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Abstract

Background: Osteoblasts are bone forming cells that play an essential role in osteogenesis. The elucidation of the
mechanisms that control osteoblast number is of major interest for the treatment of skeletal disorders characterized by
abnormal bone formation. Canonical Wnt signalling plays an important role in the control of osteoblast proliferation,
differentiation and survival. Recent studies indicate that the cell-cell adhesion molecule N-cadherin interacts with the Wnt
co-receptors LRP5/6 to regulate osteoblast differentiation and bone accrual. The role of N-cadherin in the control of
osteoblast proliferation and survival remains unknown.

Methods and Principal Findings: Using murine MC3T3-E1 osteoblastic cells and N-cadherin transgenic mice, we
demonstrate that N-cadherin overexpression inhibits cell proliferation in vitro and in vivo. The negative effect of N-cadherin
on cell proliferation results from decreased Wnt, ERK and PI3K/Akt signalling and is restored by N-cadherin neutralizing
antibody that antagonizes N-cadherin-LRP5 interaction. Inhibition of Wnt signalling using DKK1 or Sfrp1 abolishes the ability
of N-cadherin blockade to restore ERK and PI3K signalling and cell proliferation, indicating that the altered cell growth in N-
cadherin overexpressing cells is in part secondary to alterations in Wnt signalling. Consistently, we found that N-cadherin
overexpression inhibits the expression of Wnt3a ligand and its downstream targets c-myc and cyclin D1, an effect that is
partially reversed by N-cadherin blockade. We also show that N-cadherin overexpression decreases osteoblast survival in
vitro and in vivo. This negative effect on cell survival results from inhibition of PI3K/Akt signalling and increased Bax/Bcl-2, a
mechanism that is rescued by Wnt3a.

Conclusion: The data show that N-cadherin negatively controls osteoblast proliferation and survival via inhibition of
autocrine/paracrine Wnt3a ligand expression and attenuation of Wnt, ERK and PI3K/Akt signalling, which provides novel
mechanisms by which N-cadherin regulates osteoblast number.
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Introduction

Wnt proteins are a family of secreted proteins that play

important roles in the development and maintenance of many

tissues [1]. Wnt proteins control cell proliferation, differentiation

and survival through signals involving b-catenin-dependent and -

independent pathways [2,3,4,5]. Binding of canonical Wnts to the

7-transmembrane domain-spanned frizzled (Fz) receptor and low-

density lipoprotein 5 and 6 (LRP5/6) co-receptors initiates a

cascade of events triggered by the cytoplasmic protein Dishevelled

(Dsh) interacting with Fz, Axin and Frat-1. Disruption of this

complex leads to phosphorylation of GSK-3b and inhibition of b-

catenin phosphorylation. This effect results in b-catenin stabiliza-

tion and its subsequent translocation into the nucleus where it

interacts with TCF/LEF transcription factors to activate the

expression of Wnt-responsive genes [6]. Wnt signalling is tightly

regulated by secreted regulatory proteins. Soluble frizzled-related

proteins (Sfrps) and WIF-1 antagonize Wnt-Fz interactions

whereas Dickkopf (Dkk) antagonizes LRP5/6 [7]. Wnt signalling

is also controlled by intracellular antagonists such as Axin, APC

and Groucho which regulate b-catenin stability and activity [6],

allowing fine control of signals triggered by Wnt proteins [8]. Wnt

proteins also control kinase signalling pathways. Notably,

canonical Wnt3a increases PI3K/Akt activity, resulting in GSK3b
phosphorylation and increased free b-catenin levels [9]. In

addition, Wnt3a activates ERK1/2 by direct signalling and

posttranscriptional activation via the b-catenin/Tcf4 complex

[10], indicating that these kinases may act as important mediators

of Wnt signalling.

In the recent years, canonical Wnt signalling has emerged as an

important regulator of bone formation and bone mass

[11,12,13,14,15]. The importance of Wnt signalling in the control

of bone mass was initially demonstrated by the high and low bone

mass phenotype caused by loss- and gain-of-function LRP5
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mutations, respectively [16]. Further evidence for the important

role of Wnt signalling in bone was provided by the changes in

bone mass caused by inactivation or overexpression of Wnt

antagonists in the mouse [17]. Recent data indicate that the

skeletal effects of LRP5 may be indirect and mediated by gut-

derived serotonin [18]. This does not rule out however that

LRP5/6 may have direct skeletal effects at early stages of the

osteoblast lineage [19]. In vitro, Wnt signalling positively controls

osteoblast differentiation by activating the Wnt/LRP5/b-catenin/

LEF-TCF/Runx2 signalling cascade [20]. In addition, Wnt

signalling controls cell proliferation during progression along the

osteogenic lineage. Stable expression of Wnt proteins or LRP5

enhances osteoblast progenitor cell growth in vitro [21,22].

Consistently, LRP5 deficiency results in reduced osteoblast

proliferation in mice [23]. Furthermore, Wnt signalling was found

to prevent apoptosis in uncommitted osteoblast progenitors and

more mature osteoblasts [24]. Accordingly, a gain-of-function

mutation in LRP5 (G171V) decreases osteoblast/osteocyte

apoptosis [25] whereas deletion of the Wnt antagonist Sfrp1

reduces osteoblast apoptosis [12]. These effects are mediated in

part via the Wnt/b-catenin canonical pathway [26,27,28].

