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Abstract

Background: Many men develop a rising PSA after initial therapy for prostate cancer. While some of these men will develop
a local or metastatic recurrence that warrants further therapy, others will have no evidence of disease progression. We
hypothesized that an expression biomarker panel can predict which men with a rising PSA would benefit from further
therapy.

Methodology/Principal Findings: A case-control design was used to test the association of gene expression with outcome.
Systemic (SYS) progression cases were men post-prostatectomy who developed systemic progression within 5 years after
PSA recurrence. PSA progression controls were matched men post-prostatectomy with PSA recurrence but no evidence of
clinical progression within 5 years. Using expression arrays optimized for paraffin-embedded tissue RNA, 1021 cancer-
related genes were evaluated–including 570 genes implicated in prostate cancer progression. Genes from 8 previously
reported marker panels were included. A systemic progression model containing 17 genes was developed. This model
generated an AUC of 0.88 (95% CI: 0.84–0.92). Similar AUCs were generated using 3 previously reported panels. In secondary
analyses, the model predicted the endpoints of prostate cancer death (in SYS cases) and systemic progression beyond
5 years (in PSA controls) with hazard ratios 2.5 and 4.7, respectively (log-rank p-values of 0.0007 and 0.0005). Genes mapped
to 8q24 were significantly enriched in the model.

Conclusions/Significance: Specific gene expression patterns are significantly associated with systemic progression after PSA
recurrence. The measurement of gene expression pattern may be useful for determining which men may benefit from
additional therapy after PSA recurrence.
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Introduction

The majority of men with prostate cancer are now diagnosed

with cancers that have a low risk of cause-specific mortality [1].

These men are usually treated with radical retropubic prostatec-

tomy (RRP), external beam radiotherapy, or interstitial brachy-

therapy and are then followed by regular serum PSA evaluations.

Over the next 5 to 10 year period, 15–30% of these men will

develop a rising PSA [2–6], defining a rapidly growing population

of major clinical and public health significance. Of this PSA

relapse group some men will have local recurrence or have

clinically-detectable metastasis, but many will have no other

evidence of recurrent prostate cancer other than the rising PSA.

The PSA ‘‘doubling time’’ has been identified as a potential

surrogate for cause-specific mortality, and is used by some

clinicians to determine which men with PSA relapse deserve

adjuvant hormonal ablation, local radiation therapy, or simple

observation [4–6]. Biomarkers that predict which of these men

would benefit from any additional therapy are needed.

Large scale gene expression studies of prostate cancers of different

grade and stage have been performed by several groups [7–16].

These expression studies have utilized arrays containing probe sets of

up to 35,000 genes. While these studies are important for biomarker

discovery, several difficulties preclude their translation into a clincial

setting. First, it is likely that smaller panels will be used clinically.

Second, because the previous studies required frozen material, the

number of specimens analyzed was limited. Third, since adverse

clinical events in prostate cancer patients require lengthy followup,

the testing methods must be applicable to archival paraffin-

embedded material. Finally, none of the previous studies was

focused on the development of a biomarker panel to predict prostate

cancer systemic progression in the setting of PSA recurrence.
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Using the Mayo Clinic Radical Retropubic Prostatectomy

(RRP) Registry, we designed a nested case-control study to test the

hypothesis that a limited set of RNA expression biomarkers can

predict which men with a rising PSA post-RRP might benefit from

additional clinical intervention. The Illumina DASLTM expression

microarray platform was selected as the biomarker measurement

method, because it measures the expression of gene targets using

paraffin tissues [17–19]. Using expression data from the literature

and derived from our own research program we developed a

limited set of expression markers that would likely be altered in

association with prostate cancer progression. The panel also

included expression biomarkers from several other previously

published panels that are associated with surrogates (high Gleason

Score, high pathologic stage, or metastatic disease) for prostate

cancer aggressiveness [12–16].

We report that the array-based measurements showed excellent

correlation with quantitative RT-PCR measurements of paraffin-

derived RNAs. We also report excellent intra-array, inter-array

and within-gene reproducibility. We then describe the testing and

validation of a gene expression tissue biomarker panel for the

prediction of prostate cancer systemic progression following a

rising PSA after radical prostatectomy. We compare the

performance of our panel with other previously published panels.

Finally, we show that the overexpression of genes mapped to

chromosome band 8q24 is associated with prostate cancer

systemic progression.

Methods

Gene Selection and Array Design for the DASLTM Assay
Two Illumina DASL expression microarrays were utilized

for the experiments. The standard commercially available

Illumina DASL expression microarray (Cancer PanelTM v1)

containing 502 oncogenes, tumor suppressor genes and genes in

their associated pathways. Seventy-eight of the targets on the

commercial array have been associated with prostate cancer

progression.

A custom Illumina DASLTM expression microarray containing

526 gene targets for RNAs, including genes whose expression is

altered in association with prostate cancer progression. Probes for

the custom DASLH panel were designed and synthesized by

Illumina, Inc. (San Diego, CA).

Four different sets of prostate cancer aggressiveness genes were

included in the study (if the genes were not present on the Cancer

Panel v1 array, they were included in the design of the custom

array):

1) Markers of prostate cancer aggressiveness identified by a

Mayo/University of Minnesota Partnership [20]: The

expression profiles of 100 laser-capture microdissected

prostate cancer lesions and matched normal and BPH

control lesions were analyzed using Affymetrix HG-U133

Plus 2.0 microarrays. Ranked lists of significantly over- and

under-expressed genes comparing 10 Gleason 5 and 7

metastatic lesions to 31 Gleason 3 cancer lesions were

generated. The top 500 genes on this list were compared to

lists generated from prior expression microarray studies and

other marker studies of prostate cancer (see 2–4 next). After

this analysis there was space for 204 novel targets with

potential association with aggressive prostate cancer on the

custom array.

2) Markers associated with prostate cancer aggressiveness from

publicly available expression microarray datasets (e.g.

EZH2, AMACR, hepsin, PRLz, PRL3): When we designed

the array sufficiently large datasets from 9 prior microarray

studies of prostate cancer of varying grades and metastatic

potential [7–15] were available from the Oncomine internet

site [21, 22], www.oncomine.org. From ordered lists of these

data we selected 32 genes for inclusion on the array.

3) Previously published markers associated with prostate

cancer aggressiveness (e.g. PSMA, PSCA, Cav-1): Expres-

sion microarray data has also been published. This literature

was evaluated for additional tissue biomarkers. For example,

at the time of array design we were able to identify 13 high

quality expression microarray studies of prostate cancer

aggressiveness (See Tables S1 and S2 for full reference list).

