolates; rather, influenza vaccines must regularly be

updated to match existing seasonal epidemic flu isolates.

It is known that CD8+ cytotoxic T lymphocyte (CTL) responses

play a major role in the control of primary influenza virus infection

[4,5]. In mice, CTLs against conserved epitopes contribute to

protective immunity against influenza viruses of various subtypes

[6,7]. The use of CTL epitopes, especially conserved ones shared

by multiple viral strains, and identification of HLA class I (HLA-I)

binding immunogenic peptides, might therefore be basis for a

robust vaccine strategy against emerging influenza epidemics.

We have previously performed a genome-, pathogen-, and

HLA-wide search for conserved CTL epitopes derived from

influenza A virus [8]. The predicted CTL epitopes were

synthesized and tested by biochemical methods for binding to

the appropriate recombinant HLA-I protein, and by IFNc
ELISPOT analyses for CTL immune responses using PBMC

PLoS ONE | www.plosone.org 1 May 2010 | Volume 5 | Issue 5 | e10533



from healthy, adult and HLA-typed Danish subjects, assumed to

have been exposed to multiple influenza infections during the past.

Using these technologies we identified 10 new antigenic flu-

derived peptide epitopes [8]. However, this search for conserved

CTL epitopes skewed the selection towards peptides derived from

polymerase and nucleoproteins, whereas the classical flu antibody

targets, HA and NA, only included 8 of the 167 predicted CTL

epitopes. Although the surface glycoproteins HA and NA are very

variable over time, they might still contain pivotal CTL epitopes

and our previous demands for conservation among a large number

of viral strains might have missed important HA- and NA-derived

CTL epitopes.

In our recent work on pox-derived epitopes [9,10], we became

aware that the measured immune responses of peripheral blood

mononuclear cells (PBMC) in vitro by IFNc ELISPOT towards

high affinity HLA-I binding 9mer peptides, were not solely

restricted by the HLA-I molecule of the peptide presenting cells.

By the use of anti-CD4, anti-CD8, anti-HLA-I, and anti-HLA

class II (HLA-II) blocking antibodies, and by performing CD4+

and CD8+ T cell depletion experiments on PBMC prior to

ELISPOT expansion cultures, we demonstrated that T cells in the

peripheral blood of vaccinia virus vaccinated and responding

individuals gave rise to both the expected typical HLA-I restricted,

CD8+ T cell dependent responses, as well as unexpected responses

mediated by CD4+ T cells and apparently restricted by HLA-II

[10].

In the present study, we have screened 9mer peptide epitopes

from available influenza A viral protein sequences including the

highly variable surface glycoproteins HA and NA by using the

NetCTL algorithm for epitope prediction [11] and the EpiSelect

algorithm for broad coverage of all available Influenza A strains

[12]. In addition, we analyzed whether the predicted HLA-I

binding 9mer peptides induced reactivity by CD4+ T cells.

Twenty-one peptides of the 131 HLA-I binding peptides studied,

were found to induce T cell responses in donors typed for the

corresponding HLA-class I allele. However, only 5 peptides

induced strictly CD8+ T cell dependent HLA-I restricted responses

whereas 16 peptides induced CD4+ T cell dependent responses.

Results

Prediction of influenza A CTL epitopes
Bioinformatics (NetCTL) was used to identify broadly immuno-

genic influenza A-specific CTL epitopes restricted to one of the 12

HLA-I supertypes [13]. A number of predicted epitopes, that

together constitute a broad coverage among different influenza A

strains, were selected using the EpiSelect algorithm used

previously to select HIV-1 epitopes [12]. In total, 146 predicted

CTL epitopes were selected. In average, each predicted epitope is

found in 442 different strains and Table 1 specifies this according

to the protein in question. The influenza strains initially used for

predicting epitopes mainly belong to five subtypes: H3N2, 124

epitope predicted (ep); H1N1, 68 ep; H5N1, 35 ep; H2N2, 55 ep;

and H1N2, 86 ep. The Table shows that a predicted HA1 epitope

is on average found in 35% of the sequenced HA1 proteins, while

a predicted NP epitope is on average found in 84% of the

sequenced NP proteins. These percentages reflect the level of

protein conservation.

Biochemical validation of HLA-I binding
131 of the 146 predicted HLA-I binding epitopes were

synthesized (the remainder were rejected due to problems with

synthesis or dissolving of the peptides). To determine whether the

peptides indeed were binders to the relevant HLA-I proteins, they

were tested for binding to each of the 12 HLA-A or –B supertypes

in a biochemical assay (see Materials and Methods) (Table 2).

Consistent with previous classifications, the binding affinity

(KD) of the 131 predicted 9mer peptides can be divided into

groups of high (KD#50 nM) and intermediate affinity binders

(50 nM,KD#500 nM), respectively, as well as low affinity binders

(500 nM,KD#5000 nM), and peptides with no affinity

(KD.5000 nM) for MHC-I molecules (four peptides). As shown

in the Table 2, 87 of the 131 predicted peptides, or 66%, turned

out to be high or intermediate affinity binders.

