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Abstract

In this investigation, we have carried out an autosomal genome-wide linkage analysis to map genes associated with type 2
diabetes (T2D) and five quantitative traits of blood lipids including total cholesterol, high-density lipoprotein (HDL)
cholesterol, low-density lipoprotein (LDL) cholesterol, very low-density lipoprotein (VLDL) cholesterol, and triglycerides in a
unique family-based cohort from the Sikh Diabetes Study (SDS). A total of 870 individuals (526 male/344 female) from 321
families were successfully genotyped using 398 polymorphic microsatellite markers with an average spacing of 9.26 cM on
the autosomes. Results of non-parametric multipoint linkage analysis using Sall statistics (implemented in Merlin) did not
reveal any chromosomal region to be significantly associated with T2D in this Sikh cohort. However, linkage analysis for lipid
traits using QTL-ALL analysis revealed promising linkage signals with p#0.005 for total cholesterol, LDL cholesterol, and HDL
cholesterol at chromosomes 5p15, 9q21, 10p11, 10q21, and 22q13. The most significant signal (p = 0.0011) occurred at
10q21.2 for HDL cholesterol. We also observed linkage signals for total cholesterol at 22q13.32 (p = 0.0016) and 5p15.33
(p = 0.0031) and for LDL cholesterol at 10p11.23 (p = 0.0045). Interestingly, some of linkage regions identified in this Sikh
population coincide with plausible candidate genes reported in recent genome-wide association and meta-analysis studies
for lipid traits. Our study provides the first evidence of linkage for loci associated with quantitative lipid traits at four
chromosomal regions in this Asian Indian population from Punjab. More detailed examination of these regions with more
informative genotyping, sequencing, and functional studies should lead to rapid detection of novel targets of therapeutic
importance.
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Introduction

Type 2 diabetes (T2D) is a major public health problem of 21st

century and the fifth leading cause of death worldwide. According

to Global Burden of Disease Study predictions, India, China and

USA will be the top three leading countries for the prevalence of

diabetes [1]. The approximate estimate of 31.7 million people with

diabetes in India in 2000 will increase to 79.4 million by year 2030

and the size of the USA population with diabetes, both diagnosed

and undiagnosed, will rise from approximately 30 million now to

44 million by the year 2030 [2]. T2D is strongly linked to various

metabolic disturbances including obesity, insulin resistance,

dyslipidemias, and elevated blood pressure. Linkage and candi-

date-gene focused studies successfully identified some rare forms of

T2D controlled by one or two genes such as the various forms of

maturity onset diabetes of young (MODY), mitochondrial

diabetes, and neonatal diabetes. However, no single locus was

noted to have strong and consistent evidence of linkage with the

most common form of T2D in multiple populations [3].

Elevated serum lipid levels are important risk factors for the

development of cardiovascular disease (CVD). The genetic basis of

several monogenic forms of lipid disorders has been determined,

including familial lipoprotein lipase (LPL) deficiency, apoC-II

deficiency, defective apoB, familial hypercholesterolemia, and

familial triglyceridemia [4]. However, genes associated with

common forms of dyslipidemia in the general population remain

elusive.

Recent genome-wide association studies (GWAS) performed for

many complex traits are revolutionizing the dissection of genetic

determinants of several complex traits including T2D and serum

lipids. Although these studies are adding to the list of reliably

associated common loci controlling T2D and blood lipids and

even other complex traits, these loci explain only a small portion of

the heritable component associated with these complex diseases.
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Clearly, additional loci that can explain a large proportion of the

variation await discovery.

Asian Indians, one quarter of the global population, have

unusually high CVD mortality and very high prevalence of insulin

resistance and T2D [5]. The increased susceptibility to early onset

of T2D and premature CVD in Asian Indians was confirmed in

several earlier studies [6,7,8,9]. Indians tend to develop T2D at a

relatively earlier age of 40–45 that is about 10–15 year earlier than

European populations [6,10,11,12]. However, the reasons under-

lying the increased morbidity and mortality associated with T2D

and CVD and in people of South Asian ancestry are poorly

understood. In this investigation, we have carried out an

autosomal genome-wide linkage scan to map the genes associated

with T2D and serum lipid levels using our large family-based

cohort from the Sikh Diabetes Study (SDS) [13]. This non-

smoking, primarily vegetarian, endogamous caste group has high

prevalence of diabetes and CVD with young age-of-onset. To our

knowledge, this is the first report of genome-wide linkage studies

on T2D and quantitative lipid traits in a population from South

Asian Continent.

