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Abstract

Many human diseases are attributable to complex interactions among genetic and environmental factors. Statistical tools
capable of modeling such complex interactions are necessary to improve identification of genetic factors that increase a
patient’s risk of disease. Logic Forest (LF), a bagging ensemble algorithm based on logic regression (LR), is able to discover
interactions among binary variables predictive of response such as the biologic interactions that predispose individuals to
disease. However, LF’s ability to recover interactions degrades for more infrequently occurring interactions. A rare genetic
interaction may occur if, for example, the interaction increases disease risk in a patient subpopulation that represents only a
small proportion of the overall patient population. We present an alternative ensemble adaptation of LR based on boosting
rather than bagging called LBoost. We compare the ability of LBoost and LF to identify variable interactions in simulation
studies. Results indicate that LBoost is superior to LF for identifying genetic interactions associated with disease that are
infrequent in the population. We apply LBoost to a subset of single nucleotide polymorphisms on the PRDX genes from the
Cancer Genetic Markers of Susceptibility Breast Cancer Scan to investigate genetic risk for breast cancer. LBoost is publicly
available on CRAN as part of the LogicForest package, http://cran.r-project.org/.
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Introduction

Many common diseases are heterogeneous, developing as a

result of complex gene-gene and gene-environment interactions

[1–3]. The heterogeneity of cancer, for example, is well

documented and many authors note that distinct genetic patterns

in cancer result in significant differences in disease outcome [4–6].

While a particular disease pathway may account for a majority of

cases, there may be alternative pathways that account for only a

small proportion of cases. Statistical methods capable of identify-

ing key components in multiple disease pathways can aid in

understanding an individual’s risk of developing disease, in disease

prognosis, and in prediction of response to therapy [7,8].

Logic regression (LR) is a single tree-based method capable of

modeling high-order interactions [9]. LR generates classification

rules by constructing Boolean (and =^, or =_, and not = !)

combinations of binary (0/1) predictors for classification of a

binary response. For example, LR might produce the tree,

T~ x4 _ x11ð Þ ^ x5~ x4 ^ x5ð Þ _ x5 ^ x11ð Þ, which predicts a

response value of 1 if either x4 ^ x5 or x5 ^ x11 are true.

Otherwise, the predicted response is 0. All LR trees can be

expressed as a disjunction of conjunctions as in the second

expression for tree T . The conjunctive interactions described by

the tree are referred to as prime implicants (PIs). Tree T is composed

of the two PIs, x4 ^ x5 and x5 ^ x11, both of size 2 as each

includes two variables. LR can identify PIs ranging in size from 1

to 8 predictors, and thus PI is a general term describing main

effects and interactions. LR has been used in the development of

screening and diagnostic tools for prostate and colorectal cancer,

and to identify single nucleotide polymorphisms (SNPs) that confer

risk in cardiovascular disease [10–13].

Tree-based classifiers are unbiased base classifiers but they are

highly variable. The predictive accuracy of a tree-based classifier

can be improved by using an ensemble of learners when predicting

an observation’s class [14–16]. The ensemble allows averaging

across base learners resulting in an unbiased aggregated learner

with reduced variability. One powerful approach to constructing

ensemble-based learners is bagging, that is, the construction of

classifiers from multiple bootstrap samples drawn from training

data. Logic Forest (LF) is a bagged version of LR that generates an

ensemble of logic regression-grown trees of varying sizes [17]. LF

shows improved predictive performance over LR and is better able

to discover PIs significantly associated with response, even in data

with predictors measured with error and in data in which not all

variables significantly associated with the response are observed.

However, the ability of both LR and LF to recover PIs associated

with response degrades for infrequently occurring PIs [17]. A rare

PI would occur if, for example, the PI is highly predictive of
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disease for a patient subpopulation that represents only a small

proportion of the overall patient population.

Boosting is a powerful alternative algorithm for constructing

ensemble learners that reweights the training data at successive

iterations to improve prediction of observations poorly classified at

previous iterations [18]. In this paper we present a boosted version

of LR we refer to as LBoost, and introduce a measure of predictor

importance. We compare the performance of LBoost relative to

LF considering varying frequency of occurrence for PIs associated

with response and varying model complexity. We also apply

LBoost to a subset of SNP data from the Cancer Genetic Markers

of Susceptibility (CGEMS) Breast Cancer Scan [19–21] to

investigate genetic risk variants.