Immunogenicity of the predicted peptides
All 131 peptides were tested for their ability to stimulate

influenza A-specific, HLA-matched T cells from a cohort of HLA-

matched healthy Danish subjects aged 35–65, ie. assumed to have

been exposed previously to natural influenza A virus. The peptides

were evaluated for their ability to stimulate IFNc production in an

ELISPOT assay by PBMC from HLA-matched donors. In order

to expand the frequency of peptide-specific T cells, PBMC were

exposed for 10 days to peptides prior to performing the ELISPOT

assays. Positive reactivity towards peptides was confirmed at least

twice in the same donor as well as in other HLA supertype

matched donors. IFNc spot formation was detected for 21 peptides

with binding affinity for one of the ten supertypes (A1, A2, A3,

A24, A26, B7, B8, B44, B58, and B62). The ELISPOT data for

these 21 antigenic peptides are shown in Table 3 and demonstrate

that IFNc spot-forming cell numbers per 105 PBMC varied for the

different peptides as well as between donors reactive for the same

peptide (latter data not included). Table 3 also shows that some

peptides were recognized by several donors whereas other peptides

were only recognized by T cells from a single donor. Of note is

that the four peptides (PF-110, PF-140, PF-146 and PF-148)

without binding affinity for the predicted HLA supertypes HLA-

A26, B62, B7 and B7, respectively, were recognized by PBMC of

several donors in a HLA-II restricted manner.

Reactivity to the majority of peptides is blocked by a pan
anti-HLA-II antibody

To ascertain whether, or not, CD4+ T cells are involved in the

anti-influenza responses documented above, a pan-specific anti-

HLA-II blocking antibody IVA12 as well as the anti-pan HLA-I

antibody W6/32 were added into individual ELISPOT micro-

cultures (see Materials and Methods). As shown in Table 4,

Table 1. Distribution of the 146 epitopes in different
influenza A proteins, and coverage of the predicted epitopes
against different strains of influenza A viruses.

Protein name

Predicted epitopes in
percent of the number
of sequenced proteins

Hemagglutinin 1 (HA1) 35%

Hemagglutinin 2 (HA2) 51%

Neuraminidase (NA) 47%

Nonstructural protein 1 (NS1) 8%

Nonstructural protein 2 (NS2) 69%

Matrix protein 1 (M1) 51%

Matrix protein 2 (M2) 69%

Nucleoprotein (NP) 84%

doi:10.1371/journal.pone.0010533.t001

HLA-I Peptides and CD4+ T Cell
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reactivity towards 15 of the antigenic peptides, including the four

HLA-I nonbinders, was fully inhibited by IVA12, but not, or only

partially, by W6/32 antibody. Of the remaining 6 peptides

reactivity against 5 peptides could be blocked by W6/32 but not

by IVA12 antibody, whereas neither of the antibodies blocked

reactivity against peptide PF137.

Table 2. Measured HLA-I/peptide affinity of the predicted peptide binders.

HLA supertype KD
a #50b 50, KD #500b 500, KD #5000 KD .5000 Total

A1 1 4 2 7 14

A2 6 1 1 0 8

A3 2 5 3 0 10

A24 5 3 0 1 9

A26 4 3 1 3 11

B7 4 3 1 5 13

B8 0 3 0 5 8

B27 3 6 3 1 13

B39 2 4 1 3 10

B44 7 6 0 1 14

B58 2 5 3 0 10

B62 2 6 0 3 11

Total 38 49 15 29 131

aKD, the equilibrium dissociation constant; a measurement of the affinity of peptides binding to the relevant HLA molecules in nM, the lower the value, the stronger the
binding.

bHigh and intermediate peptide binding affinity.
doi:10.1371/journal.pone.0010533.t002

Table 3. IFNc ELISPOT analysis of peptide-specific donor responses.

Peptide # Name Sequence HLA KD (nM)
Donors
tested

Responding
donor # - Peptide a +Peptide a

PF-96 NP140–148 HSNLNDTTY A1 130 16 32 161 3867

PF-103 NS1128–136 IMLKANFSV A2 1 15 1 161 1864

PF-116 NA148–156 TIHDRIPHR A3 62 16 29 161 131613

PF-106 M1109–117 FYGAKEIAL A24 42 6 21, 25 061 14968

PF-109 HA407–415 KFHQIEKEF A24 1 6 21, 25 161 222614

PF-110 HA315–323 VTIGECPKY A26 20000 4 25 060 247613

PF-113 NS1142–150 ETIVLLRAF A26 28 4 25 060 159617

PF-145 NA281–289 YPRYPGVRC B7 11 17 21, 31 1165 106612

PF-146 M224–32 DPLVVAASI B7 20000 17 23, 31 362 4268

PF-147 HA303–311 LPFHNVHPL B7 6 17 6, 9, 10, 23, 31 361 210611

PF-148 HA544–552 LVSLGAISF B7 20000 17 6, 9, 10, 15, 21,
23, 25, 31

662 157613

PF-150 HA307–315 LPFQNVHPV B7 161 17 8, 9, 10, 23,
31, 32

262 139610

PF-152 HA324–332 YVKQNTLKL B7 72 17 32 769 4665

PF-154 HA266–274 IAPWYAFAL B8 7559 9 14, 19, 23 162 289630

PF-156 M1208–216 QARRMVQAM B8 87 9 14,19, 23 261 149640

PF-130 b NP251–259 AEIEDLIFL B44 1 10 2, 9, 13, 27 663 8569

PF-132 M17–15 VETYVLSII B44 13 10 1, 2, 9 161 2466

PF-135 NS1179–187 GVLIGGLEW B58 553 5 35, 36 161 5169

PF-137 NS26–14 VSSFQDILL B58 687 5 35 261 1163

PF-140 M239–47 ILWILDRLF B62 20000 6 29 161 1764

PF-141 NA159–167 LMNELGVPF B62 194 6 17 161 97615

aSpot forming cell numbers represent an individual donor (in bold) and entries are the means of six individual assay cultures and in the absence or presence of peptide;
differences are significant at P,0.05.