However, prevention of apoptosis in uncommitted osteoblasts

and mature osteoblasts by Wnt proteins may also occur through

activation of Src/ERK and PI3K/Akt pathways [24], indicating

that multiple pathways are involved in the control of osteoblast

proliferation and survival by Wnt proteins.

Cadherins are cell-cell adhesion molecules that mediate cellular

signalling [29,30,31]. Previous studies indicate that cadherins

interact with Wnt signalling by sequestering b-catenin at the

plasma membrane [29,32,33]. In bone, N-cadherin is strongly

expressed in osteoblasts and regulates osteoblast differentiation

[34,35] and bone mass [36,37,38] although the underlying

mechanisms are not fully understood. We recently showed that

N-cadherin interacts with LRP5/6 and negatively regulates Wnt

signalling through b-catenin degradation, resulting in decreased

osteoblast differentiation and bone formation in vivo [39].

However, the role of N-cadherin in the control of osteoblast

proliferation and survival remains unknown.

Here we investigated the molecular mechanisms involved in the

control of osteoblast growth and apoptosis by N-cadherin. We

provide here novel evidence that N-cadherin acts as a negative

regulator of cell proliferation and survival in osteoblasts via

interaction with LRP5, alteration of autocrine Wnt3a ligand

expression and attenuation of Wnt, ERK and PI3K/Akt signalling

pathways.

Results

The efficiency of N-cadherin overexpression in MC3T3-E1

osteoblastic cells was first checked by western blot analysis. A 2-

fold increase in N-cadherin protein level was documented in N-

cadherin-transfected MC3T3-E1 cells compared to control (Flag)

cells (Figure 1A). We then determined the effect of N-cadherin

overexpression on cell proliferation. As shown in Figure 1B, cell

number was lower in N-cadherin overexpressing cells compared to

control cells. This effect was in part related to a 50% decrease in

cell replication, as shown by the BrdU assay (Figure 1C). To

determine whether this negative effect of N-cadherin overexpres-

sion may be relevant in vivo, primary calvaria osteoblasts were

isolated from 1.5 month old N-cadherin transgenic and wild-type

mice and cell growth was assessed ex vivo by cell number and BrdU

assay. As shown in Figure 1D, cell number was reduced in N-

cadherin transgenic osteoblasts compared to wild-type osteoblasts.

This effect was in part related to a lower cell replication in

Figure 1. Enforced expression of N-cadherin decreases cell
proliferation in osteoblasts. (A) MC3T3-E1 osteoblasts stably
transfected with N-cadherin (N-Cad) display a 2-fold increase in N-
cadherin expression compared to control cells (Flag) as shown by
western blot analysis. (B, C) Decreased cell number and replication in N-
Cad cells compared to Flag cells. (D, E) Decreased cell number and
replication in primary calvarial osteoblasts isolated from N-cadherin
transgenic mice (Tg) compared to osteoblasts from wild-type mice (WT).
Means are +/2 SD. Values that are significantly different are indicated
(*, P,0.05 vs Flag or WT cells). (F) Histologial sections of tibias showing
decreased cell proliferation in N-Cad Tg mice compared to WT mice, as
revealed by Ki67 staining (black nuclei) in bone marrow stromal cells
and mature osteoblasts (Ob, arrows) (x250).
doi:10.1371/journal.pone.0008284.g001

N-Cadherin/Wnt Crosstalks
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transgenic osteoblasts (Figure 1E), suggesting a cell autonomous

defect in cell proliferation. We then performed an in vivo analysis of

cell proliferation in bones from 1.5 month old N-cadherin

transgenic mice. Cell proliferation detected by Ki67 staining in

the bone marrow stroma (black nuclei) and in osteoblasts (arrows)

was decreased in tibias of N-cadherin transgenic mice compared to

wild type mice (Figure 1F). The decrease in cell proliferation

observed in the bone marrow stroma of N-cadherin transgenic

mice may be the consequence of alteration of endogenous Wnt3a

expression (see below). These results show that increasing N-

cadherin expression in osteoblasts results in decreased cell

proliferation in vitro and in vivo.

One mechanism by which N-cadherin may affect cell

proliferation is by interacting with LRP5/6 [39]. Using immuno-

precipitation and Western blot analyses, we confirmed that LRP5

interacts with N-cadherin in normal (Flag) osteoblasts and that this

interaction is increased in N-cadherin overexpressing cells

(Figure 2A). Neutralization of N-cadherin using a specific N-

cadherin antibody that recognizes the extracellular domain of N-

cadherin [40] efficiently decreased LRP5 level associated with N-

cadherin (Figure 2A). We therefore used this tool to analyse the

role of N-cadherin-LRP5 interaction on cell proliferation. As

shown in Figure 2B, Wnt3a (15% CM) increased cell proliferation

in both Flag and N-cadherin overexpressing cells and this effect

was suppressed by DKK1, a high affinity ligand for LRP5/6 [41]

that inhibits canonical Wnt signalling [42]. The neutralizing N-

cadherin antibody also increased cell replication and the response

to Wnt and these effects were blocked by DKK1 (Figure 2B).