Methods

Study Population, Ascertainment Criteria, and
Recruitment

This study was carried out on an endogamous community of

Khatri Sikhs living in Northern Indian states of Punjab, Haryana,

and New Delhi. The Khatri population was chosen because of its

relatively higher prevalence of diabetes as compared to other Sikh

castes. Khatri Sikhs are more affluent and live in cities and are

traders by profession. In general, Sikhs do not smoke for religious

and cultural reasons and about 50% of the study participants are

life-long vegetarians. A total of 1,115 individuals from 338

families were extensively phenotyped [13]. DNA samples of 870

individuals (526 male/344 female) comprising 685 T2D cases and

185 normal glucose tolerant (NGT) relatives were successfully

genotyped and used in this investigation. The T2D cases were 25

years or older and mean age at the time of recruitment (mean 6

standard deviation [SD]) was 54.2611.0 years. Average age of

unaffected relative was 46.0614.7 years with a minimum age of

19 years. Only individuals who reported that all four grandpar-

ents were Khatri Sikhs of North Indian origin, who had Khatri

surnames, and who spoke the Punjabi language were included. In

addition, probands were required to have two or more full

siblings with diabetes, or at least one living parent, and more than

two siblings available for sampling. Excluded from the sample

were half-siblings, adopted individuals, and individuals of South,

East and Central Indian origin; individuals with type 1 diabetes

(T1D) or a family member with T1D; individuals with rare forms

of T2D such as maturity-onset diabetes of young (MODYs), or

secondary diabetes (e.g., due to hemochromatosis or pancreatitis).

Clinical characteristics of the SDS participants used for this

investigation are summarized in Table 1. All blood samples were

obtained at the baseline visit. All participants provided a written

consent following an informed consent procedures approved by

Institutional Review Boards (IRBs). All SDS protocols and

consent documents were reviewed and approved by the

University of Oklahoma Health Sciences Center (OUHSC)

(IRB # 13302, approved till August 31, 2011) and the University

of Pittsburgh (IRB # 021234) as well as the Human Subject

Protection (Ethical) committees at the participating hospitals and

institutes in India. The Ethical committees of local institutions in

India were Hero DMC Heart Institute, Ludhiana, and Guru

Nanak Dev University, Amritsar. Each Institute in India also

separately obtained Federal Wide Assurance (FWA) from the

Office of Human Research Protection (OHRP) from the US

Department of Health and Human Services (DHHS). All the key

investigators and key personnel working for SDS obtained online

training for Human Participant Protection Education for

Research.

SDS Families
A total of 557 families were investigated and 236 families were

excluded because they did not meet the eligibility criteria for the

study. A total of 321 families containing 870 individuals (526

male/344 females), who were successfully genotyped (call rate

.95%), were used for linkage analysis of T2D. These 321 diabetic

families comprised 275 affected sibling pairs, 59 affected cousin

pairs, 127 affected parent-child pairs, 1 affected grand parent-child

Table 1. Characteristics of Study Population Stratified by
Gender and Disease (Mean 6 SD).

T2D cases
Unaffected
Relatives p value**

685 (412M/273F) 185 (116M/69F)

Age at recruitment
(year)

M* 52.42611.36 44.71615.20 ,0.0001

F 55.93610.88 48.60613.60 ,0.0001

Age at onset (years) M 45.80610.65 – –

F 48.62610.40 – –

Duration of T2D
(years)

M 7.8267.42 – –

F 7.3366.65 – –

BMI (kg/m2) M 26.9064.23 26.8964.53 0.876

F 28.5065.20 27.5864.79 0.140

WAIST (cm) M 95.50610.40 93.2611.55 0.040

F 92.70611.00 88.1610.60 ,0.0001

HIP (cm) M 95.868.20 96.068.50 0.875

F 99.3611.00 97.669.70 0.135

WHR{ M 0.9960.07 0.9760.07 ,0.0001

F 0.9460.07 0.9060.07 ,0.0001

Fasting Glucose
(mg/dl)