In addition, among the 13 reports, 5 papers presented 8

expression biomarker panels to predict prostate cancer

aggressiveness [12–16]. When appropriate probes suitable

for the DASL chemistry could be designed for these panels

they were included on the custom array. We also identified

12 articles reviewing genes associated with prostate cancer.

These criteria resulted in the selection of 150 genes.

4) Markers derived from Mayo SPORE research (including

genes and ESTs mapped to 8q24). Ninety-three additional

biomarkers were identified (see Tables S1 and S2).

The custom array also included probe sets for 45 genes that

were not expected to differ between case and control groups based

on Mayo/University of Minnesota Partnership data. Thirty-eight

of these genes were also present on the commercial array (see

Tables S1 and S2).

After enumerating the potentially prostate cancer relevant genes

on the commercially available cancer panel 570 potentially

prostate cancer relevant genes and 451 other cancer-related genes

were evaluated across both arrays.

Design of Nested Case-Control Study
For this study we sampled individuals from the Mayo Clinic

RRP Registry. The registry consists of a population of men who

received prostatectomy as their first treatment for prostate cancer

at the Mayo Clinic (For a current description and use of the

registry; see reference [23]). As systemic progression is relatively

infrequent, we designed a case-control study nested within a

cohort of men with a rising PSA. Between 1987–2001, inclusive,

9,989 previously-untreated men had RRP at Mayo. On follow-up,

2,131 developed a rising PSA (.30 days after RRP) in the absence

of concurrent clinical recurrence. PSA rise was defined as a follow-

up PSA . = 0.20 ng/ml, with the next PSA at least 0.05 ng/ml

higher or the initiation of treatment for PSA recurrence (for

patients whose follow-up PSA was high enough to warrant

treatment). This group of 2,131 men comprises the underlying

cohort from which SYS cases and PSA controls were selected.

Within 5 years of PSA rise, 213 men developed systemic

progression (SYS cases), defined as a positive bone scan or CT

scan. Of these, 100 men succumbed to a prostate cancer-specific

death, 37 died from other causes and 76 remain at risk.

PSA recurrence controls (213) were selected from those men

without systemic progression within 5 years after the PSA rise and

were matched (1:1) on birth year, calendar year of PSA rise and

initial diagnostic pathologic Gleason score (, = 6, 7+). Twenty of

these men developed systemic progression greater than 5 years

after initial PSA rise and 9 succumbed to a prostate cancer-specific

death.

A set of 213 No Evidence of Disease (NED) Progression controls

were also selected from the Mayo Clinic RRP Registry of 9,989

men and used for some comparisons. These controls had RRP

from 1987–1998 with no evidence of PSA rise within 7 years of

A Prostate Cancer Marker Panel
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RRP. The median (25th, 75th percentile) follow-up from RRP was

11.3 (9.3, 13.8) years. The NED controls were matched to the

systemic progression cases on birth-year, calendar year of RRP

and initial diagnostic Gleason Score. Computerized optimal

matching was performed to minimize the total ‘‘distance’’ between

cases and controls in terms of the sum of the absolute difference in

the matching factors [24].

The current study was approved by the Institutional Review

Board of Mayo Clinic.

Block Identification, RNA Isolation, and Expression
Analysis

The list of 639 cases and controls was randomized. An attempt

was made to identify all available blocks (including apparently

normal and abnormal lymph nodes) from the randomized list of

639 eligible cases and controls. Maintaining the randomization,

each available block was assessed for tissue content by pathology

review and the block containing the dominant Gleason pattern

cancer was selected for RNA isolation.

Four freshly cut 10mm sections of FFPE tissue were depar-

affinized and the Gleason dominant cancer focus was macro-

dissected. RNA was extracted using the High Pure RNA Paraffin

Kit from Roche (Indianapolis, IN). RNA was quantified using ND-

1000 spectrophotometer from NanoDrop Technologies (Wilming-

ton, DE). The RNAs, including intra-plate and inter-plate

replicates, were distributed on 96-well plates in the randomized

order for DASL analysis.

RNA samples were processed, hybridized to Sentrix Universal 96-

Arrays, scanned using BeadArray Reader, and data initially

processed in BeadStudio according to the manufacturer’s instruc-

tions. Microarray data is available from the GEO database (http://

www.ncbi.nlm.nih.gov/geo/ accession number GSE10645).

To evaluate the accuracy of the gene expression levels defined

by the DASL technology, we performed quantitative SYBR Green

RT-PCR reactions for 9 selected ‘‘target’’ genes (CDH1, MUC1,

VEGF, IGFBP3, ERG, TPD52, YWHAZ, FAM13C1, and

PAGE4) and 4 commonly-used endogeneous control genes

(GAPDH, B2M, PPIA and RPL13a) in 384-well plates, with the

use of Prism 7900HT instruments (Applied Biosystems, Foster

City, CA). 210 RNA samples with abundant RNA from the group

of total 639 patients were analyzed. Because of RNA shortage,

only 77 samples were analyzed for PAGE4. mRNA was reverse-

transcribed with SuperScript III First Strand Synthesis SuperMix

(Invitrogen, Carlsbad, CA) using random hexamers. For each of

the nine genes studied, the cycle threshold (Ct) was determined in

triplicate and the expression was normalized relative to the set of

four reference genes.

Pathology Review
The Gleason score in the Mayo Clinic RRP Registry was

defined as the initial Gleason score. Since there have been changes

in pathologic interpretation of the Gleason score over time, a

single pathologist (JCC) reviewed the Gleason score of each of the

blocks selected for expression analysis. This clinical variable was

defined as the revised Gleason score.

Statistical Methodology
Collection of gene expression data was attempted for the 623

patients as described in Results. Of these, there were 596

(nSYS = 200, nPSA = 201, nNED = 195) patients for whom data

was collected, the rest having failed one or both expression panels

as described in Results. To assure selection of similar training and

validation sets, 100 case-control-control cohorts comprised of 133

randomly chosen SYS patients (two-thirds of 200 for training)

along with their matched PSA and NED controls were selected as

a proposed training set. The remaining cases and controls were

treated as a proposed validation set. The clinical variables were

tested for independence between the proposed training and

validation sets separately within the SYS cases and the PSA

controls. Discrete clinical factors (pathologic stage, hormonal

treatment adjuvant to RRP, radiation treatment adjuvant to RRP,

hormonal treatment adjuvant to PSA recurrence, and radiation

therapy adjuvant to PSA recurrence) were tested using Chi–square

analysis. Continuous clinical variables (Gleason score (revised), age

at PSA recurrence, first rising PSA value, second rising PSA value,

and PSA slope) were tested using Wilcoxon rank sum. Six of the

one hundred randomly sampled sets failed to show dependency for

any of the clinical variables at the 0.2 level, and the first of these

was chosen as the training set: 391 patients (nSYS = 133,

nPSA = 133, nNED = 125). This reserved 205 patients for the

validation set (nSYS = 67, nPSA = 68, nNED = 70).