These results indicate that the decreased cell proliferation induced

by forced expression of N-cadherin results from increased N-

cadherin-LRP5 interaction and subsequent alteration of Wnt

signalling. To investigate whether endogenous N-cadherin affects

cell proliferation in osteoblasts, we used a specific N-cadherin si-

RNA that efficiently reduces N-cadherin expression [39]. N-

cadherin silencing using this si-RNA increased cell proliferation in

control (Flag) cells compared to a non-relevant siRNA in the

presence or absence of Wnt (Figure 2C). These results show that

endogenous N-cadherin as well as forced expression of N-cadherin

negatively regulates cell proliferation in osteoblasts.

We then investigated the signalling pathways underlying the

inhibition of cell proliferation induced by N-cadherin. We focused

on ERK and PI3K that are most important signalling pathways

involved in cell growth. As shown in Figure 3A, western blot

analysis showed that p-PI3K and p-ERK (p44) levels were

decreased in N-cadherin overexpressing cells compared to control

(Flag) cells in basal conditions. Wnt3a (15% CM) increased PI3K

and ERK (p44) phosphorylation in Flag cells, an effect that was

prevented by the Wnt inhibitor Sfrp1. In contrast, Wnt had no

effect on ERK and PI3K phosphorylation in N-cadherin

overexpressing cells (Figure 3A), indicating that PI3K and ERK

signalling is altered in basal condition and in response to Wnt3a.

To confirm this finding, cells were treated with the N-cadherin

neutralizing antibody. The N-cadherin antibody increased p-ERK

(mainly p44) and p-PI3K levels in both control (Flag) cells and N-

cadherin overexpressing cells (Figure 3B), indicating that the N-

cadherin-LRP5 interaction negatively controls ERK and PI3K

signalling. N-cadherin silencing using si-RNA also increased ERK

and PI3K phosphorylation in Flag cells compared to a non-

relevant siRNA, indicating that endogenous N-cadherin negatively

controls these pathways (Figure 3C). To determine the functional

relevance of these findings, we tested the effects of ERK and PI3K

inhibitors on cell proliferation induced by Wnt. As shown in

Figure 3D, the positive effect of Wnt3a (15% CM) on cell growth

was abolished by wortmannin (10 mM) and U0126 (10 mM) which

are pharmacologic inhibitors of PI3K and MEK, respectively, in

both control and N-cadherin overexpressing cells. These results

indicate that ERK and PI3K signalling pathways are functionally

involved in the altered cell growth induced by N-cadherin in

osteoblasts.

We then sought to determine the implication of canonical Wnt

signalling in the altered ERK and PI3K signalling induced by N-

cadherin-LRP5 interaction. To this goal, cells were treated with

the neutralizing N-cadherin antibody to restore ERK and PI3K

signalling and the cells were then transfected with the Wnt

inhibitor DKK1. Transient transfection with DKK1 efficiently

reduced b-catenin transcriptional activity, as determined by the

Figure 2. N-cadherin reduces cell proliferation via interaction
with LRP5 and Wnt signalling. (A) Immunoprecipitation analysis
showing N-cadherin and LRP5 interaction in control (Flag) cells and N-
cadherin (N-Cad) overexpressing cells which is blocked by N-cadherin
antibody. Cells were treated with blocking N-cadherin antibody (Ab) or
control antibody (IgG) for 24 hours, cell lysates were immunoprecip-
itated (IP) with N-cadherin antibody and analysed by Western-blot (WB)
with LRP5 antibody. LRP5, N-cadherin and GAPDH in total proteins were
used as loading controls. (B) Treatment with Wnt3a or blocking N-
cadherin antibody restores cell proliferation in N-Cad cells. Flag and N-
Cad cells were transfected with DKK1 expression vector or empty vector
(EV), treated with Wnt3a CM (15%) or N-cadherin antibody for 24 hours
and cell replication was determined. Means are +/2 SD. Values that are
significantly different are indicated (a, P,0.05 vs untreated Flag EV cells;
b, P,0.05 vs Flag EV cells treated with N-Cad Ab or Wnt3a; c, P,0.05 vs
N-Cad EV cells treated with N-Cad Ab or Wnt3a). (C) N-cadherin
silencing increases osteoblast proliferation. Flag cells were transfected
with a specific N-cadherin si-RNA or a non relevant si-RNA (si-NR) and
treated with Wnt3a CM (15%) for 24 hours and cell replication was
determined (a, P,0.05 vs -Wnt si-NR treated cells; b, P,0.05 vs -Wnt si-
N-Cad treated cells).
doi:10.1371/journal.pone.0008284.g002

