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Abstract

Objective: Automated surveillance of healthcare-associated infections can improve efficiency and reliability of surveillance.
The aim was to validate and update a previously developed multivariable prediction model for the detection of drain-
related meningitis (DRM).

Design: Retrospective cohort study using traditional surveillance by infection control professionals as reference standard.

Patients: Patients receiving an external cerebrospinal fluid drain, either ventricular (EVD) or lumbar (ELD) in a tertiary
medical care center. Children, patients with simultaneous drains, ,1 day of follow-up or pre-existing meningitis were
excluded leaving 105 patients in validation set (2010–2011) and 653 in updating set (2004–2011).

Methods: For validation, the original model was applied. Discrimination, classification and calibration were assessed. For
updating, data from all available years was used to optimally re-estimate coefficients and determine whether extension with
new predictors is necessary. The updated model was validated and adjusted for optimism (overfitting) using bootstrapping
techniques.

Results: In model validation, the rate of DRM was 17.4/1000 days at risk. All cases were detected by the model. The area
under the ROC curve was 0.951. The positive predictive value was 58.8% (95% CI 40.7–75.4) and calibration was good. The
revised model also includes Gram stain results. Area under the ROC curve after correction for optimism was 0.963 (95% CI
0.953– 0.974). Group-level prediction was adequate.

Conclusions: The previously developed multivariable prediction model maintains discriminatory power and calibration in an
independent patient population. The updated model incorporates all available data and performs well, also after elaborate
adjustment for optimism.
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Introduction

Surveillance and feedback of healthcare-associated infection

(HAI) rates to healthcare workers is considered a cornerstone of

infection prevention programs [1,2]. Policy makers and the public

increasingly demand transparent reporting of infection rates to

quantify quality of healthcare, for example through surveillance

networks such as the National Healthcare Safety Network (NHSN)

in the United States or the PREZIES network in the Netherlands

[3–6]. Because of the potential impact of HAI rates on healthcare

utilization and reimbursement, the development of efficient and

reliable surveillance methods is of increasing importance. In many

circumstances, manual chart review of all patients is still the only

available method for surveillance, although it is prone to error due

to effort dependent case-finding and the possibility of inconsistent

interpretation of case definitions [7,8]. Possibilities for automated

surveillance of HAI using a variety of data sources have been

investigated over the past two decades with varying success [9].

A HAI for which routine surveillance is implemented in our

institution is drain-related meningitis (DRM), a relatively frequent

complication of the use of external ventricular (EVD) and lumbar

(ELD) cerebrospinal fluid drains in neurosurgical patients. DRM

rates range from 2 up to 25% per drain placed [10–12] or 7.5 to

32 infections per 1000 days at risk (DAR) [13–15]. Causative

micro-organisms are often skin flora, such as coagulase-negative

staphylococci and Staphylococcus aureus, although in some settings
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Gram-negative micro-organisms (eg enterobacteriaceae) play an

important role [11,13]. Infection rates also depend on the

definition applied. Since surveillance aims to generate insight into

rates and characteristics of DRM, definitions are not necessarily

identical to a clinical diagnosis entailing treatment consequences.

Importantly, some case-definitions, including the CDC-definition

for healthcare-associated meningitis, allow for diagnosis of an

infection without the presence of bacterial growth from clinical

cultures [16,17].

Recently, an accurate prediction model for the automated

surveillance of DRM has been proposed which combines

predictors from multiple sources to identify those patients which

have a high probability of having developed DRM during their

admission, both cases of DRM with and without documented

pathogens in microbiological cultures (Figure 1) [14]. Such a

model can provide more timely and reliable rates of DRM and

manual chart review can then be limited to high-risk patients (with

a high predicted probability of DRM) while maintaining sensitivity

of detection. Importantly, the predictors are all collected during

routine clinical care which facilitates applicability of the model in

practice [18].