The raw data from BeadStudio was normalized using

cyclic loess (fastlo) [25]. The training data were analyzed

using random forests [26] using R Version 2.3.1 (http://www.r-

project.org) and randomForest version 4.5–16 (http://stat-www.

berkeley.edu/users/breiman/RandomForests). The data were

analyzed by panel (Cancer, Custom and Merged, where Merged

was the Cancer and Custom data treated as a single array). By

testing the ntree parameter of the randomForest function we

determined that 4000 random forests were sufficient to generate a

stable list of markers. The top markers as sorted for significance by

the randomForest program were combined with various

combinations of clinical variables using logistic regression R

program (glm() with family = binary (a logistic model), where glm

refers to generalized linear model). The resulting scoring function

was then analyzed using Receiver Operating Characteristic (ROC)

methods and the cut-off was chosen that assumed an equal penalty

for false positives and false negatives. A review of the models

permitted a subset of markers to be identified, and a subset of

supporting clinical data identified. The number of features in the

model was determined by leave 1/3 out Monte Carlo Cross

Validation (MCCV) using 100 iterations. The number of features

was selected to maximize AUC and minimize random variation in

the model. The final model was then applied to the 391 patient

training set and the reserved 205 patient validation set. For

comparison, other previously reported gene expression models

were also tested against the training and validation sets [12–16].

We compared the previously reported models for their

classification of patients into the known PSA recurrence control

and SYS progression case groups. We used the Cramér’s V-

statistic [27] to compare models.

Results

Study Design/Paraffin Block Recovery/RNA Isolation and
Expression Panel Success

Briefly, a nested case-control study was performed using the

large, well-defined cohort of men with rising PSA following

RRP(Figure S1). SYS cases were 213 men who developed systemic

progression between 90 days and 5.0 years following the PSA rise.

PSA controls were a random sample of 213 men who were 5 years

post-RRP with PSA recurrence but with no evidence of further

clinical progression. NED controls were a random sample of 213

men who were 7 years post-RRP without PSA rise (the

comparison of PSA controls with NED controls-will be presented

in a subsequent paper). SYS cases and PSA controls were matched

(1:1) for birth year, calendar year of PSA rise, and initial

A Prostate Cancer Marker Panel
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pathologic Gleason score (, = 6 vs. . = 7). The list of eligible

cases and controls was randomizeed for the blind ascertainment of

blocks, isolation of RNA and performance of the expression array

experiments.

Table 1 summarizes the distribution of clinical parameters

between the SYS cases and the PSA and NED control groups.

There was no significant difference between the groups for the

matching variables (there was no significant difference in initial

diagnostic Gleason score when the , = 6 and .7 groups-the

matching criteria-were compared). Comparison of the initial

diagnostic Gleason score to the revised Gleason scores revealed

that Gleason scores have increased over time. In addition, the

proportion of Gleason 8–10 tumors increased comparing NED

controls to PSA controls, and PSA controls to SYS cases. The

revised Gleason score was used in all the biomarker modeling.

All paraffin-embedded blocks from eligible men were identified

and each block was surveyed for the tissue present (primary and

secondary Gleason cancer regions, normal and metastatic lymph

nodes, etc.). We macrodissected the dominant Gleason pattern

region and attempted to isolate RNA. Illumina Cancer PanelTM

and custom prostate cancer panel DASL array analyses were then

performed on all RNA specimens. The Methods section and

Table 1. Systemic progression (SYS) Case and PSA recurrence (PSA) and no evidence of disease (NED) control patient
demographics

Progression group p-value

NED controls PSA controls SYS cases NED vs. PSA PSA vs. SYS

Year of Surgery 0.707 0.592

N 213 213 213

Median 1992 1992 1992

Q1, Q3 1989, 1995 1990, 1995 1989, 1995

Age at RRP 0.682 0.496

N 213 213 213

Median 67 67 67

Q1, Q3 61, 70 61, 70 61, 70

PSA at RRP 0.001 0.957

N 205 208 204

Median 8.1 10.5 10.6

Q1, Q3 5.1, 13.1 6.4, 21.4 6.5, 20.7

Gleason score, original 0.411 0.024

Missing 12 6 14

, = 6 45 (22.4%) 48 (23.2%) 46 (23.1%)

7 139 (69.2%) 129 (62.3%) 94 (47.2%)

8–10 17 (8.5%) 30 (14.5%) 59 (29.6%)

Gleason score, revised 0.002 ,0.001

Missing 8 2 6

, = 6 50 (24.4%) 32 (15.2%) 8 (3.9%)

7 114 (55.6%) 113 (53.6%) 75 (36.2%)

8–10 41 (20.0%) 66 (31.3%) 124 (59.9%)

Pathologic stage 0.138 ,0.001

T2N0 118 (55.4%) 95 (44.6%) 59 (27.7%)

T3aN0 43 (20.2%) 53 (24.9%) 47 (22.1%)

T3bN0 21 (9.9%) 54 (25.4%) 56 (26.3%)

T3xN+ 31 (14.6%) 11 (5.2%) 51 (23.9%)

Ploidy 0.525 0.001

Missing 13 9 1

Diploid 136 (68.0%) 128 (62.7%) 97 (45.8%)

Tetraploid 53 (26.5%) 61 (29.9%) 84 (39.6%)

Aneuploid 11 (5.5%) 15 (7.4%) 31 (14.6%)

Age at PSA recurrence NA 0.558

N 213 213

Median 69.1 69.6

Q1, Q3 64.2, 73.4 64.7, 73.8

doi:10.1371/journal.pone.0002318.t001
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Tables S1 & S2 describe the composition of the Cancer Panel and

the design of the custom panel.

Table 2 summarizes the final block availability, the RNA isolation

success rate and the success rates of the expression array analyses. Of

the 639 eligible patients, blocks were available on 623 (97.5%). RNA

was isolated and DASL assays successfully performed on a high

proportion of patients/specimens: usable RNA was prepared from

all 623 blocks, and the Cancer Panel and custom panel DASL arrays

were both successful (after repeating some specimens–see below) on

596 RNA specimens (95.7% of RNAs; 93.3% of design patients).

Only 9 (1.4%) RNA specimens failed both panels. The primary

reason for these failures was poor RNA quality–as measured by

qRT-PCR of the RPL13a gene expression [19]. Of the 1246 initial

samples run on both panels, 87 (7.0%) specimens failed. Those

specimens for which there was residual RNA were repeated with a

success rate of 77.2% (61 of 79 samples).