N-Cadherin/Wnt Crosstalks
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TCF/TOP assay (Figure 4A). Treatment with Sfrp1 which binds

and antagonizes Wnt proteins [7] also abolished the response to

Wnt3a in these cells (Figure 4A). As shown in Figure 4B, the N-

cadherin antibody increased ERK and PI3K signalling in control

and N-cadherin cells, confirming our previous data. Transient

transfection with DKK1 effectively increased DKK1 protein levels

and abolished the restoration of ERK and PI3K activation

induced by the N-cadherin antibody (Figure 4B). These results

indicate that the altered ERK and PI3K signalling in N-cadherin

Figure 3. N-cadherin overexpression negatively regulates ERK
and PI3K signalling. (A) Control (Flag) and N-cadherin (N-Cad)
overexpressing cells were treated with canonical Wnt3a CM (15%) for 1
or 5 minutes and ERK and PI3K signalling was analysed by Western-blot.
GAPDH was used as loading control. (B) N-cadherin blockade restores
cell signalling in N-cadherin overexpressing osteoblasts. Flag and N-Cad
cells were treated with N-cadherin antibody or control antibody (IgG)
for 5 min and ERK and PI3K signalling was analysed by Western-blot.
GAPDH was used as loading control. (C) N-cadherin silencing increases
ERK and PI3K signalling. Flag cells were transfected with a specific N-
cadherin si-RNA or a non relevant si-RNA (si-NR) and phospho-ERk and
phospho-PI3K levels determined by western blot analysis were
quantified using b-actin as loading control. (D) Treatment with PI3K
and MEK inhibitors (Wortmannin and U0126, respectively) abolished cell
proliferation induced by Wnt3a CM (15%) in both Flag and N-Cad cells
at 24 hours. Means are +/2 SD. Values that are significantly different are
indicated (a, P,0.05 vs untreated cells; b, P,0.05 vs Wnt3a-treated
cells).
doi:10.1371/journal.pone.0008284.g003

Figure 4. The Wnt inhibitor DKK1 abolishes ERK and PI3K
signalling restored by N-cadherin blockade. (A) Control (Flag)
cells were transiently transfected with empty vector (EV) or DKK1, or
treated with the Wnt antagonist Sfrp1 in the presence or absence of
Wnt3a CM and TCF/TOP transcriptional activity was determined. Means
are +/2 SD. Values that are significantly different are indicated (a,
P,0.05 vs EV -Wnt treated cells; b, P,0.05 vs EV Wnt treated cells). (B)
Flag and N-Cad cells transiently transfected with empty vector (EV) or
DKK1 were treated with the bloking N-cadherin antibody (N-Cad Ab) or
control antibody (IgG) for 24 hours and DKK1 levels and ERK and PI3K
signalling were analysed by Western-blot. GAPDH was used as loading
control. (C) Flag and N-Cad overexpressing cells transfected with empty
vector (EV) or DKK1 were treated with the N-cadherin antibody for
24 hours to restore ERK and PI3K signalling or with control antibody
(IgG), and cell replication was determined (a, P,0.05 vs EV Flag cells; b,
P,0.05 vs N-Cad Ab treated EV Flag cells; c, P,0.05 vs N-Cad Ab treated
EV N-Cad cells).
doi:10.1371/journal.pone.0008284.g004

N-Cadherin/Wnt Crosstalks
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overexpressing cells results in large part from attenuation of Wnt

signalling. We then determined the functional role of Wnt

signalling in the altered cell proliferation induced by N-cadherin.

As shown in Figure 4C, transient transfection with DKK1 reduced

cell proliferation in control cells. Neutralization of N-cadherin with

the antibody increased cell growth and this effect was reduced by

DKK1 transfection in both control and N-cadherin overexpressing

cells (Figure 4C). The finding that DKK1 abrogates the effect of

N-cadherin neutralizing antibody on ERK and PI3K signalling

and cell growth confirm that Wnt signalling is implicated in the

altered ERK and PI3K signalling induced by N-cadherin-LRP5

interaction in these cells.

To further confirm the implication of Wnt signalling in the

altered cell proliferation induced by N-cadherin-LRP5 interaction,

we analysed the expression of Wnt-responsive genes in N-cadherin

overexpressing cells. We first looked for changes in c-myc and

cyclin D1 that are important target genes for the Wnt canonical

pathway [43,44]. As shown in Figure 5A, western blot analysis

showed that both c-myc and cyclin D1 protein levels were

markedly decreased in N-cadherin overexpressing cells compared

to control (Flag) cells. We found that the N-cadherin antibody

increased decreased c-myc and cyclin D1 levels whereas the Wnt

antagonist Sfrp1 had opposite effects (Figure 5A). These results

indicate that N-cadherin downregulates c-myc and cyclin D1

expression and further suggest the implication of Wnt signalling in

this effect. Because Wnt3a is an important target gene for Wnt

signalling, we investigated the effect of N-cadherin overexpression

on Wnt3a ligand expression. We found that forced expression of

N-cadherin nearly abolished endogenous Wnt3a mRNA expres-

sion compared to control cells (Figure 5B). Blockade of N-cadherin

with the antibody increased Wnt3a expression in both control and

N-cadherin overexpressing cells, indicating that N-cadherin-LRP5

interaction negatively controls endogenous Wnt3a expression in

these cells. Transient transfection with DKK1 greatly reduced

Wnt3a expression (Figure 5B), indicating that N-cadherin-LRP5

interaction negatively controls Wnt3a expression via alteration of

canonical Wnt signalling. This indicates that in addition to

negatively interact with LRP5, N-cadherin inhibits Wnt signaling

by reducing endogenous Wnt ligand expression.