Prediction models require validation in independent patient

populations to assess their validity and performance in future use

[19,20]. This research presents the temporal validation of the

DRM prediction model. Besides validation, optimal model

performance in future patients can be achieved by updating the

model using both derivation and validation data [21,22]. Several

newly available predictors were also considered in model updating.

Methods

Ethics statement
As described previously, use of anonymized data from the

clinical data warehouse has been exempted from review by the

institutional review board of our institution [23].

Development study details
For details on model development, please refer to [14]. In brief,

logistic regression was used to develop a prediction model aimed at

identifying patients that developed DRM after placement of an

EVD or ELD. The study was conducted at University Medical

Center Utrecht, a 1042-bed tertiary medical center. Patients who

entered the routine surveillance performed by the department of

hospital hygiene and infection control between January 1st 2004

and December 31st 2009 were included, with the exception of

children, patients with less than one day of follow-up, patients with

known meningitis at the time of placement of the first drain,

patients admitted with a drain in situ or multiple simultaneous

drains, military personnel and multiple (independent) admissions

within the study period (n = 537 in analysis). All EVDs were placed

in operating theatres and are tunneled five centimeters under the

skin. Drains were not coated with antibiotics and all patients

received perioperative antibiotic prophylaxis. ELDs were either

inserted in the operating theatres or in sterile conditions on the

neurology ward. Drains were not exchanged on a prophylactic

basis and CSF samples were collected for culture and biochemical

analysis only when infection was clinically suspected. Clinical care

data were obtained from the Utrecht Patient Oriented Database

(UPOD), a clinical data warehouse developed for research

purposes which links patient characteristics to results from clinical

chemistry and medical microbiology laboratories and pharmacy

records [23]. Missing data were imputed using multiple imputa-

tion, and internal validation was performed [24,25].

Outcome
As in model development, the outcome or reference standard

was the development of DRM, which is defined as the occurrence

of meningitis when the drain is in situ or within seven days of drain

removal. Meningitis is defined according to the CDC-definition

for healthcare-associated meningitis as applied by the department

of hospital hygiene and infection control during routine manual

surveillance. Presence of healthcare-associated meningitis requires

either a positive culture or a combination of clinical signs,

cerebrospinal fluid (CSF) analysis indicative of meningitis and

initiation of empiric antimicrobial therapy by the physician.

Importantly, this definition for meningitis allows for classification

as a meningitis without bacterial growth from microbiological

cultures and requires that cultures with skin flora are evaluated for

possible contamination (Figure 2) [14–16,26]. All charts were

manually reviewed, and possible cases of infection were reviewed

by at least two infection control professionals. In case of

disagreement, consensus was reached through discussion.

Model validation and patient population
The previously developed model for the prediction of DRM was

validated on an independent cohort of consecutive patients that

received an EVD or ELD, selected from the same center though

from a later time period (January 2010 to June 11th 2011), a so-

called temporal validation [19,20]. In this time period, surveillance

for ELDs was limited to drains placed in operating theatres in

2010 and discontinued in 2011. Data on device utilization is

currently collected manually using electronic operating theatre

and ICU records. Children (n = 13), patients with a meningitis at

drain placement (11), patients who died within 24 hours (5) or who

received multiple simultaneous drains (2) and those who were

admitted with a drain already in situ (1) were excluded from the

analysis, leaving 105 patients in the validation set. Approximately

three-quarters of the EVD patients (75 of 99 patients) received a

drain due to hydrocephalus after intracranial hemorrhage; nine

percent received an EVD to treat increased intracranial pressure

caused by a tumor. Five out of six ELD’s were placed as a per-

operative preventive measure. For each patient in the validation

set, the reference standard was determined and predictor data was

collected.