Expression Analysis Reproducibility
Replicate analysis results (Figure S2), RT-PCR comparisons

(Figure S3) and inter- and intra-panel gene expression compar-

isons are described in Results S1.

Specific Gene Expression Results Comparing the
Systemic Progression Cohorts with the PSA Recurrence
and No Evidence of Progression Cohorts

Univariate Analyses by gene. Because the DASL assay

appeared to generate precise and reproducible results, the array

data was examined for genes whose expression was significantly

altered when the SYS cases were compared with the PSA controls.

For this initial analysis, the DASL gene expression value was

determined to be the average of up-to-three probes for each gene

on each array. Upon univariate analysis (two-tail t-test) of the

probe-averaged and fastlo normalized data [25], 68 genes were

highly significantly over- or under-expressed in the SYS cases

versus PSA controls (p,9.7361027, Bonferroni correction for

p,0.001) (Table 3). One hundred twenty-six genes were

significantly over- or under-expressed in the SYS cases versus

the PSA controls (p,4.8661025, Bonferroni correction for

p,0.05). Table S3 provides the complete gene list ordered by p-

value. Figure 1 illustrates nine genes with significantly different

expression in the SYS cases and PSA controls.
Systemic Progression Prediction Model Development and

Testing on a Training set. A statistical model to predict

systemic progression (with and without clinical variables) using a

training set was developed using random forests [21] and logistic

regression as described in Methods. The training data were

analyzed by panel (cancer, custom and merged), by gene (the

average expression for all gene-specific probes), and by individual

probes. Table 4 lists the 15 genes and 2 individual probes selected

for the final model.

Table 5 and Figure 2A summarize the areas under the curve

(AUCs) for three clinical models, the final 17 gene/probe model

and the combined clinical probe models. The variables in the

clinical models (Table 6) were based on available clinical

information. Clinical model A included revised Gleason score

and pathologic stage (information available immediately after

RRP). The addition of diagnostic PSA and age at surgery did not

significantly add to the AUC and was left out of this model (data

not shown). Clinical model B added age at surgery, preoperative

PSA value, and any adjuvant or hormonal therapy within 90 days

after RRP (information available after RRP but before PSA

recurrence). Clinical model C added age at PSA recurrence, the

second PSA level at time of PSA recurrence, and the PSA slope

(information available at the time of PSA recurrence).

Using the training set, clinical models A, B and C alone had

AUCs of 0.74 (95% CI 0.68–0.80), 0.76 (95% CI 0.70–0.82) and

0.78 (95% CI 0.73–0.84), respectively. The 17 gene/probe model

alone had an AUC of 0.85 (95% CI 0.81–0.90). When combined

with the 17 gene/probe model, clinical models A, B, and C had

AUCs of 0.86 (95% CI 0.81–0.90), 0.87 (95% CI 0.83–0.91) and

0.88 (95% CI 0.84–0.92), respectively. We also tested a 19 gene

model that added TOP2A and survivin (BIRC5) to the17 gene/

probe model. The addition of these two genes did not improve the

prediction of systemic progression in the training set (data not

shown).

The arrays were selected to include probe sets for several

previously published prostate aggressiveness models [12–16].

Table 5 summarizes the AUCs for array expression results for

these biomarker models. Figure 2C illustrates the AUCs for four of

these models with the appropriate comparison with clinical model

C and with the 17 gene/probe model. Each of these models

generated AUCs that were smaller than the model we developed.

However several of the models generated AUCs (e.g. the Lapointe

et al. 2004 recurrence, Yu et al. 2004, and Singh et al. 2002

models) that were within or close to the 95% confidence limits of

our AUC training set estimates.

Testing of Models on the Validation Set. We then applied

the 17 gene/probe model and the other previously published

models to the reserved 205 patient validation set (Figures 2B and

2D). Figure 2E compares the training set and validation set AUCs

of the each of gene/probe models. With the exception of the

Glinsky et al. 2004 Signature 1, all of the gene/probe models had

significantly lower AUCs in the validation set compared to the

training set. Figure 2F compares the training and validation set

AUCs of each of the gene/probe models including clinical model

C. While the 17 gene/probe model and three of the previously

published models (the LaPointe et al. 2004 recurrence, Yu et al.

2004, and Glinsky et al. 2005 models) outperformed the clinical

model alone, the AUCs were significantly lower in the validation

set compared to the training set.

We also compared the models for their classification of patients

into the known PSA recurrence control and SYS progression case

groups. Table S4 summarizes the Cramér’s V-statistic [27] of the

various models, and includes a perfect predictor (‘‘truth’’) model

for direct evaluation of the models. Briefly, the Cramér’s V-

statistic ranged from 0.38 to 0.70. The lowest Cramér’s V-statistic

was between the true state (perfect prediction) and the Glinsky et

al. 2005 model with clinical data. The highest Cramér’s V value

was between our 17 gene/probe model and Singh et al. 2002

Table 2. Availability of blocks, RNA isolation success and
DASL assay success

Progression Case/
Control Group

None PSA Systemic Total

Design Number 213 213 213 639

Blocks Available 205 211 207 623 (97.5%)

Usable RNA 205 211 207 623 (100%)

Evaluable Data, Both DASL Panels 195 201 200 596 (95.7%)

Evaluable Data, 3 5 2 10 (1.6%)

Evaluable Data, 2 3 3 8 (1.3%)

Failed Both Panels 5 2 2 9 (1.4%)

doi:10.1371/journal.pone.0002318.t002
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Table 3. Top 68 genes highly significantly correlated with prostate cancer systemic progression (p,0.001; with Bonferroni
correction p,9.73E-07)

DASL fast-lo Normalized Expression Value

rank Gene Symbol Gene ID* Systemic Progression PSA Recurrence SYS to PSA Fold Change SYS to PSA p-value**