Methods

Define data W~ y,xð Þ where y~ y1,y2, . . . ,ynð Þ is a vector of n

binary responses and x is an n|p matrix of p binary predictors

with xi~ xi1,xi2, . . . ,xip

� �
,i~1,2, . . . ,n. The algorithm for con-

structing an LBoost model is shown below.

LBoost Algorithm
For data set W

1. Initialize a collection of observation-specific weights w1 where

v1j~
1

n
and j indexes the number of observations, n.

2. For a~1,2,:::,A where A is the number of boosted LR trees

constructed from data W

a. Randomly select a positive integer 2ƒMaƒ8 where Ma is the

maximum number of predictors in an LR tree. (Random

selection of tree size has been shown to modestly improve

recovery of small PIs [17].)

b. Fit an LR tree, Ta, to data W using weights wa and with no

more than Ma predictors.

c. Compute the weighted error for Ta according to:

erra~

Pn
j~1

vajI yj=ŷyaj

� �

Pn
j~1

vaj

where ŷyaj is the predicted value for the jth observation from

tree Ta

d. Using the weighted error compute a tree-specific weight for

tree Ta according to:

aa~ln
1{erra

erra

� �

e. Update observation-specific weights according to:

vaz1,j~vajexp aaI yj=ŷyaj

� �� �

3. The forest of A boosted trees is LB W,Að Þ~fT1,T2, . . . ,TAg
~Ta.

In step 2b, LBoost fits the LR tree using simulated annealing

with misclassification error to choose between LR trees. Simulated

annealing is the default search algorithm in LR. Use of

misclassification for identifying the ‘‘best’’ LR model limits the

number of trees fit at a given iteration of LBoost/LF to one tree

with a maximum of 8 predictors.

We also use cross validation (CV) when constructing the forest

for development of measures of model fit (Equation 2) and PI

importance (Prime Implicant Importance Measures Section). For

K-fold CV, let Wk~ yk,xkð Þ,k~1,2, . . . ,K be one of K approxi-

mately equally sized, non-overlapping subdivisions of the data.

Given Wk, let W{k be the collection of all data subdivisions other

than Wk such that W{k~ W1, . . . ,Wk{1,Wkz1, . . . ,WKð Þ, and

let nk be the number of observations in W{k. We construct the

kth LBoost model using W{k according to the LBoost algorithm

and use Wk as the kth test data set for the measures of model fit

and PI importance. The final LBoost model therefore includes KA
boosted trees and is denoted LB W,KAð Þ~fTkag.

Now consider an observation xi from the kth test data set Wk.

All trees within the boosted forest LB W,KAð Þ predict class

membership for this observation. If predictor values in xi produce

a value of 1 for one or more of the PIs in tree Tka within

LB W,KAð Þ, that tree predicts class membership ŷykai Tkað Þ of 1;

otherwise the tree predicts the class to be 0.

If we consider test data Wk as new data, we can make a CV

prediction for the observations in Wk by taking a weighted average

of the predictions for those trees in LB W,KAð Þ which were

constructed from the corresponding training data W{k. We can

use the test data set predictions to calculate an unbiased estimate

of model error rate. For observation yi in the test set

corresponding to data W{k (that is, for yi[Wk), the boosted CV

prediction from LB W,KAð Þ is

ŷyCV
i ~

1 if
PA

a~1

aka 2ŷykai{1ð ÞI yi[Wkð Þ§0

0 else:

8<
: ð1Þ

Since predictions from a logic regression tree take values of

either 0 or 1, the expression 2ŷyi{1ð Þ in equation 2 takes on values

of 1 or {1, thereby allowing inclusion of all tree-specific weights

aka in the final prediction. The CV misclassification rate for

LB W,KAð Þ is

MCCV~
1

n

Xn

i~1

yi{ŷyCV
i

� �2
: ð2Þ

Prime Implicant Importance Measure
In contrast to bagging, which applies the base learner to a

bootstrap sample of the data, boosting is generally applied to the

whole data set making it difficult to define an importance measure.