Predictors
Predictors were defined, collected and interpreted as in model

development [14]. Predictors were selected for their ability to

predict the development of DRM, irrespective of a causal

association. Patient characteristics, administrative data (e.g. length

of stay, ICU admissions) and the clinical parameters used in the

Figure 1. Previously derived prediction rule for drain-related
meningitis. For each individual patient, the model returns a predicted
probability of DRM which can be used to classify patients. Abbrevia-
tions: P(DRM) – probability of drain-related meningitis, LP – linear
predictor, EVD – external ventricular drain, CRP – C-reactive protein, CSF
– cerebrospinal fluid.
doi:10.1371/journal.pone.0051509.g001
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prediction model (Figure 1) were extracted from the clinical data

warehouse. Besides the predictors obtained during model devel-

opment, Gram stain results, the location to which the patient was

discharged (i.e. deceased, home or other care facility) and urgency

of admission as recorded in administrative files were also available.

For each patient, all results obtained throughout the surveillance

episode (duration of drainage plus seven days or up to discharge)

were retrieved. For each predictor, the value most indicative of

infection was used as parameter value; for example, for the

peripheral blood leukocyte count the highest value measured

during the surveillance episode was entered in the prediction rule.

Statistical analyses
Missing data were imputed using multiple imputation (10

iterations) to prevent bias that would have occurred if the analysis

had been limited to complete cases only [24]. In Table S1, a

comparison of cases with and without missing data is given. For

model validation, imputation was performed on the validation set

only. A new imputation was run on the development and

validation set combined for model update (see below). The

original model depicted in Figure 1 was validated. Discrimination,

classification and prediction at the group level (calibration-in-the-

large) were assessed.

Model updating
Since datasets from both model development and validation

were available, we investigated whether the original model could

be improved or updated using both datasets combined and hence

make maximal use of all data [21,27]. As opposed to model

derivation, patients with multiple simultaneous drains were no

longer excluded since they are not expected to be different in terms

of diagnosis of DRM. Furthermore, during the updating process,

one misclassification error in the model development data was

resolved and all data were adapted accordingly thus slightly

improving performance characteristics obtained in the model

development. All predictors from the original model were included

in the revised model to re-estimate their coefficients. In addition,

the new predictors (Gram stain, urgency of admission and

discharge destination) were added to the model if they significantly

improved the model (likelihood ratio test, p-value of 0.05). Gram

stain results were combined with CSF culture result and CRP was

included as a fractional polynomial to accommodate the non-

linear association between CRP and risk of DRM [28]. Estimates

were derived from the 10 imputation sets and pooled using

Rubin’s rule, a method that takes into account variation within

and between multiple imputation data sets [25].

Then, internal validation was performed by bootstrapping (100

samples per imputation set, including predictor selection using all

predictors considered in model development and update) and a

uniform shrinkage factor was applied, this to prevent over-

optimism and to make the model generalizable to future patient

populations [29]. The final model is presented along with its

optimism-corrected performance characteristics. Analyses were

performed with SPSSH version 19 (SPSS Inc, Chicago IL) and R

version 2.14.1 (www.r-project.org).

Results

Model validation
Model validation was performed on 105 patients who received

134 drains. Nearly all patients in the surveillance received an EVD

(94.3%), due to discontinuation of ELD surveillance. The infection

rate in the validation period was 17.3 per 1000 drainage days at

risk (DAR). All infections occurred in patients receiving an EVD.

In fifty percent of infections, no positive culture was obtained.

Figure 2. Modified CDC-definition for healthcare-associated meningitis (reference standard).
doi:10.1371/journal.pone.0051509.g002

Table 1. Contingency table with results of model validation
with 95% confidence intervals for sensitivity, specificity and
predictive values.

Predicted
probability DRM (%) 95% CI

Yes No Total Sensitivity 100.0 (83.2–100)

P(DRM) .0.107 20 14 34 Specificity 83.5 (73.9–90.7)

P(DRM) #0.107 0 71 71 PPV 58.8 (40.7–75.4)

Total 20 85 105 NPV 100.0 (94.9–100)

Abbreviations: NPV – negative predictive value, PPV – positive predictive value,
P(DRM) – predicted probability of drain-related meningitis.
doi:10.1371/journal.pone.0051509.t001
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Median age in the validation set was 59.3 years (model

development 58.5 years), 65.7% of patients were female (model

development 54.0%) and 71.5% received a drain to treat

hydrocephalus after subarachnoid bleeding, (intraventricular)

hemorrhage or infarction (model development 49.0%) and in-

hospital mortality after exclusion of patients who died within

24 hours of drain placement was 21.9%. The area under the ROC

curve, which is a measure of discrimination, was 0.951 (95%

confidence interval (CI) 0.914 to 0.988); during model develop-

ment an area under the ROC curve of 0.976 (95% CI 0.965–

0.987, without correction for optimism) was observed [14].