M 185.81670.66 95.30611.38 ,0.0001

F 193.23674.58 97.7769.31 ,0.0001

Total Cholesterol
(mg/dl)

M 177.18644.34 174.54645.86 0.525

F 187.24647.42 177.58638.94 0.049

Triglycerides (mg/dl) M 197.636113.50 160.71685.49 ,0.0001

F 172.66695.34 155.74669.72 0.078

HDL-cholesterol
(mg/dl)

M 38.11612.44 39.21610.01 0.321

F 41.76612.59 43.70611.37 0.187

LDL-cholesterol
(mg/dl)

M 99.98635.68 98.36632.96 0.619

F 110.17639.81 102.89635.56 0.098

VLDL-cholesterol
(mg/dl)

M 39.75624.05 32.45618.43 0.001

F 34.77619.18 31.13613.84 0.056

*M - male, F- female; {Waist to hip ratio; **Difference between T2D cases and
unaffected relatives.
doi:10.1371/journal.pone.0021188.t001
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pair, and 61 affected avuncular pairs. We collected an average of

6.5 participants per family with family size ranging from 3 to 105

members. The average number of generations per family was 2.5.

Of these 321 families, 316 families containing 846 individuals (511

male/335 female) were used in the linkage analysis of blood lipids

(Table 2).

Phenotypes
The diagnosis of T2D was confirmed by (a) searching medical

records for indications of symptoms of diabetes or measures of

blood glucose levels, (b) use of diabetic medication, and (c)

measuring fasting glucose levels following the guidelines of

American Diabetes Association [14]. A medical record indicating

either (1) a fasting plasma glucose level .126 mg/dl after a

minimum 12-h fast or (2) a 2-h post glucose level .200 mg/dl [2-h

oral glucose tolerance test (OGTT)] on more than one occasion

with symptoms of diabetes. In the absence of medical record

information, we confirmed self-reported T2D cases by performing

a 2-h OGTT. The 2-h OGTTs were performed following the

criteria of the World Health Organization (WHO) (75 g oral load

of glucose). The NGT diagnosis was based on a fasting glycemia

,108 mg/dl or a 2-h glucose ,140 mg/dl. The average age at

diagnosis was 47 years and duration of diabetes was about 7.5

years. Since T2D remains asymptomatic for several years, an

average Asian Indian patient with new onset of diabetes might

actually had diabetes 4–7 years before diagnosis [15]. This is in

sharp contrast to the mean age at onset of 60 years or above in

developed countries [10,11,16,17].

Body mass index (BMI) was calculated as [weight (kg)/height

(meter)2], and waist-to-hip ratio (WHR) was calculated as the ratio

of abdomen or waist circumference to hip circumference. Despite

having comparable BMI (27.564.0 T2D cases vs. 27.364.7

controls), patients had a pronounced abdominal adiposity as

reflected by their significantly higher WHR (0.9760.07 vs.

0.9460.07; p,0.0001) than controls. Interestingly, WHR in

Khatri Sikh men (BMI 26–27 kg/m2) was higher than obese

Mexican American men (BMI.32 kg/m2); Sikhs (0.9760.05) vs.

Mexican Americans (0.9560.06) [18]. Perhaps central obesity is

the underlying cause of high risk to insulin resistance and high

prevalence of T2D and CVD in Indians.

Education (highest level completed) was scored 1–4 where 1 =

primary or none, 2 = high school, 3 = bachelor degree, and 4 =

post graduate degree. Job-grade was scored 1–3 based on

education and economic status where 1 = high income, 2 =

middle-income, 3 = lower-middle and lowest income class;

category 1 was used as a reference group. Smoking information

was collected on past smoking, current smoking status, length of

time, number of cigarettes smoked/day. Alcohol consumption was

scored 0–4 where 0 = no alcohol, 1 = 50 to 100 ml/day, 2 = 100

to 400 ml/day, 3 = 400 to 1000 ml (1L)/day 4 = .1 L/day.

Physical activity was scored 1–3 based on level of activity

performed where 1 = very active, 2 = moderately active, 3 =

quite inactive. About 83% of T2D patients were taking oral

hypoglycemic agents. Some were maintaining glycemic control by

diet and exercise. The individuals on lipid-lowering medications

were not included in the analysis. Further recruitment details are

available elsewhere [13].

