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Abstract

The AKT/PKB kinase is a key signaling component of one of the most frequently activated pathways in cancer and is a major
target of cancer drug development. Most studies have focused on its activation by Receptor Tyrosine Kinase (RTK) mediated
Phosphatidylinositol-3-OH kinase (PI3K) activation or loss of Phosphatase and Tensin homolog (PTEN). We have uncovered
that growth factors binding to RTKs lead to activation of a non-receptor tyrosine kinase, Ack1 (also known as ACK or TNK2),
which directly phosphorylates AKT at an evolutionarily conserved tyrosine 176 in the kinase domain. Tyr176-phosphorylated
AKT localizes to the plasma membrane and promotes Thr308/Ser473-phosphorylation leading to AKT activation. Mice
expressing activated Ack1 specifically in the prostate exhibit AKT Tyr176-phosphorylation and develop murine prostatic
intraepithelial neoplasia (mPINs). Further, expression levels of Tyr176-phosphorylated-AKT and Tyr284-phosphorylated-Ack1
were positively correlated with the severity of disease progression, and inversely correlated with the survival of breast
cancer patients. Thus, RTK/Ack1/AKT pathway provides a novel target for drug discovery.
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Introduction

Protein kinase AKT plays a central role in growth, proliferation

and cell survival [1,2,3]. AKT activation occurs when ligand

binding to RTK facilitates translocation of AKT to the plasma

membrane [4,5,6,7] where it is phosphorylated at Thr308 by

phosphoinositide-dependent protein kinase-1 (PDK1) and at

Ser473 by the ‘PDK2’, a class of about 10 different kinases [8]

including the mTORC2 complex [9]. Phosphorylation of AKT at

Thr308 and Ser473 leads to its kinase activation [10]. Upon

activation, AKT phosphorylates its substrates to transduce survival

signals [1,3,11,12]. During AKT activation, the first step is the

production of phosphatidylinositol 3,4,5 trisphosphate (PIP3) by

PI3K. PDK1 and AKT bind the phospholipid PIP3 via their PH

domains and are recruited to the plasma membrane. While RTK/

PI3K mediated recruitment of AKT to the plasma membrane is a

well characterized mechanism, mounting evidence indicate that

AKT activation can occur in a PI3K-independent fashion

[13,14,15,16,17,18]. About a third of the breast and prostate

tumors and majority of the pancreatic tumors that exhibit AKT

activation, retain normal PTEN and PI3K activity [15] [19,20].

Interestingly, normal PTEN expression was also seen in breast,

ovarian and prostate tumors that exhibit activated AKT [15].

While RTKs are suggested to be involved [21], the molecular

mechanisms regulating RTK mediated AKT activation in cancers

with normal PTEN and PI3K activity is poorly understood [22].

Further, PIK3CA activating mutation has recently been shown to

be neither necessary nor sufficient for full AKT activation in situ

[23]. Thus, collectively these data suggest the existence of

additional pathways that regulate AKT activation in response to

growth factors.

Ack1, a nonreceptor tyrosine kinase has emerged as a critical

early transducer of variety of extracellular growth factor stimuli

including heregulin, insulin, EGF and PDGF signaling

[24,25,26,27,28]. Ack1 is ubiquitously expressed and primarily

phosphorylated at Tyr284 leading to its kinase activation [25,27].

Our earlier studies demonstrated that Ack1 regulates prostate

cancer progression to androgen independence by positively

regulating androgen receptor (AR) and negatively regulating the

tumor suppressor, Wwox [25,26,29]. Ack1 gene is also shown to

be amplified in primary lung, ovarian and prostate tumors which

correlated with poor prognosis [30]. In this report, we have

identified a novel mechanism of Ack1 mediated AKT activation

wherein phosphorylation of Tyrosine 176 in the AKT kinase

domain results in its translocation to the plasma membrane and

subsequent kinase activation.
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Results

Ack1 Phosphorylates AKT at Evolutionary Conserved
Tyr176 Resulting in AKT Activation

We observed that EGF treatment of mouse embryonic fibroblasts

(MEFs) resulted in rapid Tyr-phosphorylation of Ack1 as well as

Akt1 at 5 and 10 mins respectively, suggesting that these two Tyr-

phosphorylation events could be linked (Fig. 1A). To test this

hypothesis, we examined whether Ack1 could bind and Tyr-

phosphorylate AKT following RTK activation. Co-immunopre-

cipitation of lysates derived from Akt1, Akt2, and Akt1& 2 knockout

mouse embryo fibroblasts (MEF1KO, MEF2KO, and

MEF1&2KO, respectively, Fig. S1A) that were treated with

EGF, either with or without pretreatment with LY294002, a

PI3K inhibitor, revealed that endogenous Akt1 (AKT here

onwards) and Ack1 formed a stable complex which was not

abrogated by LY294002 (Fig. 1B). The bottom panel shows that

upon LY294002 addition there was substantial decrease in AKT

Ser473-phosphorylation, suggesting that LY294002 is functional.

Akt2 interacted weakly with Ack1, while Akt3 present at low levels

in the MEF1&2KO cells was not detectable in the complex.

To test whether Ack1 directly phosphorylates AKT, in vitro

binding assay was performed and AKT Tyr-phosphorylation was

assessed. Myc-tagged Ack1 and HA-tagged AKT constructs were

expressed and purified using respective antibody beads followed by

elution, as described in methods section (Fig. S1B). In vitro binding

assay revealed that purified Ack1 interacted directly with AKT

resulting in AKT Tyr176-phosphorylation (Fig. S1B–D). Further,

we generated GST-Ack construct that harbors kinase, SH3 and

CRIB domain (schematic shown in Fig. S1E) and expressed it in E.

coli (Fig. S1E) [25,31]. Androgen-receptor (AR), another Ack1

substrate [26] was expressed as FLAG-tagged construct in HEK293

cells and purified using FLAG-beads (Fig. S1E, left panel). GST-

tagged Ack1 or GST (as control) bound to glutathione beads were

incubated with purified AKT or Y176F mutant of AKT or AR

(shown in Fig. S1B and E). GST-Ack1 bound to purified AKT and

AR but not the Y176F mutant of AKT suggesting that AKT and

AR are direct binding partners of Ack1 (Fig. S1F).

Affinity purification of AKT coexpressed with Ack1 (Fig. S2A),

followed by mass spectrometry analysis revealed that AKT was

phosphorylated at Tyrosine 176 (Fig. 1C–E). Tyr176, located in the

kinase domain, is evolutionarily conserved from unicellular

eukaryotes to mammals and within all the three AKT isoforms

(Fig. 1F). Two other phosphorylation events, Ser473 and Thr308

were also identified in the same preparation (Fig. S2B–G). In-silico

analysis revealed that Tyr176 and Ser473 are located in regions with

increased conformational flexibility and phosphorylation at Tyr176

is likely to induce substantial conformational change and thus affect

the loop harboring Ser473 (Fig. S3). To determine whether AKT

Tyr176-phosphorylation is an upstream event that regulates AKT

activation (or Ser473 phosphorylation, hereafter), site directed

mutagenesis was performed to generate AKT phospho-tyrosine

(Y176F) mutant (Fig. S4A). The Y176F mutant interacted poorly

with Ack1 in the absence of ligand, and in the presence of ligand

failed to interact with Ack1 resulting in decreased AKT Tyr/Ser-

phosphorylations (Fig. 1G, lane 6). Flow cytometric analysis of EGF

treated cells revealed significant reduction in Ser473-phosphoryla-

tion in MEF1&2KO cells expressing Y176F as compared to AKT

(Fig. 1H and Fig. S4B). These results imply that Ack1 mediated

AKT Tyr-phosphorylation results in subsequent AKT activation.

Ack1/AKT Interacting Domains
To identify domains involved in Ack1-AKT interaction, various

deletions of Ack1 and AKT were generated (Fig. S4A).

MEF1&2KO cells were co-transfected with HA-tagged AKT

deletions and activated Ack1 or caAck. Immunoprecipitation using

HA antibodies followed by immunoblotting with pTyr antibodies

revealed Tyr-phosphorylation of full-length AKT and AKT

lacking carboxy terminus (DCT-AKT), however, AKT deletion

construct lacking the PH domain (DPH-AKT) exhibited significant

decrease in Tyr-phosphorylation (Fig. S4C, top panel). The

decreased phosphorylation of AKT deletion construct lacking PH

domain could be due to poor binding with activated Ack1. To

assess this interaction in further detail, co-immunoprecipitation

experiment was performed. It revealed that in contrast to AKT or

DCT-AKT, DPH-AKT weakly binds Ack1 (Fig. S4D, top panel).