Calibration-in-the-large, a measure of the total number of

infections in a specified time period, predicted 13.46 infections

in 2010 (observed = 13 infections) and 6.06 infections between

January 1st and June 10th 2011 (observed = 7). Table 1 gives the

contingency table obtained after application of the original

prediction model and threshold.

Model update
The model was updated to incorporate newly available data and

optimize performance in new patients. The total 2004–2011

dataset included 653 patients which received 863 drains. The

observed infection rate was 14.1/1000 DAR (16.7/1000 DAR for

Table 2. Model update results for 2004–2011 data, including baseline characteristics and results of univariable and multivariable
analysis.

Results of univariable analysis Results of multivariable analysisb

no DRM DRM p-valuea Estimate OR 95% CI

Median (IQR) or n (%) n = 549 n = 104

Baseline characteristics:

Age (years) 59.3 (47.3–69.3) 56.1 (47.4–66.4) 0.599

Sex (% female) 307 (55.9) 58 (55.8) 0.997

In-hospital mortality (%) 105 (19.5) 12 (11.5) 0.064

Duration of admission (days) 19 (11–30) 41 (29–63) ,0.001

ICU admission (%) 322 (58.7) 75 (72.1) 0.010

Predictors in previous model:

Drain Type (% EVD) 352 (64.1) 93 (89.4) ,0.001 1.49 4.421 1.461–13.373

Number of drains placed 1 (1–1) 2 (1–2) ,0.001 0.52 1.687 1.154–2.698

CRP (mg/L)c 99 (37–183) 143 (94–189) ,0.001 20.08 0.926 0.883–0.972

Peripheral leukocytes (6109/L) 15.3 (11.4–19.4) 20.3 (16.4–24.3) ,0.001 0.08 1.090 1.022–1.153

CSF leukocytes (6100/uL)d 1.9 (0.2–6.4) 12.9 (2.7–83.8) ,0.001 0.20 1.224 1.058–1.416

CSF and/or drain culturee (%) 54 (9.8) 77 (74.0) ,0.001

Any empiric antibiotic therapy (%) 72 (13.1) 81 (77.9) ,0.001 1.80 6.067 2.632–13.983

Number of antibiotics started 1 (0–2) 4 (3–6) ,0.001 0.20 1.225 0.988–1.519

New variables considered:

Emergency admission (%) 312 (56.9) 68 (65.4) 0.109

Discharge to ,0.001

– Home 235 (42.8) 25 (24.0)

– Other (deceased, care facility) 314 (57.2) 79 (76.0)

CSF and/or drain culture or Gram staine 59 (10.7) 79 (76.0) ,0.001 2.50 12.117 5.202–28.225

a: p-value in univariable analysis by student’s t test, Mann-Whitney U test or Chi-square where appropriate.
b: Results of the multivariable analysis are after bootstrapping (shrinkage factor 0.79). The intercept of the model was estimated at –6.615.
c: In the multivariable analysis, all CRP values were divided by factor 10.
d: In the multivariable analysis, CSF leukocytes were log transformed.
e: Culture results corrected for contamination with skin flora; if no antibiotics were started, culture was classified as negative.
Abbreviations: CRP – C-reactive protein; CSF – cerebrospinal fluid; DRM – Drain-related meningitis; EVD – external ventricular drain; OR – Odd’s ratio.
doi:10.1371/journal.pone.0051509.t002