Having shown that N-cadherin negatively controls cell growth,

we then sought to determine the role of N-cadherin on cell survival

in osteoblasts. We first analysed the effect of N-cadherin

overexpression on cell death induced by serum deprivation. As

shown in Figure 6A, forced expression of N-cadherin increased the

number of TUNEL-positive cells compared to control cells. This

effect was partly dependent on canonical Wnt signalling since

treatment with Wnt (15% CM) reduced cell apoptosis in both

control and N-cadherin overexpressing cells (Figure 6A). To

confirm the role of N-cadherin in the control of osteoblast survival,

control (Flag) cells were treated with si-N-cadherin or a non-

relevant si-RNA and cell survival was determined in serum

deprived conditions. As shown in Figure 6B, N-cadherin silencing

decreased the number of TUNEL-positive cells in the presence or

absence of Wnt, further indicating that endogenous N-cadherin

negatively controls cell survival in normal osteoblasts. To

determine whether the negative effect of N-cadherin may be

relevant to bone in vivo, cell death was analysed ex vivo in calvaria

osteoblasts isolated from 1.5 month old wild-type and N-cadherin

transgenic mice cultured in serum deprived conditions. As shown

in Figure 6C, N-cadherin transgenic cells displayed increased cell

apoptosis compared to wild-type cells in the presence or absence of

Wnt, indicating that N-cadherin overexpression induces a cell

autonomous defect in cell survival. To confirm the relevance of

these findings in vivo, we performed a histological analysis of cell

apoptosis in bones from N-cadherin transgenic and wild type mice.

Histological analysis revelated a higher number of TUNEL-

positive osteoblasts (brown nuclei) in tibias of transgenic N-

cadherin mice compared to wild type mice (Figure 6D, arrows).

Accordingly, we found that mRNA expression level of the anti-

apoptotic protein Bcl-2 was decreased by 50% in tibias of

transgenic compared to wild type mice whereas expression of the

pro-apoptotic protein Bax was unchanged (Figure 6E). Conse-

quently, the Bax/Bcl-2 ratio was higher in tibias of transgenic mice

compared to wild type mice, reflecting increased apoptosis

(Figure 6F). These results demonstrate that the negative effect of

N-cadherin on osteoblast survival in vitro is relevant to bone in vivo.

We then investigated the underlying mechanisms involved in

the increased cell apoptosis induced by N-cadherin. We found that

N-cadherin overexpression increased effector caspases 3, 6, 7

activity, and this effect was abrogated by Wnt (15% CM) and N-

cadherin blockade (Figure 7A), indicating that the increased cell

apoptosis induced by N-cadherin overexpression is caspase-

dependent and related to N-cadherin-LRP5 interaction. To

further determine the implication of Wnt signalling, cells were

treated with Wnt3a (15% CM) and the protein levels of Bax and

Bcl-2 were determined. As shown in Figure 7B, N-cadherin

Figure 5. The altered cell proliferation induced by N-cadherin
overexpression involves Wnt-responsive genes. (A) Control (Flag)
and N-cadherin (N-Cad) overexpressing cells were treated with the
blocking N-cadherin antibody, control antibody (IgG) or the Wnt
antagonist Sfrp1 for 24 hours and the levels of the Wnt-responsive
proteins c-Myc and cyclin D1 were analysed by Western-blot. b-actin
was used as loading control. (B) Flag and N-Cad overexpressing cells
were treated with N-cadherin antibody (N-Cad Ab) or IgG, or transiently
transfected with the Wnt antagonist DKK1 and Wnt3a mRNA levels
were determined by qPCR analysis at 24 hours. Means are +/2 SD.
Values that are significantly different are indicated (a, P,0.05 vs
untreated Flag cells; b, P,0.05 vs corresponding Flag cells).
doi:10.1371/journal.pone.0008284.g005

N-Cadherin/Wnt Crosstalks
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overexpressing cells showed reduced Bcl-2 levels compared to

control cells, and treatment with canonical Wnt3a restored Bcl-2

levels in these cells. Quantification of western blots confirmed that

the increased Bax/Bcl-2 ratio induced by N-cadherin overexpres-

sion was normalized by Wnt3a (Figure 7C). Altogether, these

results indicate that N-cadherin-LRP5 interaction decreases cell

survival in osteoblasts and that this effect is dependent on

alteration of Wnt signalling.