To address this difficulty, we use CV to develop a measure of PI

importance that can be estimated from an LBoost model,

LB W,KAð Þ. For tree Tka, the CV misclassification rate for test

data Wk is

MC:TCV Tka,y,xð Þ~ 1

nk

X
yi[Wk

I yi=ŷykaið Þ: ð3Þ

LBoost
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Let x‘ be a PI occurring in tree Tka, such that x‘ is an n-

dimensional column vector of 0 s and 1 s corresponding to the PI’s

value for the n observations. We extract PIs from Tka using the

prime.implicant function available in the logicFS package [22]. Let

x ‘ð Þ denote the matrix of all PIs in Tka with x‘ randomly

permuted. Let MC.TCV
x‘

denote the tree-specific misclassification

rate for Tka applied to x ‘ð Þ. The permutation based variable

importance measure for x‘ is defined by

V:LB x‘ð Þ~
1

KA

XK

k~1

XA

a~1

aka MC:TCV
x‘

{MC:TCV
h i

: ð4Þ

Simulation Studies
We conduct several simulations to examine the ability of LF and

LBoost to recover PIs representing epistatic interactions between

SNPs that are associated with disease. Two types of epistatic

interactions are considered for the simulations comparing LBoost

and LF (Table 1). An interaction of type 1 confers increased risk of

disease when at least one copy of the minor allele is present from

both loci; this type 1 interaction is referred to as the jointly

dominant-dominant model (DD) [23–26]. An interaction of type 2

confers increased risk of disease if two copies of the minor allele are

present from both loci; this type 2 interaction is referred to as the

jointly recessive-recessive model (RR).

We consider three simulation scenarios: (1) the response is

associated with a single DD interaction; (2) the response is

associated with two DD interactions; and (3) the response is

associated with a single RR interaction. We use the liability

threshold model [27,28] to define all interaction models.

Specifically, all simulated data are defined by the minor allele

frequencies (MAFs) of the risk alleles, the disease prevalence, and

the heritability of the epistatic interaction(s). For simplicity, risk

alleles in an epistatic interaction have the same MAF. Also, for all

simulations, the disease prevalence is set at 0.1 and the heritability

for all epistatic interactions is set at 0.02. The disease prevalence

was chosen to simulate a common disease such as breast cancer.

The population level parameters for specific MAFs, threshold, and

heritability are given in Table 2.

In addition to the SNPs in the epistatic interaction(s), additional

non-causal SNPs are generated such that there are 100 SNPs in

the final dataset. Minor allele frequencies for the non-causal SNPs

are randomly selected from between 0.05 and 0.5. For simulation

scenarios 1 and 2, all SNPs are coded as an indicator for at least

one copy of the minor allele. For simulation scenario 3, SNPs are

coded as the indicator for two copies of the minor allele. In

scenarios 1 and 3 the response is associated with the DD or RR

interaction between x5 and x10, thus the PI of interest is x5 ^ x10.

In scenario 2 the response is associated with two independent DD

interactions, x5 ^ x10 and x15 ^ x20.

We consider sample sizes ranging from 400 to 2400, generating

500 datasets for each simulation study. We examine the ability of

LF and LBoost to recover the PIs known to be associated with the

response using the variable importance measure for LF, V.LF

[17], and V:LB for LBoost. Define F as the set of all PIs identified

in either LF W,Bð Þ or LB W,KAð Þ. Let Q (Q5F ) be the set of 20

PIs in LF W,Bð Þ or LB W,KAð Þ with maximum absolute V.LF

and V.LB (4) values, respectively. We say that the PI q, known to

be associated with disease, has been recovered when q[Q. We

select the top 20 identified PIs because in the context of studying

gene-gene interactions, 20 interactions represents v1% of all

possible 2 locus combinations given 100 geneotyped SNPs.