Figure 3. Observed and predicted group-level infection rates
using updated model, per 1000 days at risk with 95%
confidence intervals. Abbreviations: DRM – drain-related meningitis,
DAR – days at risk, N pat – number of patients, N DAR – number of days
at risk, N DRM – number of cases of drain-related meningitis.
doi:10.1371/journal.pone.0051509.g003
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EVDs, 6.0/1000 DAR for ELDs). Baseline characteristics and the

results of model re-estimation are presented in Table 2. Patients

who developed DRM received multiple courses of antibiotics

during their surveillance episode; most likely they suffered from or

were suspected of other concomitant infections. The higher

mortality in the non-affected group is in part caused by the

shorter duration of follow-up in the deceased patients; hence they

had less time to develop a DRM.

In the multivariable analysis, using a fractional polynomial to fit

the model to the CRP levels did not lead to the inclusion of higher

power terms in the model and only the linear term was retained,

albeit with a reversed direction. This is most likely because patients

with a very high CRP level suffered from a different infection than

DRM. The area under the ROC curve of the updated model was

0.972 before correction for optimism and 0.963 (95% CI 0.953–

0.974) after correction for over-optimism. Table 3 shows

classification results with varying predicted probability cut-offs.

Finally, yearly infection rates can be estimated by summing

predicted probabilities (calibration-in-the-large) for all patients in

each year group (Figure 3).

Discussion

The results of the present study demonstrate that the previously

proposed model for the surveillance of DRM, in unaltered form,

maintains its high discriminatory power and adequate group-level

prediction in a new patient population from the same center.

Patients included in the validation set were on average more

seriously ill than in the derivation set, probably due to the

discontinuation of surveillance of patients receiving ELDs.

However, this did not impact model performance. Model update

was performed to include predictors that recently became

available and optimize the model. Performance of the updated

model is similar to the original model. As described in Table 3, a

choice needs to be made between sensitivity and specificity in

selecting a predicted probability cut-off; increasing the predicted

probability cut-off reduces the number of charts to review at the

cost of sensitivity. Since this model is applied to patients

retrospectively and does not affect clinical decision making, it is

worthwhile to, accept a sensitivity of 95.2% as opposed to 100.0%

which will reduce the workload for manual review from 223 to 159

charts. As in model development, longitudinal surveillance at the

group level can be performed using this model. Comparison of the

original and revised model regression coefficients yields similar

directions and slightly more conservative magnitudes due to the

more stringent model shrinkage procedure used in the model

update.

The observed rates of DRM in this study are in the upper part

of the spectrum of rates published. The use of a broad definition

that includes infections in which no micro-organisms were

cultured from CSF may play a role (26% of the infections) [10].

Furthermore, as opposed to benchmarking data from Germany

[30], both ICU and non-ICU patients are included in the

surveillance and follow-up is extended beyond ICU discharge. The

lower infection rate observed in patients who received an ELD

(16.7 vs 6.0/1000 DAR) may be explained by the less severe

underlying disease in these patients. Schade et al. also found lower

DRM rates in patients receiving an ELD as compared to an EVD

[31]; as in our population (data not shown), these patients often

received an ELD for the prevention or treatment of CSF leakage.

In other studies, a higher DRM rate was found in patients

receiving ELDs which may be due to the inclusion of almost

exclusively patients with underlying intracranial hemorrhage [15].

The updated model presented in this research is, to our

knowledge, the only model developed to specifically survey the

development of meningitis complicating the use of external CSF

drains that has undergone temporal validation. Compared to other

automated surveillance systems for (procedure-specific) HAI, this

model is one of the few using data from multiple sources in a

multivariable model which weights the individual predictors to

generate a prediction. This is in contrast to the often seen binary

classification algorithms which use fewer data sources and often

require positive cultures for case-finding [9,32,33]. In this model,

positive cultures and antibiotic use are important predictors but no

absolute requirement for the detection of infection, thus making it

possible to identify those infections in which a positive culture was

Table 3. Model classification results with different predicted probability cut-offs.