Metabolic Estimations
Serum lipids [total cholesterol, high-density lipoprotein (HDL)

cholesterol, low-density lipoprotein (LDL) cholesterol, very low-

density lipoprotein (VLDL) cholesterol, and triglycerides] were

quantified using standard enzymatic methods (Roche, Basel,

Switzerland). Fasting serum insulin was measured by radio-

immuno assay (Diagnostic Products, Cypress, USA). All quanti-

tative parameters were determined by following manufacturer’s

instructions using a Hitachi 902 auto-analyzer (Roche, Basel,

Switzerland).

Marker Genotyping
DNA was extracted from buffy coats using QiaAmp blood kits

(Qiagen, Chatworth, USA) or by the salting out procedure [19].

870 samples were successfully genotyped for 398 polymorphic

microsatellite markers with an average spacing of 9.26 cM on the

autosomes by the National Heart Lung and Blood Institute’s

(NHLBI) Mammalian Genotyping Service (http://www.

marshmed.org/genetics). A total of 870 (526 male, 344 female)

samples were used in linkage analysis of T2D and 846 (511 male,

335 female) samples were used in linkage analysis of lipid levels

after excluding those with call rate ,95%, relationship errors,

gender errors, and those with missing phenotypes.

Error Checking and Data Handling
A variety of statistical software was used to complete this study.

To set up the files for analysis, we extensively used the statistical

Table 2. Description of SDS Pedigrees.

Phenotyped*
Genotyped and phenotyped for
T2D**

Genotyped and phenotyped for
lipid levels**

Total Male Females Total Male Females Total Male Females

Number of families 338 – – 321 _ _ 316 _ _

Family size 6.51(*) – – 2.71(**) _ _ 2.68 _ _

Generations (average) 2.46 – – 2.49 _ _ 2.49 _ _

Number of individuals in pedigrees 2,199(*) 1248 951 870(**) 526 344 846(**) 511 335

Founders 979(*) – – 85 _ _ 82 _ _

Number of affecteds in pedigrees 1,202(*) 710 492 685 412 273

Number of individuals with blood available 1,115 684 431

Number of affecteds with blood available 868 530 338

Number of unaffected with blood available 247 154 93

*—including deceased; **—excluding deceased.
doi:10.1371/journal.pone.0021188.t002
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software R (version 2.0.1). Data cleaning was performed following

several steps. To check for inconsistencies in the self-reported

family structures, we carried out relationship testing using PREST

[20] and RELPAIR [21,22]. PEDCHECK [23] was used to detect

Mendelian inconsistencies in genotype combinations within a

family. PEDSTATS (version 0.6.9) [24] was used to obtain counts

of individuals included in the analysis.

Phenotype Normalization and Adjustment for Covariates
To adjust for the confounding effects of environmental influence

on the lipid traits, we included information on age, age2 sex, BMI,

dietary and lifestyle factors (smoking, alcohol consumption, and

physical activity), socio-economic status (education and job-grade)

as covariates. To select significant covariate, both stepwise

regression and backward elimination were used in genetic models.

Significant covariates considered for selection in the model were

age, age2, sex, job grade, level of alcohol consumption.

Additionally, analysis was performed including and excluding

BMI in the model despite its elimination in stepwise regression.

Univariate analysis was performed to obtain summary statistics for

each trait (online supplementary Table S2). A classical multiple

linear regression model: Y~Xbze, was used where Y is the

response and X is the design matrix and b is the vector of

regression coefficients. To reduce collinearity between age and

age2, these variables were mean centered. Since most of the traits

were right skewed, they were transformed using the Box-Cox

transformation method (Figure S1). Box-Cox method provides

optimal value of the transformation parameters and increases the

applicability and usefulness of statistical techniques based on the

normality assumption and can significantly improve the linear fit

of Y against X . After transformation we checked for the outliers.

Regression parameters were estimated after exclusion of outliers

(points outside of mean 63 SD), and residuals were computed for

all participants. After building the model, the data were rechecked

for further outliers using the jackknife method. Influential

observations also were taken care of. High Leverage point and

Cook’s distance for each observation were also measured. To test

the significance of the parameters, a significance level of 0.05 was

used throughout the analyses. To sample a set of putatively

unrelated individuals for the regression analysis, we took all

phenotyped founders. If a family had no phenotyped founders,

then we sampled one phenotyped non-founder from that family.