We have demonstrated that Tyr176 residue in AKT kinase

domain is necessary for Ack1/AKT interaction, thus, collectively it

indicates that the Ack1 need both the PH domain and tyrosine176

in AKT kinase domain for complex formation.

To identify the region in Ack1 that recognize AKT,

MEF1&2KO cells were transfected with Myc-tagged Ack1

deletions (shown in Fig. S4A) and HA-tagged AKT. The lysates

were immunoprecipitated using Myc antibodies followed by

immunoblotting with AKT antibodies. The Ack1 construct

expressing SAM and kinase domains (cAck) was able to bind

AKT, however, construct lacking a part of kinase domain (dAck)

bound poorly to endogeneous AKT (Fig. S4E, top panel). GST-

Ack1 that possess Kinase-SH3-CRIB domains but lacking SAM

domain was able to bind AKT (Fig. S1F). Taken together it

indicates that the kinase domain in Ack1 and tyrosine176 in the

kinase domain along with AKT PH domain appear to be minimal

domains required for efficient Ack1/AKT complex formation.

Somatic Autoactivating Mutation (E346K) in Ack1
Activates AKT

While growth factor binding to RTK or amplification of the

Ack1 gene causes Ack1 kinase activation [25,26,30], somatic

autoactivating mutations in Ack1 have not yet been identified.

Recently, four point mutations in Ack1, i.e. R34L, R99Q, E346K,

M409I have been identified in the COSMIC database. Using site-

directed mutagenesis, we generated HA-tagged point mutants

(Fig. S5A). We tested these mutants and observed that E346K

mutant undergoes autoactivation and causes AKT Tyr/Ser/Thr-

phosphorylation in serum starved cells (Fig. S5B and C). Earlier

we and others have characterized a point mutant (L487F

mutation) that leads to constitutive activation of Ack1, also called

caAck [26,32]. Both caAck(L487F mutant) and E346K auto-

activating mutant of Ack1 exhibited Tyr284-phosphorylation in

the activation loop (Fig. S5D). We also measured the intrinsic

kinase activity of the Y176F mutant and the wildtype AKT in the

absence and presence of activated Ack1. The wildtype AKT

displays significant increase in the kinase activity as compared to

the Y176F mutant when coexpressed with either one of the Ack1

constructs, E346K and caAck (Fig. S5E and F). These results

demonstrate that the somatic autoactivating mutations in Ack1 are

sufficient to activate AKT. Taken together with the earlier

evidence indicating direct Ack1-AKT interaction, it opens an

intriguing possibility of RTK/PI3K-independent AKT activation

in tumors that is mediated by (auto) activated Ack1.

Tyr176-Phosphorylated AKT Translocates to the Plasma
Membrane Leading to AKT Activation

Mechanistically, targeting AKT to the plasma membrane is

necessary for AKT activation [1,6,7,13]. Loss of the PH domain

resulted in decrease in AKT Tyr-phosphorylation upon co-

expression with activated Ack1 (Fig. S4A, C and D). Further,

Ack1 Activates AKT
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Figure 1. Tyr176 phosphorylation precedes AKT activation. (A) MEF2KO cells were serum starved (24 h) and treated with EGF (10 ng/ml). The
lysates were immunoprecipitated or IP with anti-Ack1 (top panel), anti-AKT (second panel) and anti-EGFR (fourth panel) antibodies followed by
immunoblotting or IB with anti-pTyr antibodies. Remaining panel represents IB with antibodies as shown. (B) MEFs were serum starved (24 h) and
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Ack1 interacts with RTKs which are located in the membrane

[25,26,28]. These attributes suggest that activated Ack1 could

engage AKT at the plasma membrane. To investigate the role of

AKT Tyr176-phosphorylation on its cellular compartmentaliza-

tion, we generated phospho-antibodies that specifically recognized

Tyr176-phosphorylated AKT or pTyr176-AKT (details in SI

methods). The antibodies were extensively validated (Fig. 2A,

Fig. S6A, also see top panels of Fig. 2B, C and E, Fig. S6B).

Normal prostate epithelial cells, RWPE, exhibited pTyr176-AKT

expression upon treatment with EGF and heregulin ligand

(Fig. 2A). The pTyr176-AKT was detected when activated

Ack1 was coexpressed with AKT but not the Y176F mutant.

Further, incubation of the pTyr176-AKT-antibody with phos-

phoAKT-Y176-peptide resulted in loss of binding to Tyr176-

phosphorylated AKT (Fig. S6A). Cell fractionation studies

revealed that heregulin, insulin and EGF treatment resulted in a

time-dependent accumulation of pTyr176-AKT at the plasma

membrane that lead to AKT activation (Fig. 2B, C and Fig.
S6B, top panels). Optimal AKT Tyr-176 phosphorylation and

plasma membrane accumulation was observed at 10, 30 and

40 mins upon EGF, insulin and heregulin ligand treatments,

respectively (Fig. S6B and Fig. 2B, C). To assess whether EGF

mediated AKT activation is dependent upon Tyr176-phosphor-

ylation, MEF1&2KO cells expressing AKT or Y176F mutant were

treated with EGF ligand. The Y176F mutant failed to translocate

to the plasma membrane and become activated by EGF (Fig. 2D).

The basal levels of pTyr176-AKT seen in cytosolic fraction

(Fig. 2D, panel 2, lanes 4–6) is likely to be Tyr-phosphorylated

AKT3. Depletion of Ack1 by siRNA abrogated heregulin

mediated AKT Tyr176-phosphorylation, plasma membrane

localization and activation in MCF-7 cells (Fig. 2E) and MEFs

(unpublished data). Further, GFP-E346K recruited dsRed-AKT

but not the dsRed-Y176F mutant to the plasma membrane as

assessed by immunofluorescence (Fig. S6C–J). Taken together,

these data suggest that Ack1 is a key intermediate signaling entity

necessary for RTK mediated AKT Tyr176-phosphorylation.

Ack1 Facilitates AKT Plasma Membrane Localization and
Activation

Because Ack1/AKT interaction was unaffected by LY294002

treatment (Fig. 1B) we assessed whether AKT Tyr176-phos-

phorylation could occur upon inhibition of PI3K activity. First,

LY294002 treatment neither affected endogenous AKT Tyr176-

phosphorylation nor its membrane localization (Fig. 3A). Sec-

ond, in contrast to Ack1 knockdown, depletion of PI3K 110a
subunit by siRNA did not inhibit pTyr176-AKT levels in MCF7

cells treated with insulin (Fig. 3B). However, Ser473 phosphor-

ylation of AKT was reduced upon knockdown of either Ack1 or

PI3K, suggesting existence of two distinct pathways of AKT

activation. Third, membrane fraction of AKT was phosphory-

lated at Ser473 even in the presence of LY294002 when

coexpressed with activated Ack1 in serum starved MEF1&2KO

cells (Fig. S7A, panel 2). To determine whether Tyr-phosphor-

ylated AKT can translocate to the plasma membrane in the

absence of PIP3, AKT point mutant R25C that binds PIP3

inefficiently [4] was generated (Fig. S7B). The R25C mutant was

Tyr-phosphorylated and recruited to membrane when coex-

pressed with activated Ack1, in the absence of ligand (Fig. S7C
and D). Interestingly, in contrast to AKT which bound PIP3,

Tyr-phosphorylated AKT bound another membrane phospho-

lipid, phosphatidic acid (PA) (Fig. S8). Combined together, our

data indicates that RTK/Ack1 pathway could directly facilitate

AKT plasma membrane localization and activation and a

fraction of AKT that is Tyr176-phosphorylated can translocate

to the membrane and undergo Ser473-phosphorylation even

when PI3K is inhibited.

AKT Tyr176-Phosphorylation Suppresses Expression of
Apoptotic Genes and Promotes Mitotic Progression

Earlier we have observed that Ack1 translocates to the nucleus

upon it’s Tyr-phosphorylation [26]. We assessed the localization of

pTyr176-AKT when Ack1 was activated. Ligand treatment

facilitated nuclear translocation of both endogenous pTyr284-

Ack1 and pTyr176-AKT (Fig. S9A). FoxO subgroup of

transcription factors are phosphorylated by AKT leading to rapid

relocalization of FoxO proteins from nucleus to cytoplasm, thus,

preventing transactivation of target genes [1,11,12]. FoxO

proteins regulate genes involved in cell cycle arrest (e.g. p21,

p27KIP1), cell death (e.g. Bim-1) and DNA repair (e.g. GADD45)

[11]. Real time quantitative RT-PCR analysis revealed that in

MEF1&2KO cells co-expressing caAck and AKT, expression of

p21, p27, Bim-1 and GADD45 is down regulated as opposed to the

activated Ack and Y176F mutant co-expressing cells (Fig. 4A).