Because Akt signalling is an important pathway controlling cell

survival [45] and cross talks between Wnt and Akt signalling have

been reported in osteoblasts [9,24,46], we determined the

implication of Akt in the altered cell survival induced by N-

cadherin-LRP5 interaction in osteoblasts. As shown in Figure 8A,

we found that p-Akt levels were markedly decreased in N-cadherin

overexpressing cells cultured in serum deprived medium com-

pared to control cells. Treatment with Wnt3a (15% CM) greatly

increased p-Akt levels in control (Flag) cells and to a much lower

extent in N-cadherin overexpressing cells (Figure 8A). The effect of

the Wnt conditioned medium at this time point was not due to

other components present in the CM since the Wnt inhibitor Sfrp1

abolished the effect of CM (Figure 8A). These results indicate that

N-cadherin overexpression markedly affects Wnt3a-dependent Akt

phosphorylation in these cells. To analyse the implication of N-

cadherin-LRP5 interaction in this effect, cells were treated with

the neutralizing N-cadherin antibody and PI3K/Akt signalling

was determined by Western blot analysis. N-cadherin blockade

greatly increased p-PI3K and p-Akt levels in both control and N-

cadherin overexpressing cells and this effect was abrogated by the

addition of the Wnt antagonist Sfrp1 (Figure 8B). These results

further indicate that the altered PI3K/Akt signalling induced by

N-cadherin overexpression is dependent on Wnt signalling. To

establish the functional role of the altered PI3K/Akt and Wnt

signalling in the altered cell survival induced by N-cadherin

overexpression, cells were treated with Wnt3a (15% CM) and the

MEK or PI3K inhibitors and effector caspase activity was

determined. As shown in Figure 8C, treatment with Wnt3a

(15% CM) decreased effector caspase activity in both control and

N-cadherin overexpressing cells. The PI3K inhibitor, but not the

MEK inhibitor, blunted the effect of Wnt3a on effector caspase

activity (Figure 8C). These results indicate that Wnt and PI3K/

Figure 7. Mechanisms by which N-cadherin decreases cell
survival. (A) Control (Flag) and N-Cadherin overexpressing cells (N-
Cad) were cultured in survival conditions (10% FCS) or serum deprived
(1% FCS) medium, treated with Wnt3a (15% CM), blocking N-cadherin
antibody or control antibody (IgG) for 24 hours and effector caspase
activity was determined. Means are +/2 SD (a, P,0.05 vs corresponding
10% FCS; b, P,0.05 vs corresponding untreated cells. (B) Flag and N-
Cad cells were cultured in serum deprived (1% FCS) medium, treated
with Wnt3a (15% CM) for 24 hours, and the levels of Bax and Bcl-2
proteins were analysed by Western blot using GAPDH as loading
control. (C) Quantification of western blots showing the increased Bax/
Bcl-2 ratio in N-Cad cells which was abolished by Wnt3a (a, P,0.05 vs
untreated Flag cells; b, P,0.05 vs corresponding untreated cells).
doi:10.1371/journal.pone.0008284.g007

Figure 6. Forced expression of N-cadherin decreases cell
survival. (A) Control (Flag) and N-cadherin (N-Cad) overexpressing
cells cultured in serum deprived (1% FCS) medium were treated with
Wnt3a (15% CM) for 24 hours and the number of TUNEL-positive cells
was determined. Means are +/2 SD (a, P,0.05 vs -Wnt Flag cells; b,
P,0.05 vs corresponding Flag cells). (B) N-cadherin silencing decreases
osteoblast apoptosis. Flag cells were transfected with N-cadherin si-RNA
or a non relevant si-RNA (si-NR) and treated with Wnt3a CM (15%) for
24 hours in serum deprived (1% FCS) medium and cell replication was
determined. (a, P,0.05 vs -Wnt si-NR cells; b, P,0.05 vs corresponding
Flag cells). (C) Osteoblasts isolated from calvaria in wild type (WT) or N-
cadherin transgenic mice (Tg) were cultured in serum deprived (1%
FCS) medium and treated with Wnt3a (15% CM) for 24 hours and the
number of TUNEL-positive cells was determined (a, P,0.05 vs WT cells;
b, P,0.05 vs corresponding WT cells. (D) Histologial sections of tibias
showing increased cell apoptosis in Tg mice compared to WT mice, as
revealed by TUNEL staining (brown nuclei) in osteoblasts (Ob, arrows)
(x250). (E, F) Decreased Bcl-2 mRNA levels and increased Bax/Bcl-2 ratio
in tibias of Tg mice compared to WT mice (a, P,0.05 vs WT mice).
doi:10.1371/journal.pone.0008284.g006

N-Cadherin/Wnt Crosstalks
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Akt signalling pathways are involved in the altered cell survival

induced by N-cadherin. Overall, our results indicate that N-

cadherin controls cell proliferation and survival in osteoblasts by

mechanisms involving alteration of autocrine/paracrine Wnt3a

ligand expression and attenuation of Wnt, ERK and PI3K/Akt

signalling pathways (Figure 8D).

Discussion

It is well documented that Wnt signalling plays an important

role in the control of cell and tissue development. Consistent with

this essential function, Wnt signalling is tightly controlled by

several intracellular and secreted antagonists [6,7,47]. We recently

showed that N-cadherin acts as a new antagonist of Wnt signalling

by acting as a partner of LRP5/6 Wnt co-receptors in osteoblasts

[39]. In this study, we demonstrate a novel role for N-cadherin in

the control of cell proliferation and survival. We show that forced

expression of N-cadherin downregulates cell proliferation and

increases cell apoptosis in osteoblasts in vitro and in vivo, and that

these negative effects of N-cadherin are related to N-cadherin-

LRP5 interaction. These results support the idea that N-cadherin

negatively controls cell growth and survival in addition to inhibit

cell differentiation and function in osteoblasts.