Although BMI was not a significant covariate in step-wise

selection, the entire QTL-ALL analyses were performed both

including and excluding BMI as a covariate in the model.

Genome-wide Linkage Analysis for T2D
We used the Sall statistic [25] as implemented in Merlin [26] to

perform linkage analysis for the trait T2D. This non-parametric

method has excellent power and is robust across a wide variety of

disease models [27,28]. Using FastSLINK [29,30,31], we

simulated genetic data, for a 2-allele marker for an allele frequency

of 0.01 and a penetrance vector of (0.054, 0.50, 0.70), which

implies that the relative risk to siblings, ls, is a relatively low 1.49.

Then a Sall LOD score was computed using Merlin. From this

simulated data we have 98% power to detect a LOD . = 2; and

90% to detect a LOD . = 3 in this cohort. Notably, these power

estimates are conservative as we excluded the biggest two families

which were too complex to run through Merlin.

QTL-ALL Analysis for Mapping Lipid Traits
In this study, families containing individuals affected by T2D

are preferentially over-sampled, so this sample is non-randomly

ascertained with respect to T2D. Therefore, to the extent that lipid

traits are correlated with T2D status, the sample is also non-

randomly ascertained with respect to the lipid traits. Thus, it

would not be appropriate to use the usual variance-component

based linkage analysis methods on these data. Instead we used

score-based linkage statistics as implemented in the QTL-ALL

program for this data set [32]. We decided to use the statistic

SCORE.MAX, which is recommended in most circumstances,

and which has been shown to work well even on non-randomly

ascertained data. The current version of QTL-ALL can handle

only nuclear family pedigrees. So the Mega2 program was used to

convert the multi-generation families to single generation nuclear

families [33].

Results

Family Structure Error, Gender Error and Genotype Error
Checking

Family structure data and X-linked genotypes at 27 markers

were combined to detect possible gender errors by looking for

males who are more heterozygous than expected and females who

are more homozygous than expected. Five males were heterozy-

gous at more than two markers; 16 women were more than 80%

homozygous. All suspect participants were rechecked to ensure

there was no misreporting of gender. We used RELPAIR and

PREST to check the accuracy of self-reported family relationships.

Misclassification of relationship for half-siblings as full-sibling, and

unrelated as cousins, were detected and resolved. Participants with

unresolved relationship errors were removed from families before

analysis. We also used PEDCHECK to check Mendelian

inconsistencies at each marker and erroneous data were omitted

from further analysis. Table 1 shows the clinical and physical

characteristics of the SDS participants used in the analysis.

Linkage Analysis for T2D
As shown in online Figure S1, non-parametric multipoint

linkage analysis did not show any chromosomal region to be

significantly associated with T2D in this Sikh cohort. Adjusting for

age, BMI, and gender did not alter linkage signal significantly and

consequently were not included as covariates in the results

presented. We found little evidence of linkage with T2D with

maximum LOD of 1.24 reached on chromosome 2p24 near

microsatellite markers SRAP and X130YG9P. No other region

revealed any signal (LOD .1.00) associated with T2D in these

families.

Influence of Environmental Factors on Lipid Traits
Univariate analysis of the lipid traits showed some individuals

with very high or very low outlier values, which were removed

from the analysis. As needed a Box-Cox transformation was used

to make the error distribution of the data more normal (online
Figure S2). Regression models were then fitted for the

transformed traits. In the variable selection step, in most cases

forward stepwise-regression and backward elimination agreed with

each other. Table 3 shows the final models selected after

detecting the significant covariates for each lipid trait analyzed.

Total serum cholesterol levels were influenced by economic status.

The correlation between VLDL cholesterol and triglycerides was

very high (0.98) and level of alcohol consumption was a significant

factor for influencing both serum triglycerides and VLDL-

cholesterol levels. Gender was a significant covariate for serum

HDL cholesterol, and age, age2, and socio-economic status (job

grade) were significant predictors of serum LDL cholesterol levels

(Table 3). All the estimated coefficients are presented in online

Table S1. High leverage points and Cook’s distance were

Linkage Scan for Diabetes and Lipids in Sikhs
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calculated to detect influential observations and poorly fitted

observations. After removing the maximum Cook’s distance

points, there was no significance change in the model. Calculated

jackknife statistics was also within the acceptance region. Residuals

of each trait were calculated and these residuals were used for the

final QTL-ALL analysis.