Consistent with this observation, depletion of Ack1 protein by

siRNA resulted in increased FoxO-responsive gene expression

(Fig. 4B).

To further understand the molecular role of Tyr176 in cell

growth, we generated a HA-tagged myristoylated Y176F or myr-

Y176F (Fig. 4C). As the myristoylated version of AKT is

constitutively anchored at the membrane, it exhibits high levels

of AKT activation, as seen by Thr308-phosphorylation (Fig.
S9B). MEF1&2KO cells expressing myr-Y176F exhibited signif-

icant decrease in Thr308-phosphorylation confirming that AKT

Tyr176-phosphorylation is an important event for subsequent

AKT activation. Further, MEF1&2KO cells expressing myr-AKT

grow exponentially as observed by an increase in the number of

the double-positive HA and phospho-H3 (Ser10) stained cells,

indicative of cells undergoing mitosis (Fig. 4D). In contrast, the

number of double-positive myr-Y176F expressing cells remained

unchanged after 24 hours (Fig. 4D). Thus, AKT Tyr176-

phosphorylation can both suppress pro-apoptotic gene transcrip-

tion and promote mitotic progression.

treated with EGF (10 ng/ml for 10 mins) or pretreated with LY294002 (10 mM for 1 h) and EGF. The lysates were IP with Ack1 antibodies followed by
IB with pan-AKT antibodies (top panel). (C) HA-tagged Tyr-phosphorylated AKT was purified (see Fig. S2A) followed by trypsin/chymotrypsin
digestion. The peptide was detected at 13.83 mins in the total ion chromatogram (C) with mass-to-charge ratio 647.8132, which represents an error
of 0.38 ppm (D). (E) The tandem mass spectrum matched the sequence, VKEKATGRYpY indicating that the C-terminal tyrosine was phosphorylated;
the detection of the phosphotyrosine y1 is consistent with this localization. (F) Alignment of AKT protein sequences revealed that tyrosine at 176 is
invariant from yeast to humans and all the three known human AKT isoforms. (G) MEF1&2KO cells expressing HA-tagged AKT or Y176F mutant were
serum-starved (24 h), treated with EGF for 15 mins and lysates were IP with anti-Ack1 Abs followed by IB with anti-AKT antibodies (top panel). The
lysates were also IP with anti-Ack1 antibodies followed by IB with pTyr antibodies (panel 4). The same blot was stripped and IB with anti-Ack1
antibodies (Bottom panel). These lysates were also subjected to IP with anti-HA antibodies followed by IB with Ser473, pTyr and AKT antibodies
(panels 2, 3 and 5, respectively). (H) Flow cytometry of AKT and Y176F mutant expressing MEF1&2KO cells. Cells were serum starved for 24 h, treated
with EGF for 15 mins, fixed and stained with HA-antibodies conjugated to Alexa488 and phosphoSer473-antibodies conjugated to Alexa 647. Upper
right quadrant represents cells which express HA-tagged AKT or Y176F mutant that are also Ser473-phosphorylated.
doi:10.1371/journal.pone.0009646.g001
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Probasin-Ack1 Transgenic Mice Display AKT Activation
and Develop Prostatic Intraepithelial Neoplasia

We generated a transgenic mouse model in which Myc-tagged

activated Ack1 was expressed under the control of modified

Probasin (PB) promoter, ARR2PB (Fig. 5A and B). PB-Ack1

transgenic mice (TG) display significant increase in AKT Tyr176-

phosphorylation leading to Ser473/Thr308-phosphorylation

(Fig. 5C, top 3 panels) and AKT substrate FOXO3a Ser318/

321-phosphorylation (Fig. 5B, panel 2) in the prostates. These

mice developed intraepithelial hyperplasia by 22 weeks (Fig. 5E)

and mPINs by 44 weeks (Fig. 5F, J–L). The prostate epithelium of

TG mice was crowded with round to polygonal stratified nuclei,

forming micropapillary projections and tufts (Fig. 5E). The acini

were lined by a rim of basal cells (Fig. 5F). The areas of mPINs

were easily identifiable and were characterized by prostatic acini

containing intraluminal papillary structures lined by atypical cells

with elongated nuclei exhibiting prominent nucleoli. Focally, the

papillae merged into each other within the acini generating a

cribiform pattern of growth (Fig. 5J–L). Dorsal lobe exhibited an

increased number of small acini lined by cells containing nuclei

exhibiting prominent nucleoli and the neoplastic acini were devoid

of myoepithelial cells (Fig. 5L). We previously demonstrated that

Ack1 regulates phosphorylation of androgen receptor [26] and

tumor suppressor Wwox [25] in human prostate tumors.

Neoplasia observed in PB-Ack1 mice could be due to the

combined effect of Ack1 mediated AKT, AR and Wwox Tyr-

phosphorylations. AR and Wwox Tyr-phosphorylations appear to

be involved in late stage progression of prostate cancer to

androgen-independence [26]. Ack1 mediated AKT Tyr176-

phosphorylation and activation may be more proximal stage

initiating processes in neoplastic progression that mimic or serve as

an alternative to those of PTEN loss which has been prominently

emphasized in other mouse models of prostate cancer [33].

pTyr284-Ack1 and pTyr176-AKT Expressions Correlate
with Breast Cancer Progression

To examine the role of pTyr284-Ack1 and pTyr176-AKT in

breast tumor progression, we performed an extensive tissue

microarray analysis (TMA) of clinically annotated breast

(n = 476) tumor samples. Tyr284 is the primary autophosphoryla-

tion site in Ack1, hence, phospho-Ack1(Tyr284) antibodies were

used to assess Ack1 activation [27,29]. Immunohistochemical

analysis revealed that pTyr284-Ack1 and pTyr176-AKT were

expressed in both membrane and nucleus (Fig. S10A,B). A

significant increase in expression of pTyr284-Ack1 and pTyr176-

AKT was seen when breast cancers from progressive stages were

examined, i.e. normal to hyperplasia (ADH), ductal carcinoma in

situ (DCIS), invasive ductal carcinoma (IDC) and lymph node

metastatic (LNMM) stages (Fig. 6A–C and Table 1). In contrast

to pTyr284-Ack1, the total Ack1 levels remained unchanged

between normal and tumor samples (compare Fig. S10D and E
with F and G). ANOVA results indicated that both pTyr284-Ack1

and pTyr176-AKT expression differed significantly among

progression stages (p,0.0001). When using Tukey-Kramer

method to examine all pairwise differences between different

stages, the expression levels of pTyr284-Ack1 and pTyr176-AKT

Figure 3. Tyr176-phosphorylation of AKT is PI3K-independent. (A) MCF-7 cells were pretreated with LY294002 (10 mM, 1 h) followed by
heregulin for 40 mins. Cell lysates were fractionated and membrane fraction was subjected to IB with indicated antibodies. (B) MCF-7 cells were mock
transfected or transfected with control, Ack1 and PI3K siRNAs, followed by insulin treatment for 30 mins. Cell lysates were subjected to IP with pTyr-
antibodies, followed by IB with pTyr176-AKT antibodies (top panel). Lower panels show IB with indicated antibodies. The experiment was performed
with two different Ack1 siRNAs (Qiagen).
doi:10.1371/journal.pone.0009646.g003

Figure 2. Tyr176-phosphorylation regulates AKT plasma membrane localization. (A) RWPE, normal prostate epithelial cells were treated
with EGF (10 ng/ml,10 mins) and heregulin (10 ng/ml, 35 mins), whole cell protein lysates were subjected to IB with indicated antibodies. (B, C) MCF-
7 cells were serum starved (24 h) and treated with (B) insulin (50 ng/ml) or (C) heregulin (30 ng/ml) for indicated times. Cell lysates were fractionated
and IB with the indicated antibodies. Input panels pAck1(Tyr), pIR(Tyr) and pHER-2(Tyr) represents IP with respective antibodies followed by IB with
pTyr antibodies. (D) MEF 1&2KO cells were transfected with HA-tagged AKT or Y176F mutant, serum starved (24 h) and treated with EGF for 15 mins.
Cell lysates were fractionated and IB with anti-HA (top panel) and indicated antibodies (bottom panels). (E) MCF7 cells were transfected with control
or Ack1-specific siRNAs (40 nM) for 48 h and treated with heregulin for 40 mins. Cell lysates were fractionated and IB with indicated antibodies. In this
experiment we have used half the volumes buffer for extraction of cytosolic proteins. Thus, the cytosolic extracts are 2X concentrated as compared to
Fig. 2B–C, which explains more p176-AKT in cytosol fraction than the plasma membrane fraction.
doi:10.1371/journal.pone.0009646.g002

Ack1 Activates AKT
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in LNMM were significantly higher than those of all the earlier

tumor stages; the expression levels were significantly lower in the

normal samples when compared to those of all the later stages

except for hyperplasia (Tables 2 and 3). Kaplan-Meir analyses

revealed that patients with high expression of pTyr284-Ack1 and

pTyr176-AKT are at a higher risk for cancer-related deaths

(Fig. 6D, E and Table 4). Furthermore, expression of pTyr284-

Ack1 was significantly correlated with pTyr176-AKT in situ

(Spearman rank correlation coefficient r = 0.43, p,0.0001;

Fig. S10C).

