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To predict the potential severity of outbreaks of infectious diseases such as SARS, HIV, TB and smallpox, a summary parameter,
the basic reproduction number R0, is generally calculated from a population-level model. R0 specifies the average number of
secondary infections caused by one infected individual during his/her entire infectious period at the start of an outbreak. R0 is
used to assess the severity of the outbreak, as well as the strength of the medical and/or behavioral interventions necessary for
control. Conventionally, it is assumed that if R0.1 the outbreak generates an epidemic, and if R0,1 the outbreak becomes
extinct. Here, we use computational and analytical methods to calculate the average number of secondary infections and to
show that it does not necessarily represent an epidemic threshold parameter (as it has been generally assumed). Previously we
have constructed a new type of individual-level model (ILM) and linked it with a population-level model. Our ILM generates the
same temporal incidence and prevalence patterns as the population-level model; we use our ILM to directly calculate the
average number of secondary infections (i.e., R0). Surprisingly, we find that this value of R0 calculated from the ILM is very
different from the epidemic threshold calculated from the population-level model. This occurs because many different
individual-level processes can generate the same incidence and prevalence patterns. We show that obtaining R0 from empirical
contact tracing data collected by epidemiologists and using this R0 as a threshold parameter for a population-level model
could produce extremely misleading estimates of the infectiousness of the pathogen, the severity of an outbreak, and the
strength of the medical and/or behavioral interventions necessary for control.
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INTRODUCTION
In Epidemiology, it is essential to quantify the severity of actual (or

potential) outbreaks of infectious diseases such as SARS [1,2], HIV

[3], TB [4], and smallpox [5]. The standard procedure is to

calculate a parameter called the basic reproduction number (R0) that

characterizes the potential of an outbreak to cause an epidemic. R0

has been extensively used to assess transmissibility of pathogens,

severity of outbreaks, and epidemiological control [1–6]. The

established definition of R0, as phrased by Anderson and May [6],

is ‘‘the average number of secondary infections produced when one infected

individual is introduced into a host population where everyone is susceptible’’.

They have stated that ‘‘If R0 is greater than one then the outbreak will lead

to an epidemic, and if R0 is less than one then the outbreak will become

extinct’’ [6]; thus they have assumed that R0 is a threshold para-

meter that establishes whether an outbreak yields an epidemic or

not. Here we establish that the average number of secondary

infections (i.e., R0) is not always an epidemic threshold parameter.

Epidemiologists calculate R0 using individual-level contact

tracing data obtained at the onset of the epidemic. Once an

individual is diagnosed, his/her contacts are traced and tested. R0

is then computed by averaging over the number of secondary cases

of many diagnosed individuals. This approach is based upon the

definition of R0, but it does not ensure that the calculated R0 is

also an epidemic threshold parameter.

Another approach (which is more commonly used) is to obtain

R0 from population-level data, namely cumulative incidence data.

Making certain individual-level modeling assumptions (e.g., the

mass-action principle of infectious spread, time independent

infection rates, etc.), theorists construct models (typically) based

on Ordinary Differential Equations (ODEs) which describe the

dynamics of the expected population size in different disease stages

without tracking individuals. It is very important to note that the

individual-level modeling assumptions cannot be verified using

population-level data (i.e., they remain hypothetical). ODE models

are formulated in terms of disease transmissibility and progression

rates at the population level. These parameters are obtained by

fitting the model to population-level data; their relation to the

individual-level processes may be quite complex and is generally

unknown. Bifurcation analysis of the ODE model yields a threshold

parameter [7] that signals the epidemic as indicated by Anderson

and May [6] and is formulated in terms of the population-level

parameters. This threshold parameter is not usually checked

against the value of R0 that has been calculated from contact

tracing data.

The individual-level and the population-level approaches may

produce very different numbers as the first calculates the value of

R0, whilst the second calculates the value of a threshold parameter.

The question of whether the R0 obtained by calculating the

average number of secondary infections matches the threshold

parameter obtained from fitting the epidemiological model to

population-level data has been previously studied [8,9]. In these

two papers, the authors show that R0 values obtained from

different individual-level models (ILMs) do not necessarily agree

with those obtained from mean-field ODE models. However, in

order to make this point, the modelers consider that the individual-

level transmission dynamics occurs on a social contact network with
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a structure that is different from the all-to-all network assumed by

ODE models. An infected individual can only infect his/her

neighbors in the network which represent a small fraction of

the total population. Thus, the R0 mismatch can be attributed to

the model mismatch. In contrast, in our ILMs, we preserve the

assumption that the contact network is all-to-all. However, our

research focuses on the transmission network. This network is

embedded in the social contact network and forms in time during

disease spreading by tracking who infected whom. We analyze two

distinct ways in which the transmission network can be realized

and directly compute R0. We thus discuss two distinct ILMs whose

prevalence and incidence can be described by an ODE model with

an established threshold parameter. We calculate their R0 values

through the definition and then compare these values with the

epidemic threshold parameter. Our results address the question of

whether or not an R0 (i.e., an average number of secondary infec-

tions) can be assigned to an ODE model (which only provides

a population-level description of disease propagation) without

having any knowledge of the underlying disease transmission

network.