QTL-ALL Analysis for Mapping Lipid Traits
QTL-ALL analysis, using the Score.Max statistics, was

performed for the five quantitative traits. An overview of the

linkage results for the significant signals associated with serum lipid

associated traits is given in Figure 1 and Table 4. Several QTLs

with p#0.005 were detected on chromosomes 5p, 9q, 10q, 10p,

and 22q. The strongest linkage signal (p = 0.0011) was detected on

chromosome 10q21.2 near D10S1225 for serum HDL cholesterol.

Suggestive evidence of linkage for total cholesterol was observed

on chromosome 5 near marker D5S2488 (p = 0.0031), and on

chromosome 22 near marker TCTA015M (p = 0.0016). Two

signals, one near marker D9S1122 (p = 0.0039) on chromosome 9

and other near D10S1426 (p = 0.0045) on chromosome 10, were

detected for LDL cholesterol. A peak for HDL (p = 0.031) was

seen near marker D9S934 on chromosome 9. No significant signal

for serum triglycerides was observed (online Figure S3). Because

obesity is a major risk factor for CVD and T2D risk, and affects

lipid levels, we also tested linkage signals including and excluding

BMI. Our results did not change after including BMI in the

model.

Discussion

Our study represents the first large scale genome-wide effort to

identify chromosomal regions with putative loci affecting T2D and

lipid traits in a unique community of Asian Sikhs from Northern

India. This diabetic cohort from a genetically homogenous

subgroup was collected with the initial goal of identifying T2D

predisposing genes. However, the results of our non-parametric

linkage scan did not identify any chromosomal region to be

significantly linked to T2D (online Figure S1). Note that the

non-parametric method for linkage (used in our study) only

considers allele sharing between affected individuals, therefore, the

ambiguous phenotype of unaffected members is unlikely to have

led to the failure to detect linkage in this large sample. These

results reaffirm the highly complex nature of T2D phenotype.

Essentially, our study failed to identify genes associated with T2D

even when a homogenous population was used to control genetic

heterogeneity associated with T2D phenotype and a sample

collected from one geographic location was used to reduce

environmental heterogeneity. These finding suggest that the genes

responsible for T2D in Sikhs have small effects, as seen in other

ethnic groups, and are difficult to detect using linkage analysis. It

can be argued that in comparison to random-mating population,

higher identity by descent (IBD) sharing in this inbred population

might have reduced the power of detecting significant linkage. In

this scenario, one would expect to see increased average IBD

leading to false positive indications of linkage. On the contrary, we

found the opposite with no substantial increase in IBD among

affected individuals and thus no linkage. At the same time, we

believe that our linkage data may still contain considerably useful

information that could enable the discrimination of causal variant

from a near-by variant that is merely in linkage disequilibrium

(LD) [34]. Interestingly, our case-control association studies have

confirmed some Caucasian GWAS loci (TCF7L2, PPARG,

KCNJ11, FTO and KCNQ1) associated with T2D in this population

[35,36,37,38]. Therefore, further fine mapping especially in the

elevated regions using high-density SNP panel and whole genome

sequencing may identify rare and functional variants with large

effects contributing to T2D. These Investigations also may answer

the questions of ‘missing heritability’ which is expected to lie in the

‘rare’ variants and which the GWA studies are unable to explain

[39].