Discussion

Our study indicates that cells employ multiple and possibly

mutually exclusive mechanisms to activate AKT (Fig. 7). The

reasons why RTKs would employ two distinct modes of AKT

activation are not entirely clear. However, a fraction of AKT

appears to utilize this alternative mode of activation in normal and

prominently in cancerous cells. Our studies showed that even in

the presence of PI3K inhibitor, ligand bound HER2/ErbB-2 or

EGFR activated Ack1 which in turn Tyr-phosphorylated and

Figure 4. Tyr176 phosphorylated AKT suppresses FoxO gene transcription and promotes cell cycle progression. (A) MEF1&2KO
cells were transfected with caAck and HA-tagged AKT or Y176F, serum starved (24 h) and harvested. Total RNA was prepared and quantitative RT-
PCR was performed. Data are representative of three independent experiments. *p#0.05; **p#0.03; ***p#0.02; ****p#0.02. (B) MEF2KO cells
were transfected with control or Ack1-specific siRNAs (40 nM) for 48 h and treated with EGF for 30 mins. Total RNA was prepared and
quantitative RT-PCR was performed. *p#0.01; **p#0.05; ***p#0.06; ****p#0.05. (C) Schematic representation of myr-AKT and myr-Y176F point
mutants. SDM of myr-AKT was performed to generate the Y176F mutation. PH, Pleckstrin homology domain; Kinase, Kinase domain and CT,
Carboxy Terminal regulatory region. (D) AKT MEF1&2 KO cells were transfected with HA-tagged myr-AKT or myr-Y176F mutant and harvested
24 h and 48 h post-transfection. Cells were fixed and stained with anti-HA antibodies conjugated with Alexa 488 and anti-pSerine10-Histone3
conjugated with Alexa 647, a marker used to distinguish cells in late G2 and early M phase, and analyzed by flow cytometry. HA-myrAKT
expressing cells showed 75% increase in the number of cells undergoing mitosis (upper right quadrant), while, HA-myrY176F-AKT expressing
mitotic cells remain unchanged.
doi:10.1371/journal.pone.0009646.g004
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Figure 5. Probasin-Ack1 transgenic mice display pTyr176-AKT and develop mPINs. (A) Transgenic construct (Prob-Ack1) is shown. (B) A
25 wk old Probasin-Ack1 transgenic (TG) and wild type [21] male mice prostate lysates were subjected to IP using anti-Myc antibodies followed by IB
with pTyr antibodies (top panel). For bottom panels, lysates were subjected to IB with indicated antibodies. (C) Prostate lysates from 21 and 25 wk
old TG and the WT siblings were IB with respective antibodies. The bottom 2 panels represent tail-PCR of these mice. IL-2 was an internal control for
PCR. (D–L) Haematoxylin and eosin (H&E) stained WT and TG mice prostates. Histological appearance of the prostate lateral lobe from a 22 wk old
WT mouse (D), and corresponding lobe from age-matched TG mice with intraepithelial hyperplasia (E). The lateral prostate from 49 wk old TG mice
exhibiting mPIN (F) is shown. Contrasting histological appearance of the lateral, ventral and dorsal lobes of the prostate glands from a WT mouse (G–
I), and corresponding lobes from TG mice (49 week old) are shown (J–L).
doi:10.1371/journal.pone.0009646.g005
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activated AKT. AKT is frequently activated in pancreatic cancer

which has been shown to be highly correlated to HER-2/neu

overexpression [34]. Moreover, many of the pancreatic cell lines

and tumors expressing activated AKT had retained wild-type

PTEN [35,36]. We noticed that PanIN, pancreatic adenocarci-

noma and breast tumors of MMTV-neu mice exhibit significantly

higher levels of pTyr284-Ack1 and pTyr176-AKT (unpublished

data). Taken collectively, our data may explain AKT activation in

those tumors that display amplification/activation of RTKs but

have normal PI3K/PTEN levels. We propose that other tumors

Figure 6. pTyr284-Ack1 and pTyr176-AKT expression in breast cancer. (A) TMA sections representing different breast cancer stages stained
with pTyr284-Ack1 and pTyr176-AKT antibodies. (B) Box plots to summarize distributions of staining intensities for pTyr284-Ack1 in different stages of
breast cancer. A significant increasing trend of intensity across progression stages was detected (Mantel-Haenszel x2 test, p = 0.02). The box has lines
at the lower quartile (25%), median (50%), and upper quartile values (75%) while the red-cross within the circle marks the mean value. Whiskers
extend from each end of the box to the most extreme values within 1.5 times the interquartile range from the ends of the box. The data with values
beyond the ends of the whiskers, displayed with black circles, are potential outliers. (C) Box plots to summarize distributions of staining intensities for
pTyr176-AKT in different stages of breast cancer. A significant increasing trend of intensity across progression stages was detected (Mantel-Haenszel
x2 test, p,0.0001). (D) Kaplan–Meier analysis shows that individuals with breast cancer that have moderate to strong staining (.4) of pTyr284-Ack1
have a lower probability of survival (log rank test, p = 0.08). (E) Kaplan–Meier analysis of the breast cancer patients that have moderate to strong
staining (.4) of pTyr176-AKT have significantly lower probability of survival (log rank test, p = 0.02).
doi:10.1371/journal.pone.0009646.g006
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that possess somatic autoactivating mutations or amplification in

non-receptor tyrosine kinases could use similar mechanisms for

AKT activation [37].

Are there conditions when Tyr176 modification is not needed

for AKT activation? Some of the conditions when Tyr176

phosphorylation of AKT is not required for AKT activation

could be; 1) Presence of constitutively active PIK3CA mutations,

observed in colorectal, glioblastomas, gastric breast and lung

cancers [38]. 2) Loss of tumor suppressor PTEN resulting in

increased levels of cellular PIP3, occur commonly in prostate

cancer, endometrial cancer, and glioblastoma, among others [3].

3) A rare somatic activating mutation, E17K in the pH domain

which facilitates AKT recruitment to the membrane in PIP3-

independent manner [13].

We have used the term AKT ‘translocation’ to indicate

emergence of (cytosolic) AKT in the plasma membrane in response

to growth factors. Our data (Fig. 2B and 2C) demonstrate that

AKT in the plasma membrane is phosphorylated at Tyr 176 and

mutation of this site in AKT abrogates appearance of AKT in the

plasma membrane (Fig. 2D). Based on the evidence, our model

(Fig. 7) suggests that as Ack1 signaling pathway is initiated at the

plasma membrane by RTKs. Ack1 associates with growth factor-

bound RTKs (via Mig6 homology domain in Ack1 carboxy

terminal proline rich region) and is activated [25,26,39]. Ack1 is

constitutively bound to AKT (Fig. 1B and G); Activated Ack1

directly phosphorylates AKT at Tyr176, thus facilitating accumu-

lation of Tyr176-phosphorylated AKT at the plasma membrane.

Tyr176-phosphorylated AKT preferentially binds PA, a plasma

membrane phospholipid as opposed to unphosphorylated AKT

(refer to Fig. S8 for details). PH domain in AKT is a lipid binding

domain and thus might be involved in the membrane binding of

Tyr176-phosphorylated AKT. Collectively, our data suggests that

Ack1 mediated AKT Tyr176-phosphorylation is driving this

translocation process. Thus, although AKT Tyr176-phosphorylation

and its migration to the plasma membrane is PIP3 independent, the

recruitment of Tyr176 AKT in the plasma membrane may require

a functional PH domain.