1 RAD21*** NM_006265 7587 6409 1.18 8.57E-14

2 YWHAZ NM_145690 15625 13417 1.16 1.92E-13

3 TAF2*** NM_003184 3144 2681 1.17 6.99E-13

4 SLC44A1 NM_080546 4669 4022 1.16 2.74E-12

5 IGFBP3 NM_000598 4815 3782 1.27 3.75E-12

6 RHOA NM_001664 15859 14542 1.09 1.22E-11

7 MTPN NM_145808 7646 6840 1.12 1.69E-11

8 BUB1 NM_001211 1257 957 1.31 2.07E-11

9 TUBB NM_178014 17412 15659 1.11 6.52E-11

10 CHRAC1*** NM_017444 3905 3233 1.21 6.74E-11

11 HPRT1 NM_000194 3613 3179 1.14 8.19E-11

12 SEC14L1 NM_003003 7248 6185 1.17 8.20E-11

13 SOD1 NM_000454 17412 16043 1.09 1.30E-10

14 ENY2 NM_020189 7597 6493 1.17 2.04E-10

15 CCNB1 NM_031966 1871 1342 1.39 3.65E-10

16 INHBA NM_002192 4859 3732 1.30 5.18E-10

17 TOP2A NM_001067 5550 4123 1.35 7.42E-10

18 ATP5J NM_001003703 13145 11517 1.14 1.75E-09

19 C8orf53*** NM_032334 7373 6444 1.14 1.88E-09

20 EIF3S3*** NM_003756 11946 10798 1.11 1.98E-09

21 EIF2C2*** NM_012154 5908 5338 1.11 2.12E-09

22 CDKN3 NM_005192 1562 1229 1.27 2.32E-09

23 TPX2 NM_012112 1193 861 1.39 2.64E-09

24 GLRX2 NM_197962 4154 3319 1.25 3.13E-09

25 CTHRC1 NM_138455 3136 2480 1.26 3.83E-09

26 KIAA0196*** NM_014846 5530 4945 1.12 4.12E-09

27 DHX9 NM_030588 7067 6607 1.07 5.02E-09

28 FAM13C1 NM_001001971 4448 5416 0.82 9.07E-09

29 CSTB NM_000100 16424 15379 1.07 1.57E-08

30 SESN3.a SESN3.a 8467 6811 1.24 1.99E-08

31 SQLE*** NM_003129 2282 1832 1.25 2.43E-08

32 IMMT NM_006839 4683 4190 1.12 2.43E-08

33 MKI67 NM_002417 4204 3261 1.29 2.91E-08

34 MRPL13*** NM_014078 5051 4158 1.21 3.80E-08

35 SRD5A2 NM_000348 2318 2795 0.83 4.63E-08

36 EZH2 NM_004456 3806 3257 1.17 4.76E-08

37 F2R NM_001992 3856 3203 1.20 5.61E-08

38 SH3RF2.a SH3RF2 1394 1705 0.82 6.48E-08

39 ZNF313 NM_018683 9542 8766 1.09 7.14E-08

40 SDHC NM_001035511 2363 2082 1.14 7.35E-08

41 PGK1 NM_000291 2313 2001 1.16 7.84E-08

42 GNPTAB NM_024312 5427 4587 1.18 9.04E-08

43 meelar.d meelar.d 2566 3478 0.74 9.59E-08

44 THBS2 NM_003247 3047 2458 1.24 9.72E-08

45 BIRC5 NM_001168 2451 1802 1.36 1.00E-07

46 POSTN NM_006475 7210 5812 1.24 1.02E-07

47 GNB1 NM_002074 12350 11206 1.10 1.20E-07

48 FAM49B*** NM_016623 6291 5661 1.11 1.21E-07
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model, both with clinical data. Most of the models classified the

same patients into the known groups (e.g. classifying a patient in

the PSA control group as a PSA recurrence and a patient in the

SYS case group as a systemic progression). They also tended to

incorrectly classify the same patients (e.g classifying a patient in the

PSA control group as a systemic progression and vice versa). The

17 gene/probe model correctly classified 5–15 more patients into

their known category (PSA controls or SYS cases) compared to the

other models (data not shown).

Secondary Analyses
Exploratory Survival studies. As noted above, the 17 gene/

probe model and the previously reported models each classified

some of the SYS cases in the good outcome category (e.g. to be PSA

recurrences, not systemic progressors) and some of the PSA controls

in the poor outcome category (e.g. to go on to systemic progression).

We were curious to know whether these apparently false

classifications had any biologic or clinical relevance.

Seventeen men in the PSA control group (who had both array

and clinical model C data) went on to have systemic progression

beyond 5 years at the time of last follow-up. Of these 17 patients, 9

were predicted to have a poor outcome by the 17 gene/probe

model. Of the 179 patients who did not have any systemic

progression, 38 were classified in the poor outcome category by

the model (p value = 0.0066, Fisher exact test). Figure 3A

illustrates the systemic progression-free survival for the good and

poor outcome groups in the PSA controls. PSA controls with a

Table 3. cont.

DASL fast-lo Normalized Expression Value

rank Gene Symbol Gene ID* Systemic Progression PSA Recurrence SYS to PSA Fold Change SYS to PSA p-value**

49 WDR67*** NM_145647 1655 1423 1.16 1.67E-07

50 TMEM65.a TMEM65.a 4117 3540 1.16 1.96E-07

51 GMNN NM_015895 7458 5945 1.25 1.99E-07

52 PAGE4 NM_007003 6419 8065 0.80 2.00E-07

53 MYBPC1 NM_206821 8768 11120 0.79 2.61E-07

54 GPR137B NM_003272 3997 3447 1.16 2.96E-07

55 ALAS1 NM_000688 5380 5035 1.07 3.55E-07

56 MSR1 NM_002445 3663 3025 1.21 3.65E-07

57 CDC2 NM_033379 1420 1130 1.26 3.90E-07

58 240093_x_at 240093_x_at 1789 1469 1.22 4.71E-07

59 IGFBP3 NM_000598 10673 9433 1.13 4.85E-07

60 RAP2B NM_002886 3270 2922 1.12 5.00E-07

61 MGC14595.a*** MGC14595.a 2252 1995 1.13 5.46E-07

62 AZGP1 NM_001185 17252 20133 0.86 6.55E-07

63 NOX4 NM_016931 2321 1942 1.19 6.67E-07

64 STIP1 NM_006819 7630 7123 1.07 7.23E-07

65 PTPRN2 NM_130843 4471 5398 0.83 7.36E-07

66 CTNNB1 NM_001904 9989 9354 1.07 7.50E-07

67 C8orf76*** NM_032847 4088 3652 1.12 7.88E-07

68 YY1 NM_003403 9529 8635 1.10 8.08E-07

*The Gene ID is the accession number when available. Other Gene IDs can be found by searching the May 2004 assembly of the human genome at http://genome.ucsc.
edu/cgi-bin/hgGateway.

**t-test
***Genes mapped to 8q24
doi:10.1371/journal.pone.0002318.t003

Figure 1. Nine genes with significantly different expression in
cases with systemic disease progression (SYS) versus controls
with PSA recurrence (PSA). P-values (t-test) for the SYS case/PSA
control comparison are shown. Controls with no evidence of disease
recurrence (NED) are also included.
doi:10.1371/journal.pone.0002318.g001
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tumor classified as having a poor outcome had significantly

increased risk for developing systemic progression beyond 5 years

(log rank p-value = 0.00050) (HR = 4.7, 95% CI: 1.8–12.1).