The other aim of this investigation was to identify genomic

regions affecting lipid-related phenotypes in this cohort. We

performed QTL-ALL analysis on this non-randomly ascertained

dataset, which revealed several suggestive linkage signals associ-

ated with serum lipid levels (Table 4). Classical multiple linear

regression models were used to adjust for environmental effects on

the serum lipid traits. In view of strong environmental component

associated with T2D and lipid metabolism, we have carefully

analyzed the environmental factors, particularly the unique life

style factors such as diet, physical activity, obesity, job status, socio-

economic status, gender, and medication that could potentially

influence these traits. As explained in the Results section, the

significant covariates with potential to modify linkage effect were

identified and included in the analysis model. The strongest

evidence of linkage (p = 0.0011) for HDL cholesterol was detected

on chromosome 10q21.1–21.2. Suggestive evidence of linkage to

ApoA-I was observed on chromosome 10q21.1 in the Quebec

Family Study (QFS) [40]. The same region containing proto-

cadherin 15 (PCDH15) gene (10q21.1) has been associated with

multiple lipid traits in Finnish and Dutch multigenerational

dyslipidemic families [41]. Another strong GWAS candidate gene

linked with metabolic traits is solute carrier family 16, member 9

(SCL16A9) that also maps to chromosome 10q21.2 [42]. It is a

proton-linked monocarboxylate transporter and catalyzes the

rapid transport of many monocarboxylates across the plasma

membrane. Chromosome 10 also carried a signal for LDL

cholesterol at 10p11.23 (p = 0.0045) in our study. The closest

candidate gene at this region is KIAA1462 (10p11.23) that encodes

a yet uncharacterized protein. However, a recently published

GWAS showed an unambiguous evidence for association of

rs3739998 (p = 7.261028) within this gene with CVD and

myocardial infarction in German MI Family cohort (GerMIFS)

III (KORA) [43]. Interestingly, some common variants in

PCDH15 and SCL16A9 and KIAA1462 genes are also associated

with multiple lipid traits including HDL cholesterol, LDL

cholesterol, and triglycerides ( p values of 0.004 to 0.0001) in

our provisional results of lipid GWAS being performed on the

population originated from the same Asian Indian community

(unpublished results).

A linkage peak for total serum cholesterol (p = 0.0031) was

detected near marker D5S2488 at the proximal region of

chromosome 5p15.33. This region was previously linked to LDL

cholesterol in the NHLBI Family Heart Study [44] and HDL

Table 3. Final model variables in the five lipid traits.

Covariate Trait
Job
grade

Alcohol
consumption Sex Age Age2

Total Cholesterol *

Triglycerides *

HDL Cholesterol *

LDL Cholesterol * * *

VLDL Cholesterol *

*represents significant covariate used for each lipid trait.
doi:10.1371/journal.pone.0021188.t003

Linkage Scan for Diabetes and Lipids in Sikhs

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e21188



Figure 1. Genome-wide linkage scan to detect susceptibility loci for five blood lipid phenotypes using QTL-ALL analysis using 316
pedigrees. Linkage plots show significant signals at four chromosomal regions with allele sharing LOD (2log10 p value) on Y axis and chromosome
distance (cM) on X axis. Significant linkage includes chromosome 5 near marker D5S2488 (p = 0.0031) for total cholesterol; chromosome 9 near
marker D9S1122 (p = 0.0039) for LDL cholesterol; chromosome 10q21.2 near D10S1225 (p = 0.0011) for HDL cholesterol; and chromosome 22 near
marker TCTA015M (p = 0.0016) for total cholesterol.
doi:10.1371/journal.pone.0021188.g001
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cholesterol in the Hypertension Genetic Epidemiology Network

Blood Pressure Study [45]. Additionally, meta-analysis of linkage

scans from four studies revealed a modest signal for LDL

cholesterol (LOD 1.6) on chromosome 5p15.33 [46]. The

suggestive linkage for LDL cholesterol at 9q21.13 near marker

D9S1122 in our cohort was also associated with the triglyceride

phenotype in a linkage study performed in families with

myocardial infarction [47].

The linkage signal at chromosome 22q13.32 near marker

TCTA015M (p = 0.0016), detected for total cholesterol was linked

with familial hypercholesterolemia in a Utah study [48]. The

chromosomal region 22q11–13 was also reported to effect HDL

cholesterol in the Old Order Amish [49]. Notably, the strongest

candidate gene in this region is PPARa, which is a ligand-activated

nuclear transcription factor and controls extracellular and

intracellular lipid metabolism, and also inhibits progression of

atherosclerotic lesions [50]. Lipid-lowering drugs of fiberate class

are synthetic ligands of ppara [51]. Variants in this gene were

reported to be associated with T2D and CVD [52]. Another gene

CELSR1 (located at 22q11–13) is associated with ischemic stroke in

recent Japanese GWAS [53]. Furthermore, a single nucleotide

polymorphism (SNP) near CELSR2 on chromosome 1p13

(homologous to CELSR1) is associated with LDL cholesterol and

myocardial infarction in a meta-analysis study by Myocardial

Infraction Genetics Consortium [54].