In contrast to AKT, pTyr176-AKT specifically binds the

plasma membrane anionic phospholipid, PA (Fig. S8). Tyr176-

phosphorylation could induce conformational changes in the AKT

PH domain to enable binding to PA. The PH domain of Son of

sevenless (SOS) and PX domains of p47phox have previously been

shown to possess a phosphoinositide-binding pocket and a second

anion binding pocket which enables them to interact with PA

facilitating plasma membrane recruitment [40,41]. We speculate

that AKT too might possess a masked anion binding pocket, and

Tyr-phosphorylation induced conformational changes could

unmask this pocket allowing it to bind PA.

In endogenous systems Ack1 associates with AKT2 albeit

weakly as compared to AKT1 (Fig. 1B). AKT isoforms are

differentially distributed among different cellular compartments

[42] with majority of AKT1 in the cytosol, and AKT2 in the

mitochondria. Additionally AKT2 protein appears to be not as

Table 1. The intensities of Tyr284-phosphorylated-Ack1 and
Tyr176-phosphorylated-AKT for the trend analysis of breast
cancer.

Protein Statistics Normal ADH DCIS IDC LNMM

pTyr284-
Ack1

N 52 31 38 126 39

Mean 2 2.9 2.55 1.94 3.87

Median 2 3 2 2 3

Std 0.714 1.3 1.25 1.41 2

SE 0.1 0.23 0.20 0.13 0.32

CI Low 1.8 2.43 2.14 1.7 3.22

CI Upper 2.2 3.38 2.96 2.19 4.52

pTyr176-
AKT

N 45 39 38 118 37

Mean 2.36 2.9 3.97 3.86 5.32

Median 2 3 4 4 6

Std 0.8 0.79 1.96 2.17 1.93

SE 0.12 0.13 0.32 0.2 0.32

CI Low 2.11 2.64 3.22 3.46 4.68

CI Upper 2.6 3.15 4.51 4.25 5.97

doi:10.1371/journal.pone.0009646.t001

Table 2. P-values of Tukey-Kramer multiple comparisons
(simultaneous inference) of pTyr284-Ack1 intensity levels
between all pairs of stages for breast cancer.

pTyr284-
Ack1 Normal ADH DCIS IDC LMM

Normal 0.0340* 0.3324 0.9992 ,0.0001*

ADH 0.8313 0.0055* 0.3324

DCIS 0.1234 0.0004*

IDC ,0.0001*

LMM

*indicate significance at 0.05 level.
doi:10.1371/journal.pone.0009646.t002

Table 3. P-values of Tukey-Kramer multiple comparisons
(simultaneous inference) of pTyr176-AKT intensity levels
between all pairs of stages for breast cancer.

pTyr176-AKT Normal ADH DCIS IDC LMM

Normal 0.6434 0.0016* ,0.0001* ,0.0001*

ADH 0.1276 0.0342* ,0.0001*

DCIS 1.0000 0.0049*

IDC 0.0002*

LMM

*indicate significance at 0.05 level.
doi:10.1371/journal.pone.0009646.t003

Table 4. Kaplan–Meier survival estimates by Tyr284-
phosphorylated Ack1 and Tyr176-phosphorylated AKT
intensities for breast cancer TMA samples.

Protein Expression No. of subjects Event Censored

pTyr284-Ack1 , = 4 133 14% (19) 86% (114)

pTyr284-Ack1 .4 11 36% (4) 64% (7)

pTyr176-AKT , = 4 104 11% (11) 89% (93)

pTyr176-AKT .4 36 25% (9) 75% (27)

doi:10.1371/journal.pone.0009646.t004
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abundant as AKT1 in MCF-7 and MEFs (Fig. S1A). Thus, weak

interaction with AKT2 could be a combined outcome of

differential cellular distribution and lower protein levels. However,

our unpublised data demonstrates significant tyrosine phosphor-

ylation of AKT2 upon coexpression of Ack1 and AKT2 in

HEK293T cells, suggesting that both AKT1 and 2 are Ack1

substrates.

This study demonstrates that Tyr176-phosphorylation is

sufficient for AKT membrane localization followed by PDK1/

PDK2 mediated activation, defining the upstream Ack1 kinase

activity as ‘PDK3’. We do not rule out the possibility that other

tyrosine kinases may be able to target AKT for Tyr176-

phosphorylation. Ack1 knockout mice are not currently available.

However, when they are developed, they would allow us to

investigate whether AKT can be phosphorylated at Tyr176 by

other receptor or non-receptor tyrosine kinases in response to

growth factors. Multiple non-receptor tyrosine kinases were earlier

shown to increase AKT activity [43,44], however, precise

mechanism of AKT activation by any of the Tyr-modifications

is not clear, nor is their role in initiation or progression of cancer.

To our knowledge, this report provides the first demonstration for

a role of Tyr-phosphorylated AKT in its compartmentalization,

which allowed us to delineate its critical role in AKT kinase

activation, its potential to initiate neoplasia in mouse prostates and

promote disease progression in human breast cancers. Large

numbers of tumors are reliant upon AKT activation for survival

and growth making it an attractive target for molecular

therapeutics [45]. The assay that was used during development

of AKT inhibitors was primarily based on AKT Ser473-

phosphorylation. Our data indicates that a new class of AKT

inhibitors can be identified based on AKT Tyr176-phosphoryla-

tion. These novel inhibitors that block AKT membrane localiza-

tion and activation could have major implications in cancer,

diabetes and obesity research.

Materials and Methods

Ethics Statement
Mice breeding and colony maintenance was performed

according to IACUC protocols approved in writing by University

of South Florida (USF) and University of North Carolina at

Chapel Hill Division of Research Integrity and Compliance. We

used the breast TMA for our study for which we are exempt from

IRB approval (once again written exemption) for this study, as no

personal information about patients is sought.

Materials
Mouse embryo fibroblasts derived from AKT1, AKT2 and

AKT1&2 knockout mice were obtained from Dr. Morris J.

Birnbaum, University of Pennsylvania, Philadelphia. Human

Embryonic Kidney cell line 293T, normal prostate cell line

RWPE and MCF-7 cells were obtained from the American Type

Tissue Culture Collection. Ack1 mAb (A11), alpha-tubulin (TU-

O2), Actin (I-19), EGFR(1005), pTyr(PY20)HRP conjugate

antibodies purchased from Santacruz; Anti-phospho-Ack1

(Tyr284, Upstate); phospho-AKT (Thr308, C31E5E), phospho-

AKT (Ser473, D9E), AKT [20] (C67E7 Rabbit mAb),

AKT1(C73H10 Rabbit mAb), AKT2(5B5 Rabbit mAb), phos-

pho-AKT (Ser473, 193H12) Rabbit mAb Alexa Fluor 647

conjugate, HA-Tag (6E2) Mouse mAb Alexa Fluor 488,

phosphoHistone H3-Serine10 Alexa Fluor 647 conjugate anti-

bodies and LY294002 purchased from Cell Signaling, NaKAT-

Pase (ab7671, Abcam), c-erbB-2/Her2/neu Ab-2 (Clone 9G6.10)

(Thermo Scientific) antibodies, Ku70 (N3H10, Neomarkers), were

purchased from the respective companies. Site directed mutagen-

esis was performed to generate the AKT(Y176F), AKT(R25C),

myrAKT (Y176F), Ack1(E346K), Ack1(R34L), Ack1(R99Q) and

Ack1 (H409I) constructs according to the manufacturer’s protocol

(Promega Inc.). EGFP-E346K and DsRed2-N1-AKT (WT and

Figure 7. Tyr176-phosphorylation leads to AKT activation, a model. Our data demonstrates an alternate pathway of AKT activation wherein
RTKs facilitate Ack1 phosphorylation at Tyr284 leading to its kinase activation. Ack1 could also be activated in some tumors by autoactivating somatic
mutations, e.g. E346K. Activated Ack1 phosphorylates AKT at Tyr176 resulting in its binding to the anionic plasma membrane phospholipid PA.
pTyr176-AKT localizes to the plasma membrane, where it is targeted by PDK1 and PDK2 (mTORC2 complex) for Thr308/Ser473 phosphorylations,
respectively, leading to optimal AKT kinase activation. Activated AKT translocates to the nucleus, phosphorylates FoxO transcription factors to
downregulate expression of FoxO target genes.
doi:10.1371/journal.pone.0009646.g007
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Y176F) were generated by subcloning E346K and AKT cDNAs

into the pEGFP-N1 and pDsRed2-N1 (Clontech) vectors respec-

tively. Control and Ack1 siRNAs were generated by custom

synthesis (Qiagen) and the sequences have been described

previously [26]. PI3K siRNAs (SC39127) and antibodies were

purchased from Santacruz.