We use the Logic Forest package in R v.2.14.1 [29] with

simulated annealing optimization to fit all LF models [9,17]. For

LBoost we use 5-fold CV and construct 20 trees for each dataset

Wk resulting in an LBoost model with 100 LR trees. For

comparisons, all LBoost and LF models include the same number

of LR trees. The same starting and ending annealing temperatures

are selected for LF and LBoost. The starting temperature of 2 is

selected such that approximately 90% of ‘‘new’’ models are

accepted. The final temperature of {1 is set to achieve a score

where fewer than 5% of new models are accepted. The cooling

schedule is set so that 50,000 iterations are required to get from

start to end temperaure. Increasing the number of iterations to

250,000 does not affect our findings. With these settings, the

LBoost algorithm constructs a model in less than a minute on a

Windows 2.26 GHz machine.

Table 1. Two-locus interaction models.

Type 1 AA Aa aa Type 2 AA Aa aa

BB 0 0 0 BB 0 0 0

Bb 0 1 1 Bb 0 0 0

bb 0 1 1 bb 0 0 1

Type 1 represents a DD interaction between SNPs a and b while Type 2
represents RR interaction between a and b. A value of 1 indicates SNP
combinations conferring increased risk of disease.
doi:10.1371/journal.pone.0047281.t001

Table 2. Population values for simulation parameters{.

Model{ Minor Allele Frequency Prob(PI+) Prob(D+DPI+) Prob(D+D PI2) OR

0.1 0.0361 0.2890 0.0930 3.961

Dominant-dominant 0.3 0.2601 0.1460 0.0839 1.866

0.5 0.5625 0.1213 0.0726 1.763

0.1 0.0001 1.0000 0.0975 Inf

Recessive-recessive 0.3 0.0081 0.6127 0.0955 14.98

0.5 0.0625 0.2293 0.0915 2.952

{The disease prevalence is set at 0.1 and heritability is set a 0.02 for all simulations.
{MAFs are the same for risk alleles in an epistatic interaction. Prob(PI+) is the probability that a subject has the PI. Prob(D+DPI+) and Prob(D+DPI2) are the probabilities a
subject has disease given that they have the PI and do not have the PI respectively. OR is the population odds ratio given the model, MAF, and heritability.
doi:10.1371/journal.pone.0047281.t002

LBoost
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Results

Scenario 1: One Dominant-Dominant Interaction
n scenario 1, we investigate the ability of LBoost and LF to

recover a single DD interaction that is associated with the response

from among 100 binary variables. The minor allele frequencies of

0.1, 0.3, and 0.5 are considered. In data in which the MAFs for x5

and x10 were 0.1, LBoost identified the combination x5 ^ x10

more frequently than LF, although this difference was only

significant for n§1200 (Figure 1A). LBoost recovers x5 ^ x10 in a

maximum of 88.4% of simulations, while LF recovers this PI in a

maximum of 81.0% of simulation runs. When the minor allele

frequencies for x5 and x10 are increased to 0.3, the ability of both

LF and LBoost to recover x5 ^ x10 improves. Under these

conditions, LF recovers x5 ^ x10 significantly more frequently

than LBoost for 800ƒnƒ1600 (Figure 1B). Both LF and LBoost

recover the PI in w75% of simulation runs for n§1200 and in

more than 90% of simulation runs for n§1600. In data in which

the MAFs for x5 and x10 are 0.5, LF and LBoost identify x5 ^ x10

equally well, recovering this PI in w80% of simulation runs for

n§1200.

Scenario 2: Two Independent Dominant-Dominant
Interactions

In the second scenario, we investigate the ability of LBoost and

LF to recover 2 DD interactions that occur with different

frequency. The MAFs for the two SNPs in the PI x15 ^ x20 are

held constant at 0.1 while the MAFs for x5 ^ x15 are set at 0.1, 0.3

or 0.5. In the first case, the MAFs for x5,x10,x15, and x20 are set at

0.1, thus the expected frequency of occurrence of the two PIs

x5 ^ x10 and x15 ^ x20 are equivalent. For nƒ1600, LF and

LBoost recover the PIs equally well. However LF recovers both PIs

significantly more frequently than LBoost for n§2000 (see

Figures 2A and 2B). LBoost recovers both PIs in w70% of

simulation runs for n~2400, however LF recovers both PIs

w80% of simulation runs for the largest sample size.