One major question is how N-cadherin interaction may

negatively regulate cell proliferation and survival. We found that

the decreased cell proliferation and survival induced by N-

cadherin overexpression was abrogated by N-cadherin blockade,

which reverses N-cadherin-LRP5 interaction in osteoblasts [39]

and was partly restored by Wnt3a, indicating that N-cadherin-

LRP5 mediated alteration of canonical Wnt signalling contributes

to the negative effect of N-cadherin on cell growth. Consistent with

this idea, we showed that N-cadherin overexpression reduced the

expression of Wnt-responsive genes such as c-myc and cyclin D1

which control cell growth. More importantly, N-cadherin

overexpression markedly reduced the expression of canonical

Wnt3a, an effect that was partly reversed by N-cadherin blockade.

This strongly suggests that N-cadherin-LRP5 interaction down-

regulates cell proliferation in part by reducing endogenous Wnt3a

expression and subsequent canonical Wnt signalling. This provides

a molecular mechanism whereby N-cadherin ultimately controls

osteoblast proliferation via alteration of a Wnt3a autocrine/

paracrine loop (Figure 8D). The negative role of N-cadherin on

Wnt3a expression may have important functional implications in

the control of bone formation since the Wnt3a autocrine/

paracrine loop is an essential mechanism involved in the action

of physiological anabolic factors [22].

Wnt signalling is known to affect cell growth and survival in

several systems in part by regulating ERK and PI3K signalling

[9,10]. Notably, the PI3K/Akt signalling cascade plays a key role

in the control of cell proliferation and survival [48]. We and others

previously showed that PI3K/Akt is an important signalling

pathway involved in the control of osteoblast survival

[24,46,49,50]. Previous studies revealed that engagement of E-

cadherin in homophylic calcium-dependent cell-cell interactions

results in rapid PI3K-dependent activation of Akt, indicating that

E-cadherin can initiate outside-in signal transducing pathways that

regulate the activity of PI3K and Akt [51]. In contrast, we show

here that N-cadherin overexpression downregulates PI3K and Akt

activity which mediates in part the negative effect of N-cadherin

on osteoblast growth and survival. Several arguments support the

idea that these alterations of PI3K/Akt signalling are in part

dependent on Wnt signalling. First, the negative effect of N-

cadherin overexpression on ERK and PI3K pathways and cell

growth was restored by N-cadherin blockade which reverses N-

Figure 8. The altered cell survival induced by N-cadherin
overexpression is Wnt- and PI3K/Akt-dependent. (A) Control
(Flag) and N-cadherin (N-Cad) overexpressing cells cultured in serum
deprived (1% FCS) medium were treated with canonical Wnt3a (15%
CM) or the Wnt antagonist Sfrp1 for 1 to 5 minutes and Akt signalling
was analysed by Western-blot. GAPDH was used as loading control. (B)
Flag and N-Cad overexpressing cells cultured in serum deprived (1%
FCS) medium were treated with the blocking N-cadherin antibody,
control antibody (IgG) or Sfrp1 and PI3K/Akt signalling was analysed by
Western-blot. (C) Flag and N-Cad cells cultured in serum deprived (1%
FCS) medium were treated with canonical Wnt3a (15% CM) for 24 hours
in the presence or absence of the MEK inhibitor U0126 or the PI3k
inhibitor wortmannin, and effector caspase activity was determined.
Means are +/2 SD. Values that are significantly different are indicated
(a, P,0.05 vs untreated Flag cells; b, P,0.05 vs corresponding
untreated cells; c, P,0.05 vs corresponding Wnt3a-treated cells). (D)
Proposed mechanisms by which N-cadherin acts as a negative regulator
of cell proliferation and survival in osteoblasts. N-cadherin interaction
with LRP5 (and other proteins: OP) decreases the expression of the
autocrine/paracrine Wnt3a ligand and Wnt responsive genes c-Myc and
cyclin D1, and causes attenuation of Wnt, ERK and PI3K/Akt signalling,
resulting in inhibition of cell proliferation and survival.
doi:10.1371/journal.pone.0008284.g008
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cadherin-LRP5 interaction. Second, inhibition of Wnt signaling

using DKK1 or Sfrp1 abolished the ability of N-cadherin blockade

to restore ERK and PI3K phosphorylation and cell proliferation in

N-cadherin overexpressing cells. Third, cell replication induced by

Wnt3a was inhibited by pharmacological inhibition of ERK and

PI3K, indicating that these kinases act downstream of Wnt3a to

promote osteoblastic cell growth. Finally, we found that the

decreased cell survival induced by N-cadherin overexpression was

reversed by Wnt and antagonized by PI3K inhibition. These

observations support our hypothesis that alterations of ERK and

PI3K signalling are secondary to inhibition of Wnt signalling

induced by N-cadherin, resulting in the observed alterations of cell

growth and survival.