bIndicates already known epitope.
doi:10.1371/journal.pone.0010533.t003

HLA-I Peptides and CD4+ T Cell
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Depletion of CD4+ and CD8+ T cells from PBMC
To obtain direct evidence for the CD4 or CD8 phenotype of the

responding T cells depicted in Table 4, T cell reactivity was tested

on a number of selected peptides (Fig. 1) for which the reactivity

was blocked by either anti-MHC-I or MHC-II antibodies

(Table 4). PBMC were depleted for either CD4+ or CD8+ T cells

prior to exposure to peptides. Figures 1A–E show reactivity

obtained from PBMC of donor 21, 25, 29, 23 and 35 induced by

peptides PF106, PF109, PF116, PF148 and PF137, respectively. It

is evident that PBMC depleted of CD8+ T cells respond

significantly in ELISPOT culture, whereas the CD4+ T cell-

depleted PBMC do not respond at all. These results thus support

the data in Table 4, although in some cases, the presence of W6/

32 partially blocks reactivity (see Table 4 and discussion).

Together, the data above indicate, that the CD4+ T cell- responses

are restricted by HLA-II molecules. Despite not being blocked by

the W6/32 or IVA12 antibodies (see Table 4), peptide PF137

induces a CD4+ T cell response (Fig. 1E). Figure 1F and G show

that depletion of CD8+ T cells totally removed the responses

against peptides PF96 and PF145 whereas depletion of CD4+ T

cells did not inhibit responses in the ELISPOT culture thus

confirming the blocking by W6/32 antibody (Table 4) of these

responses. Collectively, the T cell mediated reactivity against the

21 antigenic 9mer flu-derived peptides studied here suggest that

the peptides are recognized either by CD4+ or CD8+ T cells but

not by both cell subsets. Thus, the two sets of responses appear to

be mutually independent.

HLA-II subtype specific blocking of peptide reactivity
The peptide responses blocked by an anti-pan HLA-II antibody

(IVA12) (Table 4) were further analyzed using HLA-II subtype

specific antibodies for blocking of IFNc spot formation. PF-141

was not studied due to loss of donor 17 PBMC. Fig. 2 shows the

results. Eight individual peptide reactivities were totally blocked in

the presence of anti-HLA-DR antibody and six peptide reactivities

were blocked in the presence of anti-HLA-DP antibody whereas

the presence of anti- HLA-DQ antibody was without any effect. As

observed with the IVA12 antibody, the reactivity against peptide

PF137 was not inhibited by either of the antibodies, although the

separation experiment in Fig. 1E clearly shows that the reactivity is

mediated by CD4+ T cells.

Donor HLA-II subtypes and peptide binding to HLA-DR
molecules

Donors giving rise to responses blocked by anti-HLA-I and –II

antibodies were typed for HLA-A, B and DR, DQ and DP B loci

expression by DNA sequencing (see Materials and Methods).

Table 5 shows the typing data and the number of peptide epitopes

recognized by individual donors.

A high-throughput HLA-II peptide binding assay, recently

developed in our laboratories, allows the affinities of HLA-II/

peptide interaction to be determined in the nanomolar range [14].

The 14 peptides recognized by CD4+ T cells (Fig. 1) and for

which reactivity was blocked by anti-DR or anti-DP antibodies

Table 4. Enzyme-linked immunospot (ELISPOT) responses against antigenic peptides in the absence or presence of HLA class I or
HLA class II blocking antibodies.

SFC/16105 PBMC+Peptide

Peptide Name Sequence HLA-I KD (nM) Donor# Isotype W6/32 IVA12

PF-96 a NP140–148 HSNLNDTTY A1 130 32 1061 661* c 1461

PF-103 NS1128–136 IMLKANFSV A2 1 1 2462 2365 161 *

PF-116 NA148–156 TIHDRIPHR A3 62 29 120621 121610 962 *

PF-106 M1109–117 FYGAKEIAL A24 42 21 10464 6566 * 1463 *

PF-109 HA407–415 KFHQIEKEF A24 1 25 60624 7368 162 *

PF-110 HA315–323 VTIGECPKY A26 20000 25 163628 16564 563 *

PF-113 NS1142–150 ETIVLLRAF A26 28 25 9666 105616 261*

PF-145 a NA281–289 YPRYPGVRC B7 11 21 2964 1065* 3967

PF-146 M224–32 DPLVVAASI B7 20000 31 1761 1863 262*

PF-147 HA303–311 LPFHNVHPL B7 6 23 6263 61616 262 *

PF-148 HA544–552 LVSLGAISF B7 20000 23 147611 187623 75649 *

PF-150 HA307–315 LPFQNVHPV B7 161 31 15067 130613 362 *

PF-152 HA324–332 YVKQNTLKL B7 72 32 1063 562 061 *

PF-154 HA266–274 IAPWYAFAL B8 7559 23 38615 38610 161 *

PF-156 M1208–216 QARRMVQAM B8 87 14 5964 67616 262 *

PF-130 a,b NP251–259 AEIEDLIFL B44 1 9 7363 4064 * 8162

PF-132 a M17–15 VETYVLSII B44 13 2 3468 261 * 43613

PF-135 a NS1179–187 GVLIGGLEW B58 553 36 3067 464 * 26610

PF-137 NS26–14 VSSFQDILL B58 687 35 1864 1661 1964

PF-140 M239–47 ILWILDRLF B62 20000 29 3263 43619 161*

PF-141 NA159–167 LMNELGVPF B62 194 17 152621 66621* 262 *

aReactivity inhibited by anti-HLA class I mAb represents HLA-I restricted epitopes.
bIndicates already known epitope.
c*significant inhibition, P,0.05.
doi:10.1371/journal.pone.0010533.t004
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(Fig. 2), respectively, were tested for binding to recombinant