In the second case, the MAFs for x5 and x10 are increased to

0.3, but the frequencies of x15 and x20 are held at 0.1. In this case

the PI x5 ^ x10 occurs more frequently than x15 ^ x20. Both LF

and LBoost recover x5 ^ x10 more frequently than in the previous

case. However, LF recovers this PI significantly more frequently

than LBoost for 800ƒnƒ1600 (Figure 2C). Both methods identify

this PI in w80% of simulation runs for n§1200. LBoost identifies

the less frequently occurring PI, x15 ^ x20, significantly more often

than LF for n§1200 (Figure 2D).

In the third case, the MAFs for x5 ^ x10 are increased to 0.5

holding the frequencies for x15 and x20 at 0.1. There is no

significant difference in the proportion of times LF and LBoost

recover x5 ^ x10. Both methods recover this PI in w80% of

simulation runs for n§1200 (Figure 2E). However, LBoost

recovers x15 ^ x20 significantly more frequently than LF for

n§800 (Figure 2F).

We also compare LBoost models with varying K-fold CV

(K = 5, 10, and 20) with forest size KA = 100 for cases 1 and 3 for

two independent DD interactions. In case 1 (MAF

x5,x10,x15, and x20~0:1), LBoost identifies both PIs significantly

more frequently using 5-fold CV relative to 20-fold CV for

n§1600 (Figure S1, panels A and B). However, there is not a

significant difference between 5 and 10-fold CV. In case 3 ( MAF

x5 and x10~0:5 and MAF x15 and x20~0:1), there is not a

significant difference in the proportion of times LBoost recovers

x5 ^ x10 or x15 ^ x20 for 5, 10, and 20-fold CV at any sample size

(Figure S1, panels C and D).

Additionally we examine the performance of LBoost in models

with 100 (with 5-fold CV) and 200 (with 10-fold CV) trees holding

the ratio of total number of trees, KA, to number of CV data set,

K , constant at 20:1. Increasing the number of trees from 100 to

200 improves the proportion of times LBoost recovers the PIs in

case 1 for n§1200 though the difference is not significant (Figure

S2, panels A and B). In case 3, there is no significant differences in

the proportion of times LBoost recovers x5 ^ x10 in models with

100 versus 200 trees (Figure S2, Panel C). However, LBoost

identifies x15 ^ x20 significantly more often in models with 200

trees for n§1200 though the difference is only significant for

n~1600.

Scenario 3: One Recessive-Recessive Interaction
In simulation scenario 3, we consider the ability of LF and

LBoost to recover a single RR interaction. The probability of

occurrence of the PI given disease status is less than in previous

scenarios. As in the first scenario we consider MAFs of 0.1, 0.3,

and 0.5 for x5 and x10. When both x5 and x10 have MAFs of 0.1,

the probability of observing x5 ^ x10 given a subject is disease

positive is 0.1%. This PI occurs so infrequently, neither LBoost nor

LF identified x5 ^ x10 at any sample size under consideration

(results not shown).

When the MAFs of x5 and x10 are increased to 0.3, the

probability of the PI given a subject has disease increases to

approximately 5%. In this case, LBoost identifies x5 ^ x10

significantly more frequently than LF for n§1200 (Figure 3,

Panel A). LBoost identified this PI in a maximum of 67% of

simulation runs, however LF identified it in a maximum of only

17% of simulation runs. When the minor allele frequencies for x5

and x10 are increased to 0.5, the probability of x5 ^ x10 given the

subject has disease increases to 0.1433. The ability of both LF and

LBoost to identify this PI is improved and both recover this PI in

w80% of simulation runs for n§1600 (Figure 3, Panel B). There

is not a significant difference in the proportion of times each

method recovers this PI at any sample size.

We also examine the performance of LF and LBoost in models

with 100 (5-fold CV) and 200 (10-fold CV) trees holding the ratio

of total number of trees, KA, to number of CV data set, K ,

constant at 20:1. Increasing the number of trees from 100 to 200

significantly improves the proportion of times LBoost recovers the

x5 ^ x10 for n§1200 (Figure S3). In models with 200 trees, LBoost

recovers x5 ^ x10 in w80% of simulations for n§2000 but

recovers the PI in a maximum of 66:7% of simulations when

LBoost models include 100 trees. Increasing the number of trees in

a LF model does not significantly impact the ability of LF to

recover x5 ^ x10 (Figure S3).