Ninety-three men in the SYS case group (who also had array

and clinical model C data) went on to prostate cancer death at the

time of last follow-up. Of these 93 patients, 78 were predicted to

have a poor outcome by the 17 gene/probe model. Of the 98

patients who did not suffer a prostate cancer death, 61 were

classified in the poor outcome category by the model (p

value = 0.0008, chi-square test). Figure 3B illustrates the prostate

cancer-specific overall survival for the good and poor outcome

groups in the SYS cases. SYS cases with a tumor classified as

having a poor outcome had significantly increased risk for

suffering a prostate cancer-specific death (HR = 2.5, 95% CI:

1.5–4.4). The median survival from first positive bone scan or CT

was 2.8 years (95% CI: 2.4–4.2) in the group classified as having a

poor outcome and 8.6 years (95% CI: 7.4–‘) in the group

classified as having a good outcome (log rank p-value = 0.00068).

Similar associations were observed when three of the previously

published models with high AUCs (the Lapointe et al. 2004

recurrence, Yu et al. 2004, and Glinsky et al. 2005 models) were

evaluated. The following describes the results for the LaPointe et

al. 2004 recurrence model (data for the other two models were

similar and are not shown). Of the 98 patients who did not suffer a

prostate cancer death, 60 were predicted to have a poor outcome

by the Lapointe et al. 2004 recurrence model (p value = 0.0001,

chi-square test). Figure 3C illustrates the prostate cancer-specific

overall survival for the good and poor outcome groups in the SYS

cases. SYS cases whose tumor classified as having a poor outcome

had significantly increased hazard of suffering a prostate cancer-

specific death (HR = 2.3, 95% CI: 1.3–4.2). The median survival

from first positive bone scan or CT was 3.1 years (95% CI: 2.5–

4.3) in the group classified as having a poor outcome and 8.6 years

(95% CI: 8.3–‘) in the group classified as having a good outcome

(log rank p-value = 0.0033).

Table 4. Final random forest 17 gene/probe model to predict prostate cancer systemic progression after a rising PSA following
radical prostatectomy

Mean DASL Expression Values

Rank (t-test) Symbol Mean Gini Decrease* p-value (t-test) Systemic Progression PSA Recurrence Systemic:PSA Fold Change

1 RAD21** 2.15 8.57E-14 7587 6409 1.18

22 CDKN3 1.28 2.32E-09 1562 1229 1.27

15 CCNB1 1.25 3.65E-10 1871 1342 1.39

12 SEC14L1 1.14 8.20E-11 7248 6185 1.17

8 BUB1 1.06 2.07E-11 1257 957 1.31

55 ALAS1 1.04 3.55E-07 5380 5035 1.07

26 KIAA0196** 1.02 4.12E-09 5530 4945 1.12

3 TAF2** 1.02 6.99E-13 3144 2681 1.17

78 SFRP4 0.99 1.89E-06 15176 13059 1.16

64 STIP1 0.95 7.23E-07 7630 7123 1.07

25 CTHRC1 0.90 3.83E-09 3136 2480 1.26

4 SLC44A1 0.90 2.74E-12 4669 4022 1.17

5 IGFBP3 0.85 3.75E-12 4815 3782 1.27

307 EDG7 0.82 7.07E-03 5962 6757 0.88

48 FAM49B** 0.82 1.21E-07 6291 5661 1.11

19 C8ORF53** 0.97*** 1.88E-09 7373 6444 1.14

275 CDK10 0.53*** 4.12E-03 12254 12868 0.95

*Mean Gini Decrease for a variable is the average (over all random forest trees) decrease in node impurities from recursive partitioning splits on that variable. For
classification, the node impurity is measured by the Gini index. The Gini index is the weighted average of the impurity in each branch, with impurity being the
proportion of incorrectly classified samples in that branch. The larger the Gini decrease, the fewer the misclassification impurities.

**Genes mapped to 8q24
***Single probes for C8orf53 and CDK10 were selected. The Mean Gini Decrease for these probes are derived from an independent random forest analysis of the all

probes separately.
doi:10.1371/journal.pone.0002318.t004

Table 5. Prediction of systemic progression–training set
AUCs

Probes
alone Clinical model*

A B C

Clinical model alone NA 0.736 0.757 0.783

Final 17 gene/probe 0.852 0.857 0.873 0.883

Glinsky et al. 2004 Signature 1 0.665 0.762 0.776 0.798

Glinsky et al. 2004 Signature 2 0.638 0.764 0.781 0.798

Glinsky et al. 2004 Signature 3 0.669 0.770 0.788 0.810

Glinsky et al. 2005 0.729 0.780 0.800 0.811

Lapointe et al. 2004 Tumor Recurrence Sig. 0.789 0.825 0.838 0.855

Lapointe et al. 2004 (MUC1 and AZGP1) 0.660 0.767 0.777 0.793

Singh et al. 2002 0.783 0.824 0.838 0.851

Yu et al. 2004 0.725 0.797 0.815 0.830

*See Table 6 for clinical variables included in the clinical models
doi:10.1371/journal.pone.0002318.t005
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Figure 2. Areas under the curve (AUCs) for three clinical models, the final 17 gene/probe model and the combined clinical probe
models. A. The training set AUCs for three clinical models, the final 17 gene/probe model and the combined clinical/17 gene/probe model. B. The
validation set AUCs for three clinical models, the final 17 gene/probe model and the combined clinical/17 gene/probe model. C. The training set
AUCs of 4 previously reported gene expression models of prostate cancer aggressiveness compared with the clinical model C alone and with the 17
gene/probe model. D. The validation set AUCs of 4 previously reported gene expression models of prostate cancer aggressiveness compared with the
clinical model C alone and with the 17 gene/probe model. For an explanation of the clinical models see Table 6. (E and F) A comparison of the
training and validation set AUCs for each of the model. E. AUCs of the each of the gene/probe models alone. F. AUCs of each of the gene/probe
models with the inclusion of clinical model C.
doi:10.1371/journal.pone.0002318.g002
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Exploratory 8q24 Studies. Because of recent tumor

chromosome dosage and germ line association studies, the custom

array included 82 8q genes on the custom array. Fourteen 8q genes

were within the top 68 genes based upon univariate analysis

(Table 3). Compared to the proportion of 8q genes on both arrays

the prevalence of 8q genes is non random (p = 0.003, Fisher exact

test). Twelve additional 8q genes were within the top 126 genes. The

prevalence of 26 8q genes in the top 126 is statistically significant

(p = 1.5661025, Fisher exact test). Chromosome band 8q24.1 has

the greatest overrepresentation of genes in the top 68 gene and 126

gene lists (11 genes, p = 6.3561027 and 19 genes, p = 9.34610212,

Fisher exact test). Of the 17 genes/probes in our final model, five

map to 8q24 (p = 0.0043, Fisher exact test)(see Table 4).