HLA-DRB1*0101, -DRB1*0301, -DRB1*0302, -DRB1*0401,

-DRB3*0301, -DRB5*0101 chains combined with the non poly-

morphic DRA1*0101 chain and for binding to DPA1*0103/

DPB1*0401 molecules. Table 6 shows the results. As positive

controls for binding, two pan HLA-DR/DP binding 13 and 15mer

peptides were included. Only those peptides showing a binding

affinity ,5000 nM are included in Table 6. Three of the 8 peptides

(IMLKANFSV, ETIVLLRAF, YVKQNTLKL), for which reactiv-

ity was blocked by anti-DR antibody, showed binding to

DRA1*0101/DRB1*0401 or DRA1*0101/DRB5*0101 also ex-

pressed by the reactive donors, whereas none of the peptides, for

which reactivity was blocked by anti-DP antibody, showed binding

to DPA1*0103/DPB1*0401, however, two of these peptides showed

binding to DR molecules expressed by the reactive donors.

Discussion

Previously, we have performed a genome-, pathogen-, and

HLA-wide search for conserved CTL epitopes in influenza A virus

[8]. However, this search for conserved CTL epitopes skewed the

selection towards the polymerase and nucleoprotein, whereas the

classical antibody targets, HA and NA, were found to contain only

a few (8) of the 167 predicted CTL epitopes [8]. Instead of

searching for conserved CTL epitopes, we attempted in the

present study, to select a number of predicted HLA-I binding

influenza A CTL epitopes, which constitute a broad coverage of all

available influenza A strains. According to this criterion, most of

the predicted CTL epitopes from the PB1, PB2, and PA proteins

were found to be shared with those tested in our previous

publication [8], and for the purpose of novelty, these proteins were

therefore excluded from the present study.

To increase the chance for the discovery of new peptide

epitopes, we tested the peptides in all HLA-I supertype matched

donors available to us. In the present work, we discovered 20 new

immunogenic peptides, and confirmed one known, of 131 peptides

tested as compared to the discovery of 10 new and 3 known

peptides of 167 flu peptides tested in our previous report [8]. In the

latter case, the peptides were only tested in a few of the available

HLA-matched donors.

In recent work on pox-derived epitopes, we found that

immune responses of donor PBMC in vitro, as measured by IFNc
ELISPOT towards HLA-I binding 9 mer peptides, were either

CD8+ or CD4+ T cell-dependent and that the latter appeared to

be restricted by HLA-II molecules [10]. This observation led us

to investigate whether the predicted HLA-I binding flu peptides

of the present study induce CD4+ T cell-dependent responses.

The key finding of the present study is that 16 of 131 9mer

peptides derived from influenza A viral proteins induce CD4+ T

cell dependent responses in vitro from presumably immune

donors. These responses were, with one exception, all blocked

by anti-HLA-II antibody. In addition, 8 peptide responses were

blocked by an anti-HLA-DR antibody and 6 peptide responses

by an anti-HLA-DP antibody. Surprisingly, only 5 peptide

responses (including the known peptide PF130 [15,16]), were

blocked by a HLA-I antibody. For selected peptides, CD4+ and

CD8+ T cell depletion experiments showed that CD4+ T cell

responses were blocked by anti-HLA-II antibody, whereas

CD8+ T cells were blocked by anti-HLA-I antibody. As shown

in Table 4, the anti-HLA-I antibody in fact showed partially

blocking of reactivity for some peptide epitopes (PF106 and

PF141) that, according to the cell depletion experiments (Fig. 1)

induced CD4+ T cell, but not CD8+ T cell, responses. Such

partial blocking might reflect anti-HLA-I antibody-mediated

apoptosis of activated effector CD4+ T cells as previously

demonstrated [17,18]. The fact that CD4+ T cell-mediated

responses against PF137 is not inhibited by any of the two anti-

HLA antibodies might suggest an excessively high stimulatory

binding avidity of peptide specific CD4+ T cells.

It is generally accepted that HLA class I binding peptides are

composed of 8-11 amino acids, whereas HLA class II binding

peptides consist of 15–20 amino acids being recognized by CD8+

and CD4+ T cells respectively [19–21]. Both HLA-I and -II

molecules bind to primary and secondary peptide anchor motifs

covering the central 9-10 amino acids. Thus, considering this

common structural basis for peptide binding to HLA-I and –II

molecules, the present finding of 9mer peptide binding to HLA-II

molecules is not unexpected (also documented in the immune

epitope database www.Immuneepitope. org). As mentioned

above, we have previously reported that high-affinity HLA-I

binding variola-derived 9mer peptides (KD ,6 nM) induce CD4+

T cell responses ex vivo more than 30 years post-vaccinia virus

vaccination, which can be blocked by anti-HLA-II antibody [10].