AKT Phospho-Site Determination Using Mass
Spectrometry

293T cells co-expressing activated Ack and HA-tagged AKT

were lysed in receptor lysis buffer (RLB) containing 25 mmol/L

Tris (pH 7.5), 225 mmol/L NaCl, 1% Triton X-100, 1 mmol/L

DTT, 10% glycerol, phosphatase inhibitors (10 mmol/L NaF,

1 mmol/L Na2VO4), and protease inhibitor mix (Roche).

Following immunoprecipitation with HA-beads (E6779, Sigma,

St. Louis, MO), purified AKT was subjected to SDS PAGE

electrophoresis and the gel was stained Coomassie Brilliant Blue-

R250(BioRad). A prominent band of ,59 kDa was excised,

washed once with water and twice with 50 mM ammonium

bicarbonate in 50% aqueous methanol. Proteins were reduced and

alkylated with 2 mM Tris(2-carboxyethyl)phosphine hydrochlo-

ride (TCEP) (Sigma, St. Louis, MO) and 20 mM iodoacetamide

(GE Healthcare, Pittsburgh, PA), respectively. Samples were

digested overnight with modified sequencing grade trypsin

(Promega, Madison, WI), Glu-C (Worthington, Lakewood, NJ),

or chymotrypsin (Roche, Switzerland). Peptides were extracted

from the gel slices, phosphopeptides were enriched using IMAC

spin columns (Pierce, Rockford, IL) or TiO2 Mono tip (GL

Science, Japan). A nanoflow liquid chromatograph (Ultimate3000,

LC Packings/Dionex, Sunnyvale, CA) coupled to an electrospray

hybrid ion trap mass spectrometer (LTQ Orbitrap, Thermo, San

Jose, CA) was used for tandem mass spectrometry peptide

sequencing experiments. Peptides were separated with a C18

reverse phase column (LC Packings C18Pepmap) using a 40 min

gradient from 5%B to 50%B (B: 90% acetonitrile/0.1% formic

acid). The flow rate on the analytical column was 300 nl/min.

Five tandem mass spectra were acquired for each MS scan using

60 sec exclusion for previously sampled peptide peaks (Spray

voltage 2.3 kV, 30% normalized collision energy, scanning m/z

450–1,600). Sequences were assigned using Sequest (Thermo) and

Mascot (www.matrixscience.com) database searches against Swis-

sProt protein entries of the appropriate species. Oxidized

methionine, deamidation, carbamidomethyl cysteine, and phos-

phorylated serine, threonine and tyrosine were selected as variable

modifications, and as many as 3 missed cleavages were allowed.

The precursor mass tolerance was 1.08 Da and MS/MS mass

tolerance was 0.8Da. Assignments were manually verified by

inspection of the tandem mass spectra and coalesced into Scaffold

reports (www.proteomesoftware.com).

Generation and Purification of pTyr176-AKT
Phospho-Antibody

Two AKT peptides coupled to immunogenic carrier proteins

were synthesized.

The phosphopeptide: Ac-ATGRY[pY]AMKIL-Ahx-C-amide

The non-phospho peptide: Ac-ATGRYYAMKIL-Ahx-C-amide

Two rabbits were immunized twice with phosphopeptide,

several weeks apart, and enzyme-linked immunosorbent assay

was performed to determine the relative titer of sera against

phosphorylated and nonphosphorylated peptides. The titer against

phosphorylated peptides (1:40,000) was much greater than

nonphosphorylated peptide (1:2700). The sera were affinity-

purified. In brief, two antigen-affinity columns were used to purify

the phospho-specific antibodies. The first column was the non-

phosphopeptide affinity column. Antibodies recognizing the non-

phospho residues of the peptide bound to the column and were

eluted as pan-specific antibodies. The flow-through fraction was

collected and then applied to the second column, the phospho-

peptide column. Antibodies recognizing the phospho-residue

bound to the column which was eluted as phospho-specific

antibodies. The purified antibodies were extensively characterized

for various applications e.g. Western blotting and immunohisto-

chemistry.

Cell Fractionation, Immunoprecipitations and Kinase
Assay

Membrane and cytosolic fractionation was performed using kit

from Biovision. The nuclear/cytoplasmic fractionation was

performed using protocol from Abcam. For immunoprecipitations,

cells were lysed in receptor lysis buffer (RLB) containing

25 mmol/L Tris (pH 7.5), 500 mmol/L NaCl, 1% Triton X-

100, 10% glycerol, phosphatase inhibitors (10 mmol/L NaF,

1 mmol/L Na2VO4), and protease inhibitor mix (Roche). For co-

immunoprecipitation, cells were lysed in buffer containing

25 mmol/L Tris (pH 7.5), 225 mmol/L NaCl, 1% Triton X-

100, 10% glycerol, phosphatase inhibitors (10 mmol/L NaF,

1 mmol/L Na2VO4), and protease inhibitor mix (Roche). The

kinase assay was performed using kit from Calbiochem.

Purification, In Vitro Binding and Phosphorylation Assay
GST-Ack1 was purified using method described earlier [31].

HEK293T cells were transfected with HA-tagged Ack1, AKT,

Y176F mutant of AKT and FLAG-tagged AR; 48 hours post-

transfection cell were lysed in RLB buffer. Lysates were incubated

with HA beads (Sigma) for 2 h, followed by washing with RLB

buffer and elution in PBS containing HA or FLAG peptide

(2 mM) on ice. Purity of preparation was confirmed by coomassie

blue staining of gel. For the in vitro binding assay, 50 nM of

purified Ack and AKT were incubated in modified RLB (mRLB)

containing 25 mM Tris (pH 7.5), 175 mM NaCl, 1% Triton X-

100, 10% glycerol, and protease inhibitor mix at room

temperature. After 30 mins, anti-Ack1 antibodies and Protein-A-

sepharose beads were added, incubated with shaking at 4uC for

overnight. Beads were washed thrice with mRLB buffer. Bound

protein complex was dissociated from beads by boiling in SDS

sample buffer and assessed by gel electrophoresis and detection by

immunoblotting with anti-AKT antibody. In a control experi-

ment, immunoprecipitation was done using non-specific IgG. For

in vitro phosphorylation of AKT by Ack1, 50 nM of purified Ack1

and AKT were incubated in kinase buffer contained 20 mmol/L

HEPES (pH 7.5), 150 mM NaCl, 10 mmol/L MgCl2, 0.1 mmol/

L Na2VO4, 0.5 mmol/L DTT, 0.25 mmol/L ATP for 1 hour at

30uC. The reaction was stopped by adding sample buffer and

reaction was assessed by gel electrophoresis and detection by

immunoblotting with antibodies as shown.

Quantitative RT-PCR
All RT reactions were done at the same time so that the same

reactions could be used for all gene studies. For the construction of

standard curves, serial dilutions of pooled sample RNA were used

(50, 10, 2, 0.4, 0.08, and 0.016 ng) per reverse transcriptase

reaction. One ‘‘no RNA’’ control and one ‘‘no Reverse

Transcriptase’’ control were included for the standard curve.

Three reactions were performed for each sample: 10 ng, 0.8 ng,

and a NoRT (10 ng) control. Real-time quantitative PCR analyses

were performed using the ABI PRISM 7900HT Sequence
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Detection System (Applied Biosystems). All standards, the no

template control (H2O), the No RNA control, the no Reverse

Transcriptase control, and the no amplification control (Bluescript

plasmid) were tested in six wells per gene (2 wells/plate x 3 plates/

gene). All samples were tested in triplicate wells each for the 10 ng

and 0.8 ng concentrations. The no RT controls were tested in

duplicate wells. PCR was carried out with SYBR Green PCR

Master Mix (Applied Biosystems) using 2 ml of cDNA and the

primers (Table 5) in a 20-ml final reaction mixture: Actin: 300/

300 nM; p21: 300/300 nM; p27Kip1-1:300/300 nM; p27Kip1-2:

300/300 nM; FASL-2: 300/300 nM; GADD45-1: 300/300 nM;

GADD45-2: 300/300 nM; BIM: 100/100 nM; HPRT1: 100/

100 nM. After 2-min incubation at 50uC, AmpliTaq Gold was

activated by a 10-min incubation at 95uC, followed by 40 PCR

cycles consisting of 15 s of denaturation at 95uC and hybridization

of primers for 1 min at 55uC. Dissociation curves were generated

for each plate to verify the integrity of the primers. Data were

analyzed using SDS software version 2.2.2 and exported into an

Excel spreadsheet. The actin data were used for normalizing the

gene values; i.e., ng gene/ng actin per well.