Summary of Simulation Results
LF and LBoost exhibit similar ability to recover frequently

occurring PIs. However, LBoost performs better than LF when PIs

occur rarely (5 to 10% of the time among individuals with disease)

and is better at recovering less frequent PIs in the presence of a

frequently occurring PI. There is also a trend towards improved

recovery of PIs with increasing the number of trees in an LBoost

model regardless of frequency.

CGEMS Analysis
Peroxiredoxins (Prdxs) are a newly identified group of

peroxidases upregulated in breast cancer [30–33]. No genetic

analysis has been done so far to investigate the genomic integrity of

the PRDX genes in breast or any other cancer. We investigate

single nucleotide polymorphisms (SNPs) in the Cancer Genetic

Markers of Susceptibility study (CGEMS) [19,20] data, available

LBoost
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in dbGaP (dbGaP accession number: ps000147.v1.p1). In total, 94

SNPs that are within 50 kb of the six PRDX genes are included in

the LF and LBoost analyses.

The CGEMS study is an NCI-sponsored project begun in 2005

as a pilot study to identify genetic variants associated with

increased risk of breast and prostate cancers. The CGEMS breast

cancer data was derived from incident post-menopausal breast

Figure 1. Recovery of the dominant-dominant interaction
x5 ^ x10 for MAFs of 0.1, 0.3, and 0.5. Each panel shows the
proportion of times in 500 simulation runs the DD PI x5 ^ x10 is
recovered among the top 20 PIs by each method for different MAFs for
x5 and x10. A) MAFs for x5 and x10 are 0.1, panel B) MAFs for x5 and x10

are 0.3, and panel C) MAFs for x5 and x10 are 0.5. Error bars represent
95% confidence intervals.
doi:10.1371/journal.pone.0047281.g001

Figure 2. Recovery of the dominant-dominant interactions
x5 ^ x10 and x15 ^ x20 for MAFs of 0.1, 0.3, and 0.5. Each panel
shows the proportion of times in 500 simulation runs the DD PIs
x5 ^ x10 and x15 ^ x20 are recovered among the top 20 PIs by each
method for different MAFs. Specifically, Panels A) and B) show the
proportion of times each method recovers x5 ^ x10 and x15 ^ x20

respectively when MAFs for x5 and x10 are 0.1 and MAFs for x15 and x20

are 0.1. Panels C) and D) show the proportion of times each method
recovers x5 ^ x10 and x15 ^ x20 respectively when MAFs for x5 and x10

are 0.3 and MAFs for x15 and x20 are 0.1. Panels E) and F) show the
proportion of times each methods recovers x5 ^ x10 and x15 ^ x20

respectively when MAFs for x5 and x10 are 0.5 and MAFs for x15 and x20

are 0.1. Error bars represent 95% confidence intervals.
doi:10.1371/journal.pone.0047281.g002

LBoost
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cancer cases in the Nurses’ Health Study (NHS) arising between

1990 and 2004 [21]. Women in the CGEMS study provided a

blood sample in 1989 or 1990 as part of the NHS and were cancer

free at the time of sampling. In total 1145 incident cases were

matched to 1142 controls from the NHS on age, blood collection

time, ethnicity (all are self-reported Caucasian), and menopausal

status at blood draw (all are menopausal at blood draw).

Participants were genotyped using the Ilumina HumanHap550

chip. For each subject approximately 528,000 SNPs were

genotyped providing coverage of 90% of the common SNPs.

Our analysis data comprised 94 SNPs on the six PRDX genes,

coded for analysis by an indicator variable that takes value 1 if the

subject has at least one copy of the minor allele in order to test the

dominant effect of the minor allele. The LF and LBoost models

constructed for these data both contain 100 trees. The LBoost

model uses 5-fold cross-validation in model construction. The LF

and LBoost models each identified over 300 unique PIs involving

the 94 SNPs. PI importance was ranked from least to greatest

according the VIMP.LF for the LF model and according to V:LB
for LBoost. Empirical p-values were obtained for all PIs using a

permutation approach.