The same phenomenon was observed here: in silico predicted

HLA-I binding 9mer peptides – this time derived from influenza

A viral proteins - induce CD4+ T cell mediated responses which

appear to be HLA-II restricted as T cell responses are totally

blocked by a pan HLA-II antibody. In contrast to our previous

study [10], we found no correlation between CD4+ T cell

reactivity and HLA-I binding affinity of peptides. The induction

of immune responses in the present study was not limited to high-

affinity HLA-I binding peptides. Rather, we found examples of

peptides with intermediate, low or no binding affinities for its

HLA-I allele. Such peptides were all capable of stimulating strong

CD4+ T cell responses, again suggesting that these 9mer peptides

are presented by HLA-II molecules. As indicated from data in

Table 3 and 4 only half of the HLA-II restricted responses were

observed in more than one donor whereas four of the five HLA-I

restricted responses were observed in at least two donors. This

difference might reflect the relatively low binding affinity of 9mer

peptides for HLA-II (Table 6) as opposed to their binding affinity

for HLA-I (Table 4), thereby making the ELISPOT assay less

sensitive as a readout for antigenic HLA-II binding 9mer

peptides.

Using a high-throughput HLA-II peptide binding assay,

recently developed in our laboratories [14], we found that 3 of 8

peptides, for which reactivity was blocked by anti-DR antibody,

bind to donor HLA-DR subtypes. These numbers are higher than

expected since only one quarter of the HLA-DR alleles expressed

by the peptide reactive donors was assayed for peptide binding.

Regarding the peptides, for which reactivity was blocked by anti-

DP antibody, it was quite surprising to find that none of these

peptides bind to DPA1*0103/DPB1*0401 although the majority

of donors in our material express this common HLA-II subtype. At

present we have no explanation for this negative observation.

Figure 1. 9mer flu-derived peptides induce CD4+ or CD8+ T cell responses. Peripheral blood mononuclear cells (PBMC) obtained from
donors 21 (A), 25 (B), 29 (C) 23 (D), 35 (E), 32 (F) and 21 (G) were depleted of CD4+ T cells or CD8+ T cells and incubated with the indicated peptides for
10 days. Prior to testing, cells were harvested, washed and incubated in enzyme-linked immunospot (ELISPOT) plates for 20 h in the absence or
presence of the indicated peptides. Results are expressed as the mean spot-forming cell values of four replicate ELISPOT microcultures, each
containing 16105 CD4+ or CD8+ T cell-depleted PBMC. *, P,0.05 (Student’s t- test).
doi:10.1371/journal.pone.0010533.g001

HLA-I Peptides and CD4+ T Cell
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Figure 2. Flu-derived 9mer peptides induce HLA-DR- or -DP restricted CD4+ T cell responses. PBMCs from responding donors were
incubated with the indicated peptides for 10 days. Prior to testing, cells were harvested, washed and exposed to the peptides in ELISPOT plates for
20 h in the absence or presence of anti-HLA-DP, DQ or DR mAbs. Results are expressed as the mean SFC numbers (6 standard deviation) of four
replicate ELISPOT microcultures. Bars represent standard deviation; *significant inhibition, P,0.05 (Student’s t- test).
doi:10.1371/journal.pone.0010533.g002
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Frahm et al. [22] have recently tried to determine the HLA class

I promiscuity of previously well-defined CTL epitopes by testing

responses in 100 subjects to a set of 242 HIV and EBV-derived

CTL epitopes using PBMC in IFNc ELISPOT assays, regardless

of the individual’s HLA type. Fifty percent of all positive responses

were detected in individuals who did not express originally

described restricting HLA-I allele. The authors concluded that

epitope presentation and CTL recognition might occur frequently

Table 5. HLA class I and II subtypes for donors used in the present study.

Sequence-based HLA-I typing Sequence-based HLA-II typing

Donor# Sex Age (y) HLA-A HLA-B DRB1 DRB1 DRB345 DRB DQB1 DQB1 DPB1 DPB1 EPI a

1 M 36 *0201 *0301 *3501 *4402 *0101 *1101 3*0202 - *0301 *0501 *0401 - 2

2 M 47 *0101 *0301 *4901 *4001 *0301 *1301 3*0101 - *0201 *0603 *0201 *1001 2

6 M 41 *0101 *0301 *0801 *3501 *0101 *0301 3*0101 - *0201 *0501 *0401 *0101 2

9 F 43 *0301 *3201 *0702 *4402 *0801 *1501 5*0101 - *0402 *0602 *0401 - 5

10 F 38 *0301 *2501 *0702 *1801 *0401 *1501 4*0103 5*0101 *0302 *0602 *0401 - 3

13 M 60 *0201 *0201 *3901 *4402 *0701 *1501 4*0103 5*0101 *0303 *0602 *0401 - 1

14 M 58 *0101 *0201 *0801 *3701 *0301 *0901 3*0101 4*0103 *0201 *0303 *0401 - 2

15 M 44 *0201 *2601 *0702 *1401 *0701 *1301 3*0101 4*0101 *0202 *0603 *0401 *0402 1

17 F 35 *0201 *2902 *4403 *1501 ndb nd nd nd nd nd nd nd 1

19 F 46 *0101 *0201 *0801 *4001 *0301 *1302 3*0101 3*0301 *0201 *0604 *0401 - 2

21 M 54 *0101 *2402 *0702 *3901 *1101 *1501 3*0202 5*0101 *0301 *0602 *0402 *0901 4

23 F 58 *0101 *2402 *0702 *0801 *0101 *0301 3*0101 - *0201 *0501 *0401 - 6

25 F 62 *2402 *2601 *0702 *3801 *0301 *1501 3*0202 5*0101 *0201 *0602 *0201 *0402 5

27 F 43 *0201 *6801 *5701 *4402 *0101 *0701 4*0103 - *0303 *0501 *0401 *0402 1

29 M 52 *0301 *1101 *1302 *1302 *0701 *1302 3*0301 4*0103 *0202 *0604 *0401 *0402 2

31 F 63 *0201 *0301 *0701 *5601 *1101 *1501 3*0202 5*0101 *0301 *0602 *0402 *0901 5

32 M 55 *0201 *3201 *1501 *5101 *0401 *1101 3*0202 4*0103 *0301 *0302 *0401 - 3

35 F 43 *2902 *3303 *5801 *2705 *0101 *0301 3*0202 - *0201 *0501 *0401 *0402 2

36 F 50 *0201 *2402 *5701 *3508 *0101 *0701 4*0103 - *0303 *0501 *0401 - 1

anumber of epitopes recognized by the donor.
bnd, not done.
doi:10.1371/journal.pone.0010533.t005

Table 6. Affinities of peptides to MHC-II alleles.