In summary, the present study reveals a novel role for N-

cadherin in the control of osteoblastogenesis in vitro and in vivo. Our

data indicate that N-cadherin controls osteoblast proliferation and

survival via attenuation of autocrine Wnt3a ligand expression and

alteration of at least three signalling pathways in osteoblasts

(Figure 8D).

Materials and Methods

Cell cultures, transfections and reagents
MC3T3-E1 cells (ATCC) were stably transfected with N-

cadherin Flag-tagged cloned in PCDNA 3.1 and selected using

G418 (Calbiochem, San Diego, USA) as previously described [39]

and over-expression was verified by Western blot analysis.

Transient transfection with DKK1 (Galapagos, Romainville,

France) and TCF/TOP transcriptional activity were performed

as described previously [39,52]. Tibias from 1.5 month old female

N-cadherin transgenic and wild type mice and primary osteoblasts

isolated from calvarias by sequential collagenase digestion were

obtained as described [39]. Wnt3a-conditioned medium (CM) and

si-RNAs were prepared as described [39,52]. Recombinant

human Sfrp1 was from R&D, Minneapolis, MN, USA, and

blocking N-cadherin antibody and pharmacologic inhibitors of

PI3K (wortmannin) and MEK (U0126) were from Sigma (USA).

Cell proliferation and apoptosis
For analysis of cell replication, cells were plated at 2000 cells/

dish in 96 wells, treated as indicated and cell replication was

determined using the BrdU ELISA assay (Roche, France) and cell

number. In some experiments, cells were cultured in serum

deprived (1% FCS) medium to induce apoptosis and treated with

wortmannin (10 mM), U0126 (10 mM), the blocking N-cadherin

antibody (10 mg/ml) or Wnt3a conditioned medium (15%) for

24 hours and caspases-3, -6, -7 activity was determined as

described [53]. DNA degradation was analysed by TUNEL

analysis using the Apop Tag Kit (Chemicon USA) according to

manufacturer’s recommendations. The number of TUNEL-

positive cells was expressed as %of total cells.

Western blot, immunoprecipitation and
immunohistochemical analyses

For Western blot analysis, 30 mg of proteins were loaded on Ge-

Ba gel (4–12%) (Gene Bio Application Ltd, Kfar Hanagid, Israel).

After electrophoresis, transferred proteins were revealed with anti-

Flag (Sigma-Aldrich), anti-c-Myc (AbCam, Cambridge, UK), anti-

N-cadherin or anti-LRP5 (Cell Signalling, Denver, USA), detected

using a secondary horseradish peroxidase antibody (Beckman

Coulter, Fullerton, USA) and quantified using Quantity One

software (BioRad). Immunoprecipitation analysis was performed

using microMACS protein A/G microbeads magnetic separation

(Miltenyi Biotech Auburn CA, USA) according to manufacturer’s

recommendations. Briefly 100 mg of total protein were incubated

30 minutes on ice with 2 mg of the indicated antibody or

immunoglobulin fraction negative control (Dako, Glostrup, Den-

mark) and 20 ml of protein A/G magnetically labelled. The

magnetically labelled immune complex was passed over a micro-

column placed in a magnetic field. The complex bound was

washed with lysis buffer, and the immunoprecipited protein was

eluted from the column with SDS gel loading buffer ready for

western blot assay. Immunohistochemistry was performed on

decalcified serial sections of tibiae from 1.5 month female N-

cadherin and wild type mice using the PK-6101 stain kit (Vector,

Abcys, France) and primary polyclonal antibodies for KI67

(SantaCruz, USA) and TUNEL labelling (Chemicon) used at

1:100 dilution, according to the manufacturer’s instructions.

Sections were then counterstained with toluidine blue and the

same metaphyseal area was analysed (magnification6250).

Quantitative real-time PCR analysis
For RNA preparation from tibias obtained from 1.5 month old

N-cadherin transgenic and wild type mice, the bone marrow was

flushed out and total RNA was isolated using Trizol (InVitrogen)

and cleaned using an RNAeasy minikit (Quiagen, Courtaboeuf,

France). Quantitative real-time PCR analysis of total RNA from

tibias and cultured cells was performed using Roche Light Cycler

and Absolute SYBR Green capillary mix (Abgene, Epson, UK).

The sets of primers were for Wnt3a: forward 59-CTTA-

GTGCTCTGCAGCCTGA-39, reverse 59-AGTGCTCAGA-

GAGGAGTACT-39; for Bax: forward 59-CTG AGC GGC

TGC TTG TCT-39, reverse59-GGT CCC GAA GTA GGA

GAG GA-39 ; for Bcl-2: forward 59-GTA CCT GAA CCG GCA

TCT G-39, reverse 59-GGG GCC ATA TAG TTC CAC AA-39

and for 18S: forward 59-CGGCTACCACATCCAAGGAA-39;

reverse 59-GCTGGAATTACCGCGGCT-39.

Statistical analysis
The experiments were repeated 3 times with at least 6 replicates

per experiment. Data are expressed as mean +/2 SD and

analyzed using the statistical package super-ANOVA (Macintosh,

Abacus concepts, Inc., Berkeley, CA).
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