Fluorescence Microscopy
For cellular localization studies, NIH3T3 cells grown on

coverslips were transfected at 50% confluency. Cells were fixed

with 4% paraformaldehyde in PBS for 10 min, washed with PBS.

Coverslips with fixed cells were mounted on slides in Vectashield

mounting medium with DAPI (Vector Laboratories), and red

(dsRed2-N1AKT) or green (EGFP-346K) fluorescence was detected

using a Zeiss Automated Upright Fluorescent Microscope and

charge-coupled device (CCD) camera with appropriate filters. Zeiss

Axiovision software was used for image viewing and processing.

Ack1 Transgenic (TG) Mice
For in vivo expression of Ack1, Myc-epitope-tagged construct

was generated in two steps. First, PCR was performed using

ARR2PB promoter region (provided by UNC Mouse Core

Facilities) as the template, which was subcloned in pTG1 vector.

In the second step, a PCR product was generated using activated

Ack1(L487F) mutant (Mahajan, 2005 #12) as the template and

the reverse primer encoding a Myc-tag. The caAck PCR product

(1 to 787 aa) was digested and was inserted into the pTG1 vector

downstream of a sequence coding Globin intron and upstream of a

SV40 polyA site (the schematic is shown in Fig. 5A). The

construct was sequenced. The ARR2PB-Ack1 plasmid was

digested with HindIII and BamHI and a 4Kb linear DNA

fragment was gel purified and microinjected into fertilized C57B6

mouse eggs, which were then surgically transplanted into a

pseudo-pregnant female. Transgenic founders were screened by

PCR using genomic DNA isolated from tail snips. The prostate

specific expression was assessed by immunoprecipitation with

Myc-antibodies followed by immunoblotting with pTyr-antibodies

(Fig. 5B). TG and WT mice were sacrificed at various time points

for removal of prostate followed by lysate preparation and

immunoblotting (Fig. 5C). Prostates from transgenic mice were

dissected using a dissection microscope, fixed in 10% buffered

formalin and embedded in paraffin. Sections were stained with

haematoxylin and eosin and stained slides were evaluated by

pathologist (R.W.E and A.S.L.).

Flow Cytometry Analysis
AKT 1&2KO MEFs transfected with either the AKT WT or

176 mutant constructs were serum starved 24 h post-transfection.

Cells were either untreated or treated with EGF for 15 minutes

and harvested. Cells were singly or doubly stained with antibodies;

AKT Ser473 conjugated to Alexa 647 and HA tag conjugated to

Alexa 488 according to the manufacturer’s protocol (Cell

Signaling). Briefly, cells were resuspended in 1X Phosphate

Buffered Saline (PBS) to which paraformaldehyde was added to

a final concentration of 4%. Cells were fixed at 37uC for 10 min

and chilled on ice for 1 min. The fixative was removed after

centrifugation at 1500 rpm for 5 min. Cells were resuspended in

ice cold 100% methanol and incubated on ice for 30 min and

stored at -20C in 90% methanol. One million cells from each

sample were rinsed with 2 ml of 1XPBS containing 0.5% BSA by

centrifugation and resuspended in 90 ml of incubation buffer per

assay tube for 10 min. 10 ml of conjugated antibody was added to

the assay tube and incubated for 60 min in the dark at room

temperature. The cells were rinsed twice with the incubation

buffer by centrifugation and resuspended in 0.5 ml PBS and

accquired on FACS calibur and analyzed by the FlowJo software.

Tissue Microarray (TMA) Analysis
For assessment of pTyr284-Ack1 and pTyr176-AKT expression

in breast cancer, immunohistochemistry was carried out on two

high-density TMAs (n = 476 cores) containing samples of normal

breast tissue, atypical ductal hyperplasia (ADH), ductal carcinoma

in situ (DCIS), invasive ductal carcinoma (IDC), lymph node macro

metastasis (LNMM). Four mm sections were cut with Leica

microtome (Leica Microsystems Inc, Bannockburn, IL) and

transferred to adhesive-coated slides. The tissue array slides (4

slides including 2 test duplicate slides, and positive and negative

controls) were stained for pTyr284-Ack1 and pTyr176-AKT using

respective rabbit polyclonal antibodies. The slides were dewaxed

by heating at 55 Celsius for 30 min and by three washes, 5 min

each, with xylene. Tissues were rehydrated by series of 5 min

washes in 100%, 95%, and 80% ethanol and distilled water.

Antigen retrieval was performed by heating the samples at 95u
Celsius for 30 min in 10 mmol/L sodium citrate (pH 6.0). After

blocking with universal blocking serum (DAKO Diagnostic,

Mississauga, Ontario, Canada) for 30 min, the samples were then

incubated with rabbit polyclonal pTyr284-Ack1 antibody (1:300

dilution; Milipore) and rabbit polyclonal phospho-AKT antibody

(1:25 dilution) at 4u Celsius overnight. The sections were incubated

with biotin-labeled secondary and streptavidin-peroxidase for

30 min each (DAKO Diagnostic). The samples were developed

with 3,39-diaminobenzidine substrate (Vector Laboratories, Bur-

Table 5. Primer sequences for qRT-PCR.

Primer Sequence

p27Kip1 Fwd TCAAACGTGAGAGTGTCTAACG

p27Kip1 Rev CCGGGCCGAAGAGATTTCTG

p21 Fwd TGTTCCGCACAGGAGCAA

p21 Rev TGAGCGCATCGCAATCA

Bim Fwd CCCGGAGATACGGATTGCAC

Bim Rev GCCTCGCGGTAATCATTTGC

Gadd45 Fwd AGACCGAAAGGATGGACACG

Gadd45 Rev TGACTCCGAGCCTTGCTGA

HPRT Fwd CACAGGACTAGAACACCTGC

HPRT Rev GCTGGTGAAAAGGACCTCT

ACTB Fwd GTGGGCATGGGTCAGAAG

ACTB Rev TCCATCACGATGCCAGTG

doi:10.1371/journal.pone.0009646.t005
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lington, Ontario, Canada) and counterstained with hematoxylin.

Following standard procedures the slides were dehydrated and

sealed with cover slips. Negative controls were included by

omitting pTyr284-Ack1/pTyr176-AKT antibody during primary

antibody incubation. The phospho-AKT/Ack1 antibodies were

extensively validated for immunohistochemistry studies. MCF7

cells treated with heregulin and RWPE cells treated with EGF

ligand (or no ligand) were fixed, paraffin imbedded, sectioned and

used for antibody validation. Further, MEF1&2KO cells trans-

fected with activated Ack1 and AKT were also used to validate

antibodies. The pTyr284-Ack1 and pTyr176-AKT staining in

paraffin embedded tissues were examined in a blinded fashion by

two independent pathologists (A.L. and D.C.). If needed, a

consensus score was reached for each specimen. The positive

reactions were scored into four grades according to the intensity of

staining: 0, 1+, 2+ and 3+. The percentages of pTyr176-AKT

positive cells were also scored into four categories: 0 (0%), 1+ (1–

33), 2+ (34–66), 3+ (more than 66%). The product of the intensity

and percentage scores was used as a final staining score.

Statistical Analysis
The Mantel-Haenszel x2 test was performed to examine if there

is an increasing trend for pTyr284-Ack1 and pTyr176-AKT with

respect to different progression stages of breast or pancreatic

cancer. The ordinal intensity levels of pTyr284-Ack1 and

pTyr176-AKT 0, 1, 2, 3, 4, 6, 9 were pooled into 6 levels (as 0,

1, 2, 3, 4, and 6 and above) to accommodate the rare observations

in the highest intensity level in most stages. Analysis of variance

was performed to examine whether the expression levels of

pTyr284-Ack1 and pTyr176-AKT differ among different tumor

stages. Boxplots were used to summarize the intensity distribution

at each progression stage. Furthermore, Tukey-Kramer method

was performed to examine between which pairs of stages the

expression levels are different. This post-hoc procedure adjusts for

all pairwise comparisons and simultaneous inference. When more

than one sample was obtained from a patient, the intensity of the

most progressed stage was used for the analysis. Correlation

between pTyr284-Ack1 and pTyr176-AKT was explored using

Spearman ranked correlation analysis. The association of the

expression levels of pTyr284-Ack1 and pTyr176-AKT and the

overall survival of patients were assessed using the Kaplan–Meier

method. For breast cancer data, there were 144 individuals with

available pTyr284-Ack1 staining and survival information while

there were 140 individuals with available pTyr176-AKT staining

and survival information. For pancreatic cancer data, there were

83 individuals with available pTyr284-Ack1 staining and survival

information while there were 76 individuals with available

pTyr176-AKT staining and survival information. Statistical

differences between the groups were determined using log-rank

test.