Peptide sequence DRB1*0101 DRB1*0301 DRB1*0302 DRB1*0401 DRB3*0301 DRB5*0101
DPA1*0103/
DPB1*0401

HA306–318 YKYVKQNTLKLAT 108 a 26 53 15 3 12 NB

hypothetical
protein
239–253 [27]

YILLKKILSSRFNQM 435 20 156 107 3 17 25

DR/Donor 1 b IMLKANFSV (PF-103) 3433 c NB NB 1387 18 NB NB c

DR/Donor 25 ETIVLLRAF (PF-113) 3729 NB c NB NB NB 780 c NB

DP/Donor 23 LVSLGAISF (PF-148) 4340 c NBc NB NB NB NB NB c

DR/Donor 32 YVKQNTLKL (PF-152) 1203 NB 2221 226 c 356 405 NB c

DP/Donor 23 IAPWYAFAL (PF-154) NB c NB c NB NB NB 1696 NB c

Donor 17 d LMNELGVPF (PF-141) NB NB NB NB 4014 NB NB

DP/Donor 23 LPFHNVHPL (PF-147) NB c NB c NB NB NB 3704 NB c

DP/Donor 31 LPFQNVHPV (PF-150) NB NB NB NB NB 1204 c NB c

Note: peptides marked in bold are positive controls included in the assay; HA306–318 is a promiscuous HLA-DR binder whereas hypothetical protein 239–253 has been
shown to bind most HLA-DR alleles and the HLA-DP allele. Peptide showing affinities above 5000 nM are categorized as non-binders (NB).
aPeptide binding affinity (KD) in nM.
bPeptide reactivity blocked by anti-HLA-II subtype antibody in the responding donor number (See Fig. 2 and Table 5).
cThe HLA-II subtype assayed for peptide binding was expressed by donor.
dNo cells available for HLA-II typing.
doi:10.1371/journal.pone.0010533.t006
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in the context of alternative HLA class I alleles. Although some

alternative HLA-I restrictions were confirmed experimentally, the

majority were not identified, but inferred by statistical methods

[22]. Our previous [10] and present results showing HLA-I

binding 9mer peptides capable of activating CD4+ T cell

dependent responses, may suggest that some of the ‘‘alternative

restricted’’ responses described by Frahm et al. [22] reflect CD4+

T cell recognition of epitopes restricted by HLA-II.

Assarsson et al [23] have used the similar strategy as ours to

identify influenza A virus-derived epitopes, but none of their

discovered epitopes matched those discovered in our study. The

discrepancy between the two studies might be explained by the

fact that Assarsson et al mainly focused on epitopes derived from

conserved sequences while we focused on epitopes in influenza

virus regardless of their conservancy. Also they used freshly

harvested PBMC whereas we used in vitro restimulated PBMC

which increases the frequency of influenza virus-specific T cells

thereby enhancing the detection sensitivity. Indeed, for some

antigenic peptides in [23], the numbers of SFC in the ELISPOT

assay are very low. In line with this, some epitopes including two

HLA-I restricted (PF-96 and PF-132) and five HLA-II restricted

epitopes (PF-103, PF-109, PF-146, PF-152 and PF-PF-141)

identified in our study, were also included in [23] but failed to

show antigenicity. Furthermore, Assarsson et al only discovered 54

epitopes out of 4080 peptides tested (discovery rate: 1.3%), while

we identified 21 out of 131 peptides (discovery rate: 16%) by using

peptide restimulated T cells. Therefore, the in vitro restimulation

might be needed in PBMC of unvaccinated individuals prior to

performance of ELISPOT assays in order to increase the detection

sensitivity. Intriguingly, Assarsson et al. did not discover any HLA-

II restricted epitopes among 38 HLA-I binding epitopes (8–

11mer), whereas we identified 16 of 21 HLA-I binding 9mer

peptides in our study as HLA-II restricted CD4+ T cell epitopes.

However, they excluded some 8–11mer peptides which induced

reproducible positive responses, but showed poor binding ability to

the relevant HLA-I alleles. It would be interesting to know if the

responses induced by these latter peptides are CD4+ T cell

dependent.

We propose that studies, which employ ‘reverse immunology’ to

monitor HLA class I responses against HLA-I binding peptides by

use of IFNc ELISPOT assay, should take class II-restricted, CD4-

dependent T cell responses into account. Our present and

previous data [10] suggest that HLA-I binding peptides might

stimulate CD4+ T cell immune responses restricted by HLA-II

molecules. Thus, ELISPOT-based analyses of reactivity against

9mer class I binding peptides should always include either anti-

CD4/CD8 blocking or CD4/CD8 T cell subset depletion

experiments or, alternatively, perforin- or granzyme B-based

ELISPOT analyses to obtain the true phenotype of the antigen-

specific T cells.