Our study does not represent a common replication attempt to

identify lipid loci in an independent population. Rather, this

investigation has been carefully carried out in this unique family-

based cohort using a conservative statistical approach applying

score-based statistics to map quantitative lipid traits in a non-

randomly ascertained dataset. Exceeding our expectations, this

study has identified linkage regions, primarily HDL cholesterol

(10q21.1–21.2) and total cholesterol (22q13.32) that were

previously reported for lipid traits or CVD. The most interesting

part of this study is that some of these linkage signals also harbor

important candidate loci (e.g., KIAA1462, PCDH15, PPARa,

SLC16A9, and CELSR1) implicated with lipid traits in recent

GWAS and meta-analysis studies and also some of these regions

overlap with prior linkage studies [55,56,57]. Therefore, our

findings suggest that these regions might contain some novel genes

for blood lipids rather than chance findings, and perhaps some of

the loci may have larger effects in this Khatri Sikh cohort.

Notably, the presence of HDL cholesterol signal on chromosome

10q21.2 is particularly important in view of low HDL cholesterol-

associated CVD risk in Asian Indian men, in general, and may

strongly relate to gene-environmental interaction which is

enhanced by rapidly emerging western lifestyle [58,59]. Further

fine mapping with more efficacious strategy using SNP-based

arrays (which would also help determine LD over small intervals),

sequencing, and functional studies should allow rapid detection of

novel target genes of therapeutic importance under these

candidate regions.

Conclusions

Unlike previous studies, our genome-wide linkage scan could

not identify any significant chromosomal region associated with

T2D in this unique family cohort of Punjabi Sikhs with increased

risk to developing T2D and cardiovascular illnesses. Our study,

however, for the first time provides an evidence of linkage for loci

controlling quantitative lipid traits at four chromosomal regions in

this Asian Indian population. The strongest linkage signal was seen

for HDL cholesterol on chromosome 10q21.2. Our data also

revealed linkage signals for total cholesterol on chromosome

5p15.33 and 22q13.32, and for LDL cholesterol on 10p11.23 and

9q21.13. Some of these regions have been linked to lipid-related

traits in recent GWA studies and contain other plausible candidate

genes. The strongest peak for HDL cholesterol (p = 0.0011 at

10q21.2) suggests that this region may contain novel gene(s)

influencing serum HDL cholesterol levels and other lipid traits.

Further denser and more informative genotyping in each of these

regions would be important to discover functional loci influencing

blood lipids.

Supporting Information

Figure S1 Genome-wide non-parametric linkage scans for type

2 diabetes using 321 diabetic pedigrees and 398 microsatellite

markers (9.26 cM). Individual plot shows linkage signals (Kong

and Cox LOD score) on Y axis and microsatellite markers on X

axis. None of the chromosome regions revealed any signal

associated with T2D in these pedigrees.

(TIF)

Figure S2 Plot of Box-Cox coefficient lambda and the

distribution of five quantitative traits including total cholesterol,

triglycerides, HDL cholesterol, LDL cholesterol, and VLDL

cholesterol before and after transformation.

(TIF)

Figure S3 Genome-wide autosomal linkage scan for five blood

lipid phenotypes. Individual plot shows allele sharing LOD

(2log10 p value) on Y axis and chromosome distance (cM) on

X axis.

(TIF)

Table S1 Linear regression model for quantitative traits.

(DOC)

Table 4. Susceptibility regions for serum lipid levels with Score.Max p values of #0.005.

Trait Chromosome
Cytogenetic
position

Physical
Position* Closest Marker

Genetic
Position (cM) Score.Maxp Value

Total Cholesterol 5 5p15.33 180390 D5S2488 0.00 0.0031

LDL Cholesterol 9 9q21.13 78878414 D9S1122 75.88 0.0039

LDL Cholesterol 10 10p11.23 30535660 D10S1426 65.61 0.0045

HDL Cholesterol 10 10q21.1 57199892 D10S1221 84.44 0.0041

HDL Cholesterol 10 10q21.2 64425005 D10S1225 89.69 0.0011

Total Cholesterol 22 22q13.32 47925896 TCTA015M 66.96 0.0016

*NCBI Build 36.1 positions from the UCSC browser.
doi:10.1371/journal.pone.0021188.t004
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