Exploratory ets Transcription Factor Studies. Alterations

of several ets-family oncogenes are associated with the development

of prostate cancer [28–30]. We included oligonucleotide probe sets

for the three major members of the ets family involved in prostate

cancer: ERG, ETV1, and ETV4, as well as their translocation

partner TMPRSS2. Figure 4 summarizes the expression results for

these genes for the SYS cases and the PSA and NED controls.

Several observations can be made: 1) With only 8 exceptions ERG,

ETV1 and ETV4 overexpression are mutually exclusive; i.e. the

overexpression of each generally occurs in different tumors. 2)

Different probe sets for ERG give nearly identical expression results

(see Figure S4A). 3) The prevalence of ERG overexpression was

50.0%, 52.2% and 53.8% in the SYS cases, PSA controls and NED

controls, respectively. There was no significant difference in the

mean expression and the prevalence of ERG overexpression

between the three cohorts (see Figure 4). 4) The prevalence of

ETV1 overexpression was 11.5%, 6.5% and 5.1% in the SYS cases,

PSA controls and NED controls, respectively (see Figure 4). The

prevalence of ETV1 overexpression was significantly higher in SYS

cases (p = 0.043, chi-square test). 5) The prevalance of ETV4

overexpression ranged from 2.5%–5.5% among the three groups

and was not significantly different. 6) None of the genes were selected

by the formal statistical modeling (see Table 4). In fact, the 17 gene/

probe model predicted similar rates of progression in ERG+ and

ERG-patients (data not shown).

Exploratory Pathway Analysis. We used the 461 genes

from both cancer and custom panels that are potentially

differentially expressed between SYS cases and PSA controls

(p#0.05) as the focus genes for Ingenuity Pathway Analysis (IPA,

Ingenuity Systems Inc. Redwood City, CA). IPA identified 101

canonical pathways that are associated with the focus genes, 51 of

which are overrepresented with p#0.05 (see Table S5). However,

because we measured a limited number of genes on both DASL

panels, the p values from IPA analysis may not accurately quantify

the degree of overrepresentation of focus genes in each pathway.

We then performed Gene Set Enrichment Analysis (GSEA)

[31], on chromosome 8 genes grouped by map location. Genes

mapped to 8q24.1 had a significant p value (p = 0.0002) with a

FDR q value = 0.001 (see Table S6).

Discussion

Patients with a rising PSA following definitive therapy comprise

a heterogeneous cohort; a significant number develop metastasis,

followed by hormone refractory prostate cancer. Of these, a

substantial number, but not all, will die of the disease. PSA failure

following RRP or radiation therapy is associated with a 15% to

25% five year prostate cancer death rate [32,33]. Androgen

deprivation has been increasingly used in all stages of prostate

cancer to improve mortality rates [34,35] or to facilitate prostate

cytoreduction [36,37]. Two recent studies described the natural

history of progression after PSA elevation following RRP or

radiation therapy [32,38]. They identified PSA doubling time as a

potential surrogate for prostate mortality. In three retrospective

studies early androgen deprivation in patients with biochemical

failure and short (,12 months) PSA doubling time after

prostatectomy improved survival [39–41]. We hypothesized that

additional biomarkers beyond PSA doubling time could help

predict which men with a rising PSA post-RRP might suffer

systemic progression. Such a panel could be incorporated into

future prospective clinical trials in the setting of PSA progression.

Using an array methodology optimized for RNA from paraffin-

embedded tissues and a rigorous statistical modeling algorithm, we

developed a 17 gene/probe tissue gene expression model to

predict the likelihood of systemic progression in men with a rising

PSA post-RRP. In a training set the 17 gene/probe model was

significantly better than the use of clinical variables alone. While

accuracy decreased when the 17 gene/probe model was further

tested with a reserved validation set, the performance of the 17

gene/probe model with clinical model C was better than the

clinical model alone.

The reduction in AUC between the training and validation sets

was in part due to the overfitting inherent in these types of

analyses. Since we maximized the AUC on the training set, the

validation set AUC would be predicted to be lower. Another cause

of the reduction in AUC could be a relative lack of precision of the

Illumina DASL technology. Except for the poor correlation of the

DASL and RT-PCR measurements for genes with low DCt values,

all of the intra-plate, inter-plate, intra-gene and inter-gene

reproducibility analyses suggested that the DASL chemistry was

very precise. We observed greater coefficients of variation in our

replicate RT-PCR measurements than in the DASL measure-

ments (data not shown).

Perhaps the best explanation for the validation set AUC reduction

is that prostate cancer is genetically heterogeneous. This heteroge-

neity can result in a reduction in a validation set AUC even for

relatively large datasets. This hypothesis predicts that several

different models could be developed from the same dataset. One

of the advantages of the Illumina DASL platform is its ability to

analyze up to 1536 probes (or 512 genes if thee probes are selected

per gene) on a single array. We included probes from eight

previously reported gene expression panels associated with prostate

cancer aggressiveness [12–16]. The models showed strong correla-

tion with each other and generally predicted the same patients to be

PSA recurrences or systemic progressors. A recent comparison of

several breast cancer gene expression models by Fan et al. [42] also

showed high correlation between models. The implication is that

Table 6. Clinical variables included in clinical models

Clinical model

Clinical variable A B C

Revised Gleason score X X X

pStage X X X

Age at surgery X X

Preoperative PSA X X

Hormone or radiation therapy after RRP X X

Age at PSA recurrence X

Second PSA X

PSA slope X

doi:10.1371/journal.pone.0002318.t006
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several independent biomarker panels can be developed to classify

cancer patients with similar clinical or biologic endpoints.

After the formal analysis was completed we began secondary

exploratory studies of the whole dataset. We hypothesized that

systemic progression beyond 5 years in the PSA controls might be

predicted by the models. When the 17 gene/probe model score

(and three of the other models) predicted a poorer outcome, there

was a high likelihood that a PSA control would have a positive

bone scan or CT beyond 5 years. There was also evidence

supporting a second hypothesis that prostate cancer-specific death

in the SYS cases might be predicted by the models. When the 17

gene/probe model score (and three of the other models) predicted

a poorer outcome, the median overall survival of a SYS case from

a positive bone scan or CT was 2.8 years (compared to 8.6 years

with a better model score). These secondary analyses imply that

tissue expression biomarker panels may have utility for the

stratification of patients for interventions at the time of PSA

recurrence as well as for systemic progression. Importantly, the

expression data was collected on primary tumor specimens

resected several years before the occurrence of the clinical events.