In the present and previous [8] studies we have identified a total

of 30 new antigenic flu-derived 9mer peptides (large proteins

PB1,PB2,PA,NP,NA,HA and small proteins M1, M2, NS1)

potentially recognized by the majority of humans disregarding

their HLA allotype and group. We now plan to initiate animal

vaccine studies in flu infected HLA transgenic mice to assay for the

protective/therapeutic efficacy of the peptides. If a clinical effect is

obtained, the peptides might be of use as vaccine candidates in

future influenza pandemics.

In conclusion, by the use of PBMC from healthy adult donors,

twenty one 9mer peptides derived from influenza A viral proteins

were found to induce T cell responses in an IFNc ELISPOT assay.

Only 5 of the peptides induced HLA-I restricted CD8+ T cell

responses. The remaining 16 peptides, of which 3 peptides were

shown to bind to HLA-DR, induced CD4+ T cell responses

apparently restricted by HLA- II molecules.

Materials and Methods

Collection of blood samples and tissue typing
Buffy coats of 500 ml whole blood from individuals in the

Danish blood donor corps (age range: 35–65 years; including

informed consent) were obtained from The Blood Bank at

Rigshospitalet (Copenhagen, Denmark) and used within 24 hours

to isolate peripheral blood mononuclear cells (PBMC). The donors

were selected, according to serological typing of their HLA-A and

-B haplotypes, to maximize coverage of the 12 HLA-I supertypes,

including HLA-A1, -A2, -A3, -A24, -A26, -B7, -B8, -B27, -B39,

-B44, -B58 and -B62 [13]. A high-resolution sequence-based

typing (SBT) of the HLA-A, HLA-B and the HLA-DR,-DQ and-

DP loci was subsequently established (Genome Diagnostics,

Utrecht, Netherlands). Typing data are shown in Table 5.

This study was in accordance with the ethical guidelines, and

approved by the Institutional Review Board, University Hospital

of Copenhagen (Rigshospitalet), Denmark.

Isolation of PBMC
Peripheral blood mononuclear cells (PBMC) were isolated from

buffy coats by density gradient centrifugation using Lymphoprep

(Nycomed Pharma AS, Oslo, Norway). The freshly isolated

PBMC were cryopreserved for later use at 206106 cells in 1 ml

RPMI-1640 containing 20% FCS and 10% dimethyl sulfoxide

(DMSO) at 2140uC.

Bioinformatics search strategy for CTL epitopes derived
from influenza A virus

The CTL epitope predictions were performed on the basis of a

dataset consisting of 3735 influenza A strains obtained from the

Influenza Sequence Database (www.flu.lanl.gov). The 3735 strains

comprise a total of 10497 sequenced proteins of which the PB1,

PB2, and PA proteins were excluded, since we have previously

already tested 37 PB1-, 57 PB2-, and 39 PA-derived predicted

CTL epitopes [8]. CTL epitopes derived from the remaining eight

influenza proteins (HA1, HA2, NA, NS1, NS2, M1, M2, and NP)

and restricted to any of the 12 HLA-I supertypes were predicted

using the NetCTL 1.0 method [11] (available at www.cbs.dtu.dk/

services/NetCTL). The NetCTL method uses a combined

prediction score for MHC class I affinity, TAP transport efficiency,

and C-terminal proteasomal cleavage as a weighted sum of the

three individual prediction scores. For MHC class I affinity, the

NetMHC-3,0 method is used. For TAP transport efficiency, the

method of Peters et al. [24] is used, and for proteasomal cleavage,

the NetChop C-term 3.0 method is used. Thus, in the NetCTL

method, each possible 9mer in a protein is assigned a score based

on a combination of proteasomal cleavage, TAP transport

efficiency, and HLA-I binding affinity with the highest weight

assigned to the HLA-I affinity. Depending on the size of the

protein, between one and two of the top-scoring 9mers in each

protein were selected as the predicted epitopes for each of the 12

HLA-I supertypes.

Next, the EpiSelect algorithm was used for selecting a number

of predicted CTL epitopes, which together constitute a broad

coverage of all strains. The EpiSelect algorithm has been described

in detail previously [12]. The input to the algorithm is a set of lists

defining the predicted epitopes in each viral strain. Briefly, the

algorithm aims at selecting a given number of epitopes in a way so

that the number of epitopes in the viral strain with fewest epitopes
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is as high as possible while simultaneously maximizing average

coverage of all strains.

Initially, 168 CTL epitopes were selected corresponding to 14

epitopes per supertype. Twelve epitopes had been tested

previously [8] and they were therefore excluded in the present

work. Of the remaining 156 epitopes, 10 were restricted to two

different HLA-I supertypes leaving us with a total of 146 predicted

epitopes.

Peptides
The 9mer peptides were synthesized by standard 9-fluorenyl-

methyloxycarbonyl (FMOC) chemistry, and purified by reversed-

phase high-performance liquid chromatography (at least 80%,

usually .95% purity) and validated by mass spectrometry (Shafer-

N, Copenhagen, Denmark). Peptides were distributed at 500 mg/

vial and stored lyophilized at 220uC until use. Peptides were

dissolved just before use.