Both LF and LBoost identified the PIs rs11198819 (pv0:01)

and rs11198819 ^ rs2297696 (pv0:01) among the top 5 most

important PIs. The SNP rs2297696 is upstream of PRDX3 on the

sideroflexin 4 gene. The SNP rs11198819 is downstream from

PRDX3 in a non-coding region however, it is in strong linkage

disequilibrium (r2~0:87) with rs3749562 which is on the PRDX3

gene. The remaining PIs in the LF model included rs11198819 in

conjunction with at least one additional SNP. LBoost identified

two additional PIs not identified by LF, rs1205171 (pv0:025) and

rs1205171 ^ rs1461024 (pv0:025). The SNP rs1205171 is found

on the PRDX2 gene and rs1461024 is found on the PRDX6 gene.

The moderate significance of these SNPs and SNP interactions

is likely due to the fact that the PRDX family of genes does not

play a dominant role in breast cancer. However, these results

suggest possible associations of genetic variants within the PRDX

family of genes with breast cancer. Additionally, LBoost identified

SNPs not identified by LF. Further laboratory studies are

necessary to explore the SNP interactions identified by LF and

LBoost.

Discussion

Logic Forest, an ensemble adaptation of logic regression, has the

ability to model complex interactions among binary predictors to

describe disease state. However, LF is less adept in recovering rare

PIs associated with disease, particularly in the presence of more

frequent, predictive PIs. We introduced a boosting adaptation of

LR referred to as LBoost in order to address this weakness of LF.

Additionally we presented a predictor/PI importance measure

based on permutation of a predictor or PI in the data, V:LB.

The results of the simulation study indicate that the ability of LF

and LBoost to recover PIs associated with disease depends on the

frequency with which a PI occurs in subjects that have disease and

whether or not an additional predictive PI is present. In the

scenario where the data only included a single DD interaction, LF

and LBoost performed similarly, although LBoost showed modest

improvement over LF in recovering x5 ^ x10 when the minor

allele frequency was low (0.1). In this case, the PI occurred in

approximately 10% of subjects with disease. However, when the

minor allele frequency increased to 0.3 (PI occurring in

approximately 38% of subjects with disease) LF has better ability

to recover the PI at smaller sample sizes. The greatest difference in

ability to recover a single PI occurred in data where the interaction

of interest was a recessive-recessive interaction in which the MAFs

for x5 and x10 were 0.3. In this case only 5% of subjects with

disease were expected to have the PI x5 ^ x10 and LBoost

identified this PI significantly more often than LF for n§1200.

In data with two interactions, LBoost recovered the less

frequently occurring PI, x15 ^ x20 significantly more frequently

than LF and performed similarly to LF in recovering the more

frequently occurring PI. This difference in the ability to recover

the rarer PI is more pronounced as the difference in frequency of

occurrence between the two PIs increases.

For a fixed number of trees, increasing the number of CV sets,

K , in an LBoost model moderately improves the ability of LBoost

to identify frequent PIs. However, increasing the number of CV

sets also decreases the ability LBoost to identify rare PIs. This

effect is most pronounced in data with two or more PIs where both

PIs are infrequent. However, the impact of varying the number of

CV sets is small and choice of K and A should not greatly impact

the ability of LBoost to identify PIs. From experience we have

Figure 3. Recovery of the recessive-recessive interaction
x5 ^ x10 for MAFs 0.3 and 0.5. Each panel shows the proportion of
times in 500 simulation runs the RR PI x5 ^ x10 is recovered among the
top 20 PIs by each method for different MAFs for x5 and x10. Panel A)
MAFs for x5 and x10 are 0.3 and panel B) MAFs for x5 and x10 are 0.5.
Error bars represent 95% confidence intervals.
doi:10.1371/journal.pone.0047281.g003
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found that selecting the total number of trees, KA, and the number

of CV data sets, K , such that the ratio of total trees to number of

CV data sets 10 : 1 provides good balance for identifying frequent

and rare PIs.

Increasing the total number of trees improves LBoost’s ability to

identify rare PIs. This effect is most noticeable when the PI is rare

(i.e. the PI occurs in 5% of the cases), and is not evident for PIs

that occur with greater than 10% frequency among cases.