Overrepresentation of 8q24 is associated with clinically aggressive

prostate cancer (for example, references [43–45]). Furthermore,

tumor overexpression of genes on chromosome 8 (and from 8q24) is

also reproducibly associated with prostate cancer progression [46–

49]. We recently mapped the region of 8q24 overrepresentation, and

it involves a ,5 Mb region surrounding c-Myc [50]. Our secondary

analyses demonstrated that 8q24 genes were significantly overrep-

resented in the top 68 and 126 genes by t-test and in the final 17

gene/probe model. Each of the genes exhibited similar magnitudes

of overexpression in the SYS cases suggesting an association with

chromosomal dosage. A common germline polymorphism mapped

near the c-Myc gene on 8q24, has recently been associated with

prostate cancer development [51]. This finding has been replicated

by at least five different groups, with the further suggestion that at

Figure 3. Systemic progression-free and overall prostate cancer-specific survival in the PSA control and SYS case groups. A) Systemic
progression-free survival for the patients classified in the poor outcome category and for those in the good outcome category in the PSA control
group–17 gene/probe model. B) Prostate cancer-specific overall survival for the patients classified in the poor outcome category and for those in the
good outcome category in the SYS case group–17 gene/probe model. C) Prostate cancer-specific overall survival for patients classified in the poor
outcome category and for those in the good outcome category in the SYS case group-Lapointe et al. 2004 recurrence model.
doi:10.1371/journal.pone.0002318.g003
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least two germline haplotypes near c-Myc are associated with

prostate cancer development [52–56]. It is not known if the men who

inherit the at-risk haplotype(s) have a clinically more aggressive

prostate cancer, a poorer prognosis, somatic (tumor) overrepresen-

tation of 8q24, or overexpression of 8q24 genes.

Alterations of several ets-family oncogenes are associated with

the development of prostate cancer [28–30]. Our panel(s) included

probe sets for three members of the ets family involved in prostate

cancer; ERG, ETV1, and ETV4, as well as their translocation

partner, TMPRSS2. As a group, these genes are over-expressed in

approximately 62% of prostate cancers. This overall prevalence

was nearly identical in our three case and control groups. In

addition, with the possible exception of ETV1, whose prevalence

of overexpression was about 2-fold higher in the SYS cases, none

of the genes seemed to be associated with systemic progression of

prostate cancer. It has been recently reported that ERG fusion is

associated with lethal prostate cancer in Scandinavian men treated

with watchful waiting [30]. However, the prevalence of fusion (and

presumably ERG overexpression) in that study was only 15%; far

lower than in our dataset and other reports [28,29]. These

differences are likely a result of the types of prostate cancer (and

clinical outcomes) diagnosed where PSA screening is common

(North America) and uncommon (Scandinavia).

We conclude that the measurement of gene expression patterns

may be useful for determining which men are likely to benefit from

additional therapy following PSA recurrence. These measure-

ments should be included in prospective evaluation of various

therapeutic interventions when PSA rises following definitive

treatment of prostate cancer.
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Figure S1 Summary of the nested case-control study design.

Found at: doi:10.1371/journal.pone.0002318.s001 (0.16 MB TIF)

Figure S2 Reproducibility of DASL assay and the effect of RNA

quantity on the DASL assay. A) An example of DASL interplate

reproducibility. B) Effect of reduced RNA quantity on the DASL

assay.

Found at: doi:10.1371/journal.pone.0002318.s002 (0.59 MB TIF)

Figure S3 Example results of the comparison of quantitative RT-

PCR and DASL data. ERG-Cancer Panel ver1 (A, R2 = 0.94),

ERG-Custom Panel (B, R2 = 0.94), PAGE4 (C, R2 = 0.89), MUC1

(D, R2 = 0.82) and FAM13C1 (E, R2 = 0.75). (F) Summary of

quantitative RT-PCR and DASL data comparisons.

Found at: doi:10.1371/journal.pone.0002318.s003 (0.48 MB TIF)

Figure S4 Comparison of genes having multiple probe sets on

the Cancer Panel v1 and/or the Custom panel. A) Comparison of

three probe sets (Cancer Panel ERG, Custom panel ERG and

Custom panel ERG splice variant) for ERG. B) Comparison of

two probe sets (Custom Panel SRD5A2 and Custom panel

terparbo) for SRD5A2/terparbo.

Found at: doi:10.1371/journal.pone.0002318.s004 (2.13 MB TIF)

Results S1 The Supplemental Results describe the replicate

analysis results, RT-PCR comparisons and inter- and intra-panel

gene expression comparisons.

Found at: doi:10.1371/journal.pone.0002318.s005 (0.05 MB

DOC)

Table S1 The List of Genes Included on the Commercially

Available Illumina DASL Cancer Panel v1. Prostate cancer

relevant genes are indicated (for selection criteria see footnotes

following Table S2).

Found at: doi:10.1371/journal.pone.0002318.s006 (0.11 MB XLS)

Table S2 Genes Relevant to Prostate Cancer Progression

Included on an Illumina DASL Custom Array (for selection

criteria see footnotes below).

Found at: doi:10.1371/journal.pone.0002318.s007 (0.16 MB XLS)

Table S3 Genes from Commercially Available Illumina

DASLTM Cancer Panel and Illumina DASL Custom Array

Ranked by Increasing P-Value.

Found at: doi:10.1371/journal.pone.0002318.s008 (0.21 MB XLS)

Table S4 Cramér’s V-statistic for selection between PSA

recurrence and systemic progression. All samples are included

(both training and validation sets). All models were augmented

with clinical information.

Found at: doi:10.1371/journal.pone.0002318.s009 (0.02 MB PDF)

Table S5 The Top 51 pathways associated with systemic

progression by Ingenuity Pathway Analysis.

Found at: doi:10.1371/journal.pone.0002318.s010 (0.03 MB

DOC)

Table S6 Association of genes on chromosome 8 with systemic

progression using Gene Set Enrichment Analysis (GSEA).

Found at: doi:10.1371/journal.pone.0002318.s011 (0.02 MB PDF)
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Figure 4. Expression results for ERG, ETV1 and ETV4 among
the men with no evidence of disease progression (NED), PSA
recurrence (PSA) and systemic progression (SYS). (A) Each
overlapping set of three bars (blue, red and green) represent a different
case or control. Thresholds for overexpression are ERG.3200,
ETV1.6000 and ETV4.1400. (B) The numbers of cases showing
overexpression of one or more of ERG, ETV1 and ETV4 are shown.
doi:10.1371/journal.pone.0002318.g004
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