Biochemical peptide-HLA-I and –II binding assays
The biochemical assay for peptide–MHC-I binding was

performed as previously described [25]. Briefly, denatured and

purified recombinant HLA heavy chains were diluted into a

renaturation buffer containing b2-microglobulin and graded

concentrations of the test peptide, and incubated at 18uC for

48 h allowing equilibrium to be reached. We have previously

demonstrated that denatured HLA molecules can de novo fold

efficiently, however, only in the presence of appropriate

peptide [26]. The concentration of peptide–HLA complexes

generated was measured using Luminescent Oxygen Channel-

ing Immunoassay (LOCI) and plotted against the concentration

of peptide offered. Because the effective concentration of HLA

(1–3 nM) used in these assays is below the equilibrium

dissociation constant (KD) of most high-affinity peptide–HLA

interactions, the peptide concentration leading to half-satura-

tion of the HLA is a reasonable approximation of the affinity of

the interaction.

Affinity measurements of peptides to recombinant HLA-

DRB1*0101,-DRB1*0301, -DRB1*0302, -DRB1*0401, -DRB3*

0301, -DRB5*0101 and DPA1*0103/DPB1*0401 molecules were

done according to previous work [14]. Briefly, peptides including

reference peptides knowing to bind the used HLA-II alleles [DR-

binding peptide HA 308-318 (sequence: YKYVKQNTLKLAT)

and plasmodium falciparum 3D7 derived DP-binding peptide,

hypothetical protein 239-253 [27] (sequence: YILLKKILS-

SRFNQM)] were dissolved and titrated in 25% glycerol, 0.1%

pluriol (F68), 150 mM NaCl. A HLA-II stock solution consisting of

bacterially expressed and urea denatured alpha and beta chains, at

appropriate concentrations were diluted into refolding buffer:

100 mM Tris/Citrate, 25% Glycerol 0.01% Pluriol F68 contain-

ing protease inhibitors (TPCK and Pepstatin both 3,3 mg/ml) at

pH 6 (DRB1*0101. DRB5*0101) or 7 (remaining HLA-II alleles).

The diluted HLA-II stock was subsequently mixed 1:1 with

peptide titrations and incubated at 18uC for 48 hrs. Formed HLA-

II complexes were detected using a homogenous proximity assay

(Alpha Screen, Perkin Elmer), briefly streptavidin coated donor

beads and L243 (murine monoclonal anti DR) coupled acceptor

beads, both 5 mg/ml, were diluted 500 times into PBS 0.1%

Pluriol (F68). 10 ml of bead mix was mixed with 10 ml HLA- II/

peptide samples in 384 Optiplates (Perkin Elmer). Following

18 hrs of incubation at 18uC they were read on an Envision

Reader (Perkin Elmer) and analyzed according to [14].

Depletion of CD4+ or CD8+ T cells from PBMC
CD4+ T cells or CD8+ T cells were positively depleted from

PBMC according to the manufacturer’s instruction using

monoclonal anti-CD4-coated or monoclonal anti-CD8-coated

Dynabeads from Dynal Biotech ASA (Oslo, Norway). PBMC

depleted of CD4+ T or CD8+ T cells were verified by flow

cytometry.

IFNc ELISPOT assay
The PBMC were thawed, washed and then used for CD4+ or

CD8+ T cell depletion (see Materials and methods) or cultured

directly in RPMI-1640 supplemented with 5% heat-inactivated

AB serum (Valley Biomedical, Winchester, VA, USA), 2 mM L-

glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin.

PBMC (4–66106) or depleted PBMC were cultured in 1 ml

culture medium in 24-well plates (Nunc, Roskilde, Denmark) in

the presence of individual peptides with a final concentration of

10 mg/ml per well, and incubated for 10 days at 37uC, 5% CO2 in

humidified air. Recombinant human (rh) IL-2 (Proleukin; Chiron,

Amsterdam, the Netherlands) 20 U/ml was added on day 1. Cells

were harvested on day 10, washed twice in RPMI-1640 and

resuspended in complete medium to a final concentration of 1–

26106 cells/ml. The IFNc ELISPOT assay was performed to

quantify peptide-specific T cells after in vitro expansion as described

previously [8]. In brief, the expanded PBMC, 1–26105, were

cultured for 20 hours in the presence (six wells) or absence (six

wells) of indicated peptides with a final concentration of 10 mg/ml

in an ELISPOT plate. As positive controls, cells were stimulated

with 10 mg/ml phytohaemagglutinin (Sigma-Aldrich, Poole,

Dorset, UK). Attempts to block HLA-I and HLA-II restricted

responses were performed in 4 cultures of 10 days expanded cells.

To block HLA-I-restricted responses the pan specific anti-HLA-I

antibody W6/32 ascites (ATCC) was added at a final dilution of

1:40 for 30 min before adding peptides in ELISPOT assays. To

block pan HLA-II-restricted responses, 10 mg/ml anti-pan HLA-II

monoclonal antibody IVA12 (ATCC, Rockville, MD, USA) was

added; to block HLA-II subtype specific responses, 10 mg/ml of

anti-DR (L243, ATCC), anti-DQ (SPV-L3, IgG2a, a kind gift

from Dr. H.Spits, DNAX,CA,USA) and anti-DP (B7/21,

Abcam,USA.) specific antibodies were added. In selected cases,

PBMC depleted of CD4+ or CD8+ T cells prior to the 10 days

expansion culture, were cultured in the presence or absence of

indicated peptides in ELISPOT plates to confirm the dependence

of T cell subsets responsible for peptide-induced responses. Data

were expressed as the mean spot-forming cells (SFC) of 4 replicate

assay cultures.

Statistics
Student’s t-test was used to analyze the quantitative differences

between the experimental and control wells in ELISPOT assays.

All tests were one-tailed and a P-value below 0.05 was considered

significant.
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