However, little additional computational time is necessary when

increasing the forest size from 100 to 200 trees and therefore is

advisable.

Both LBoost and LF are best suited for targeted investigation of

SNP interactions associated with disease (e.g. pathway analysis).

LBoost performs similarly to LF for frequently occurring PIs

although LF performs better for mid-range sample sizes (n~1200
to 2000). However, LBoost is better able than LF to identify rare

interactions that occur in approximately 5–10% of subjects with

disease. LBoost is also better adapted to identify multiple PIs in

situations where PI frequency varies among the PIs predictive of

disease, a scenario more closely resembling a complex disease such

as cancer. Since we can not know the data structure a priori, it is

helpful to explore the predictor space using both methods.

Although we described the LBoost algorithm using LR with

misclassification as the measure of goodness of fit, there are

additional fit measures available in LR (e.g. deviance and least

squares). There are also search algorithms other than simulated

annealing that could be used to search for logical combinations of

binary predictors. In subsequent work we will explore use of other

LR measures of fit and additional search algorithms for identifying

combinations of binary predictors in constructing LBoost models.

Supporting Information

Figure S1 Recovery of DD interactions x5 ^ x10 and
x15 ^ x20 in LBoost models with 100 trees and 5, 10, or
20-fold CV. Each panel shows the proportion of times in 500

simulation runs the DD PIs x5 ^ x10 and x15 ^ x20 are recovered

among the top 20 PIs by LBoost when the number of CV sets, K ,

is set to either 5, 10 or 20. The total number of LR trees in all

models is held constant at KA~100. In all panels, black is LBoost

with 5-fold CV, red is LBoost with 10-fold CV, and green is

LBoost with 20-fold CV. Specifically, Panels A) and B) show the

proportion of times LBoost recovers x5 ^ x10 and x15 ^ x20

respectively for different values of K when MAFs for x5 and x10

are 0.1 and MAFs for x15 and x20 are 0.1. Panels C) and D) show

the proportion of times LBoost recovers x5 ^ x10 and x15 ^ x20

respectively for different values of K when MAFs for x5 and x10

are 0.5 and MAFs for x15 and x20 are 0.1. Error bars represent

95% confidence intervals.

(BMP)

Figure S2 Recovery of DD interactions x5 ^ x10 and
x15 ^ x20 in LBoost models with 100 or 200 trees. Each

panel shows the proportion of times in 500 simulation runs the DD

PIs x5 ^ x10 and x15 ^ x20 are recovered among the top 20 PIs by

LBoost when the number of LR trees in the LBoost model is either

100 or 200. We use 5-fold CV in LBoost models with 100 LR trees

and 10-fold CV in models with 200 trees. Thus the ratio of total

trees to k-fold CV is held constant at 20 : 1. In all panels, black is

LBoost with 100 trees and red is LBoost models with 200 trees.

Specifically, Panels A) and B) show the proportion of times LBoost

recovers x5 ^ x10 and x15 ^ x20 respectively for models with 100

and 200 trees when MAFs for x5 and x10 are 0.1 and MAFs for

x15 and x20 are 0.1. Panels C) and D) show the proportion of times

LBoost recovers x5 ^ x10 and x15 ^ x20 respectively for models

with 100 and 200 trees when MAFs for x5 and x10 are 0.5 and

MAFs for x15 and x20 are 0.1. Error bars represent 95%

confidence intervals.

(BMP)

Figure S3 Recovery of the RR interaction x5 ^ x10 for
MAF of 0.1 in LBoost models with 100 or 200 trees. The

graph shows the proportion of times in 500 simulation runs the

RR PI x5 ^ x10 is recovered among the top 20 PIs by both when

the number of LR trees in the LBoost or LF models is either 100

or 200. We use 5-fold CV in LBoost models with 100 LR trees and

10-fold CV in models with 200 trees. Thus the ratio of total trees

to k-fold CV in all LBoost models is held constant at 20 : 1. In all

panels, black is LF models with 100 trees, red is LF models with

200 trees, green is LBoost models with 100 trees, and blue is

LBoost models with 200 trees. Error bars represent 95%

confidence intervals.

(BMP)
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