METHODS
A simple ODE model is the Susceptible-Infected (SI) model given

by dS/dt = p-bIS/(S+I) and dI/dt = bIS/(S+I)-mI, where b and m
are the inflow and, respectively, the outflow of infectious indivi-

duals per infectious capita. We apply this model at disease invasion

when virtually everyone is susceptible (i.e., S/(S+I) is approxi-

mately 1) and obtain dI/dt = bI-mI. The threshold parameter for

the reduced model is b/m; if b/m.1 an outbreak develops into an

epidemic, if b/m,1 an outbreak goes extinct. It is important to

note that b and m are obtained from fitting the model to

population-level data, with no clear association to the causal

individual-level processes. An individual-level model that is

compatible to these dynamics is a branching process; see Fig. 1

and Mathematical Details S1. In this context, b is interpreted as

the infection rate of an individual and m is the recovery rate of an

individual. In this branching process, an individual is expected to

infect a number of b/m secondary cases which represents the R0 of

this ILM. In this case, the average number of secondary infections

R0 = b/m is also a threshold parameter of the population-level

dynamics.

However, the branching process is not the only possible ILM

that is compatible with the ODE model. Recently, we have shown

that other plausible ILMs can be constructed [10] that yield the

same ODE dynamics as the SI model at disease invasion. We have

constructed a new class of ILMs [10–12]; see Fig. 2 and

Mathematical Details S1. Since, our example ILM generates the

same prevalence and incidence as the SI ODE model (Fig. 3A)

then it would be expected, on the basis of conventional wisdom, to

generate the same R0. Starting from one infected individual, our

simulations integrated the ILM and kept track of the number of

secondary infections caused by each individual in the infectious

and in the recovered pools. The dynamics were integrated to

a certain final time and the collected data were stratified over the

date of infection. R0 was calculated using the average number of

secondary cases generated by infectious individuals, according to

the standard definition of Anderson and May [6]. This procedure

ensures that each individual included in the calculation of R0 is no

longer infectious and that there is no right censoring (See

Mathematical Details S1). More importantly, it emulates the

process of obtaining an R0 value by real-world contact tracing

data.

Figure 1. Schematics of a branching process. Two generations of
infections are shown. Every horizontal bar segment represents the time
interval that a specified individual remains infectious; these time
intervals follow a negative exponential distribution with average m21.
The time intervals between infections for any given individual follow
a negative exponential distribution with an average of b21.
doi:10.1371/journal.pone.0000282.g001

Figure 2. Schematics of our individual-level model (ILM). The model
tracks individuals through growing a transmission network by using
infection and removal rules [10]. Individuals are represented as the
nodes of the network; two individuals a and b are connected by
a directed link from b to a if b has infected a. In the Figure, a is a newly
infected individual added to the growing transmission network. As an
example of an infection rule, a node b is uniformly randomly chosen to
be the infectious individual who has infected a. If a removal occurs, an
individual c is randomly chosen from the infected group, and is
removed. Under the assumption that the number of the secondary
infections caused by c is a proxy for the progression of the disease, we
choose that the probability that c is removed to be proportional to the
number of secondary infections caused by c plus one; i.e., to be
proportional to the total number of connections of c. The node c
remains connected to the network, but can not cause any new
infections; i.e., c becomes the same as node d who previously infected
c. The rates of infections and removals per infectious capita are b and m,
respectively. The branching process presented in Fig. 1 yields the same
expected incidence as our ILM which is given by the SI ODE model.
doi:10.1371/journal.pone.0000282.g002
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RESULTS
The results (black dots) of the simulation are presented in Fig. 3.

For comparison with these results, we present the results (open

circles) of a similar simulation for the branching process. The

prevalence results for the branching process and the ILM agree

very well; see Fig. 3A. For the branching process, R0 yields the

expected value that agrees with the threshold parameter of the SI

ODE model; see Fig. 3B. Surprisingly, the graph of R0 versus the

date of infection plateaus at a lower value than that for the branch-

ing model. It is thus evident, as supported by our numerics, that

two individual-level models having exactly the same expectations

of the corresponding population-level variables (i.e., incidence and

prevalence) may yield different R0 values (as given by the

definition). In the case of our second ILM (see Fig. 2), R0 is not

the threshold parameter of the SI ODE model.

DISCUSSION
Our results have significant consequences for understanding the

concept of R0. We explicitly show that certain population-level

dynamics, theoretically specified by an ODE model, can be the

result of many distinct ILMs. We further demonstrate that the R0

obtained from the ILM, by applying the definition of Anderson

and May [6], may be different from the epidemic threshold

parameter provided by the ODE model. Therefore, population-

level predictions based upon an ODE model that use the R0 value

found by contact tracing as a threshold parameter may be

inaccurate.

Our novel results have significant implications for understand-

ing the dynamics of outbreaks of infectious diseases, particularly

for the biological understanding of the transmission dynamics of

the pathogen, estimating the severity of outbreaks, making health

policy decisions, and designing epidemic control strategies. We

have shown that the value of R0 may not be an accurate measure

of the severity of an outbreak since R0 may fail to represent an

epidemic threshold parameter. Thus, measuring R0 through

contact tracing (as generally occurs during an outbreak in-

vestigation), may not help in predicting the severity of the

outbreak and may not be a useful measure for determining the

strength of the necessary control interventions. Only an epidemic

threshold parameter can be used to design control strategies. This

parameter can be obtained through fitting an ODE model to

population-level data as mentioned above and will signal epidemic

growth whether or not it is equal to the average number of

secondary infections. However, obtaining an R0 value via contact

tracing can be very useful in conjunction with population-level

epidemic data to understand the possible transmission mechanisms

of the epidemic at the individual level. We thus suggest that the

role of R0 should be more carefully considered, and that

a reevaluation of the role of R0 may lead to the development of

more effective control strategies.

SUPPORTING INFORMATION

Mathematical Details S1 Here we give more details and

references about the individual-level models presented in the main

text. We also briefly discuss how the concept of right censoring

manifests in our simulations.

Found at: doi:10.1371/journal.pone.0000282.s001 (0.05 MB

PDF)
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