P(DRM)
cut-off Sensitivity Specificity PPV NPV

Charts to
review

(%) (%) (%) (%) (% of total)

0.025 100.0 62.5 33.5 100.0 310 (47.5)

0.050 100.0 78.3 46.6 100.0 223 (34.2)

0.075 99.0 82.7 52.0 99.8 198 (30.3)

0.010 99.0 85.8 56.9 99.8 181 (27.7)

0.125 99.0 86.7 58.5 99.8 176 (27.0)

0.150 98.1 87.6 60.0 99.6 170 (26.0)

0.175 95.2 89.1 62.3 99.0 159 (24.3)

0.200 93.3 90.0 63.8 98.6 152 (23.3)

0.225 90.4 91.1 65.7 98.0 143 (21.9)

0.250 87.5 91.8 66.9 97.5 136 (20.8)

0.275 83.7 93.4 70.7 96.8 123 (18.8)

0.300 82.7 94.2 72.9 96.6 118 (18.1)

With increasing cut-off, the sensitivity decrease is associated with a decrease in number of charts requiring manual review for confirmation of infection.
Abbreviations: DRM – drain-related meningitis, NPV – negative predictive value, PPV – positive predictive value, P(DRM) – predicted probability for drain-related
meningitis.
doi:10.1371/journal.pone.0051509.t003
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not obtained or for which the patient was not treated with

standard empiric therapy. The study presented here confirms that

this multivariable approach is valid for the surveillance of HAI,

and may possibly be applied to other infections as well. Currently,

use of the model requires extraction of predictor data from the

electronic medical records and subsequent data processing prior to

application of the prediction rule; ongoing developments in

healthcare information technology are expected to facilitate the

widespread implementation of such systems.

Since the number of external drains placed on a yearly basis is

limited, the validation could only be performed on a relatively

small patient population. Therefore, performing multiple imputa-

tion on this set of data required very relaxed settings which may

cause unstable results. However, the model was subsequently

revised and extended using the total population, one of the largest

DRM cohorts to date, to make optimal use of available data and

return the most reliable model possible. Although model update

considered several new variables that have become available in the

data warehouse, not all potential risk factors and diagnostic

markers of DRM could be included. For example, there is no

(field-defined) data on whether the drains were placed during an

emergency procedure, how often drains were manipulated or

whether there was cerebrospinal fluid leakage at the insertion site

[10,11,34]. Markers of meningitis under investigation, such as

procalcitonin and interleukins [35–37], are not routinely deter-

mined and thus not included. Furthermore, since the model is

dependent on clinical practices, such as culture frequency and

antibiotic use policies, the model may need to be adapted when

implemented in new settings. However, the model will not be

affected by differences in occurrence of causal risk factors

assuming that clinical presentation and diagnostic workup remain

unaffected. The effect on model performance of differences that

may affect clinical presentation, such as use of antibiotic coated

catheters, will need to be investigated further. When interpreting

the results of this study, it must be realized that it has been

developed for the purpose of infection surveillance after the fact,

and not for realtime surveillance of infections. Several studies have

attempted to identify parameters which can predict the onset of

DRM, however with inconclusive results [37,38]. The current

model could be used for more timely feedback of infection rates

and may return more consistent results than manual surveillance.

This model for the surveillance of drain-related meningitis has

now been temporally validated in a single center, and maintained

performance despite small changes in case-mix of the validation

set. Multi-center validation is currently ongoing to investigate

transportability to other hospitals and validity in patients with a

different case-mix; also the effect of the use of antibiotic-coated

catheters on model performance will be assessed. Several

challenges still remain to achieve implementation in routine

surveillance. Methods for handling of missing data in future

patients need to be tested, and with the implementation in multiple

centers, risk adjustment methods will be necessary to allow for

valid comparison between centers. Another aspect that will require

attention in the future is quantification of device utilization rates to

generate infection rates with reliable numbers both in the

numerator (this model) and the denominator.

Supporting Information

Table S1 Comparison of patients with and without missing data.

Complete cases have different underlying disease and are more

likely to have developed DRM than non-complete cases.

(DOC)
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