Supporting Information

Figure S1 AKT is Tyr-phosphorylated by Ack1 in vitro. (A) AKT

MEF KO1, KO2 and KO1&2s lack respective AKT isoforms.

Equal amounts of MEFs protein lysates were subjected to IB as

indicated. MCF-7 cell lysate was used as control. (B) Purification of

Ack1 and AKT. HA-tagged Ack1 and AKT were expressed in

HEK293T cells, lysed and incubated with HA-beads. Followed by

extensive washing, proteins were eluted using HA-peptide (2nM,

1 hour) and assessed by SDS-PAGE and Coomassie Brilliant Blue-

R250(BioRad) staining. (C) In vitro binding assay. Equimolar

amounts of purified Ack1 and AKT proteins were incubated for

30 min, complex was immunoprecipitated with Ack1 (lanes 2–5)

or IgG (lane#6) antibodies followed by IB with anti-AKT

antibodies (top panel). About 6.35% of total AKT was in complex

with Ack1. (D) In vitro phosphorylation of purified AKT by Ack1.

Equimolar amounts of purified Ack1 and AKT proteins were

incubated in kinase buffer for 1 hour at 370C and reaction mix

was subjected to IB with pTyr176-AKT (top panel), pTyr (2nd and

3rd panels), AKT (4th panel) and Ack1 (bottom panel) antibodies.

(E) Schematic representation of GST-Ack1 construct. FLAG-

tagged AR expressed in HEK293 cells and GST-tagged Ack1 was

expressed in DH5 cells. Purified GST-Ack1 (right panel) and

FLAG-AR (left panel) were assessed by SDS-PAGE followed by

Coomassie staining. (F) In vitro binding assay. Equimolar amounts

of purified HA-AKT or FLAG-AR proteins were incubated with

GST-Ack1 bound to beads for overnight, beads were washed

followed by IB with anti-FLAG/HA antibodies (top panel). Lower

panels show IB with FLAG/HA (2nd panel) and GST (bottom

panel) antibodies.

Found at: doi:10.1371/journal.pone.0009646.s001 (0.05 MB

PDF)

Figure S2 Tyr176-phosphorylated AKT sample also contains

Thr308 and Ser473 phosphorylated AKT. (A) Activated Ack1

(caAck) and HA-tagged AKT were coexpressed in HEK293T cells

followed by IP with HA-beads. IP AKT was subjected to SDS-

PAGE electrophoresis and the gel was stained Coomassie. A

prominent band of ,59 kDa corresponding to AKT is seen which

was excised and subjected to mass spectrometry as described in

methods section. The upper ,113 kDa band corresponds to

caAck1 that bound to AKT. (B) Purified AKT peptide preparation

that lead to the identification of pTyr176-AKT was assessed for

other phosphorylation events. A peptide was detected at

21.12 mins in the total ion chromatogram with mass-to-charge

ratio 918.43, which represents an error of 1.0 ppm (C). (D) The

tandem mass spectrum matched the sequence, FGLCKEGIKD-

GATMKpTFC indicating that Thr308 in AKT was phosphory-

lated; the detection of the phosphothreonine y3 is consistent with

this localization. (E) Another peptide was detected at 23.72 mins in

the total ion chromatogram with mass-to-charge ratio 944.93,

which represents an error of 0.99 ppm (F). (G) The tandem mass

spectrum matched the sequence, ERRPHFPQFpSYSASGTA

indicating that Ser473 in AKT was phosphorylated; the detection

of b8, b9, y7 and y8 is consistent with this localization.

Found at: doi:10.1371/journal.pone.0009646.s002 (0.08 MB

PDF)

Figure S3 AKT Tyr176-phosphorylation affects the loop

harboring Ser473. (A) Residues Tyr176 and Ser473 are located

in regions with increased conformational flexibility. The backbone

of AKT1 is color-traced according to crystallographic B-factors

from blue (20 Angstrom, less flexible) to red (76 Angstrom, highly

flexible). (B) B-factor plot of all C-alpha atoms. The average main

chain B-factor is 36 Angstrom (dashed horizontal line). (C) AKT

Tyr176-phosphorylation induces substantial conformational

changes of residues in its vicinity. Electrostatic interactions could

be established with Arg174 and/or Lys214 while electrostatic

repulsion and/or steric hindrance (due to the bulky phosphate

group) may affect Glu169 and Tyr215. This could lead to a shift of

the beta-strand flanking the c-terminal portion of the loop

harboring Ser473, in turn causing structural alterations of this

residue.

Found at: doi:10.1371/journal.pone.0009646.s003 (0.07 MB

PDF)

Figure S4 Kinase domain of Ack1 interacts with AKT PH

domain/Tyr176 in kinase domain. (A) Schematic representation

of wild type AKT, Y176F point mutant and deletion constructs.

Ack1 Activates AKT
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Site-directed mutagenesis of AKT was performed to generate the

tyrosine to phenylalanine, Y176F, point mutant. PH, Pleckstrin

homology domain; Kinase, Kinase domain and CT, Carboxy

Terminal regulatory region. Schematic representation of Ack1 and

deletion constructs. SAM, Sterile alpha motif; Kinase, kinase

domain; SH3, Src homology domain 3; C, Cdc42 Rac interactive

binding domain. (B) Flow cytometry of AKT 1&2KOMEFs,

expressing HA-AKT and/or HA-Y176F. Top left panel indicates

mock transfected cells stained with AKT-Ser473 antibody

conjugated to Alexa 647 (untreated: 0.1%). Bottom left panel

shows percentage of cells with AKT Ser473-phosphorylation upon

EGF stimulation (15.2%). Right top and bottom panels show

percentage of cells expressing HA-AKT (23%) or HA-Y176F

(31%), respectively, in cells stained with anti-HA antibody

conjugated to Alexa 488. (C) MEF1&2KO cells were co-

transfected with HA-tagged AKT deletions and caAck1. The

lysates were IP using HA antibodies followed by IB with pTyr

antibodies (top panel). Lower panel show IP using HA antibodies

followed by IB with AKT antibodies. Bottom panel show IB of the

lysate with Ack1 antibodies. (D) HEK293 cells were co-transfected

with HA-tagged AKT deletions and myc-tagged caAck. The

lysates were IP using Myc antibodies followed by IB with HA

antibodies (top panel). Lower panels are as described above. (E)

MEF1&2KO cells were transfected with myc-tagged Ack1

deletions and HA-tagged AKT. The lysates were IP using Myc

antibodies followed by IB with AKT antibodies (top panel). Lower

panels show IB with Myc and AKT antibodies.

Found at: doi:10.1371/journal.pone.0009646.s004 (0.08 MB

PDF)

Figure S5 Somatic autoactivation of Ack1. (A) Schematic

representation of Ack1 and various point mutants identified in

the COSMIC database. Site-directed mutagenesis of Ack1 was

performed to generate four HA-tagged point mutants. SAM,

Sterile alpha motif; Kinase, kinase domain; SH3, Src homology

domain 3; C, Cdc42 Rac interactive binding domain; Proline,

Proline rich domain; UBA, Ubiquitin binding domain. (B) E346K

mutation results in Ack1 autoactivation leading to AKT activation.

MEF1&2KO cells were transfected with Ack1 mutants and the

lysates were IP using anti-HA antibodies followed by IB with pTyr

antibodies (top panel). Lower panels show IB with indicated

antibodies. (C) E346K mutant Ack1 interacts with and Tyr-

phosphorylates AKT. 293T cells were co-transfected with HA-

tagged Ack1 point mutants. Equal amounts of protein lysates were

subjected to IP using HA antibodies. IB with AKT antibodies

revealed formation of activated Ack1(E346K)/endogenous AKT

complex (top panel). (D) HEK293T cells were transfected with

HA-tagged E346K, caAck or kdAck (K158R) mutants. Lysates

were subjected to IP using anti-HA (top panel) antibodies followed

by IB with pTyr284-Ack1 antibodies. Lower panels show IB with

indicated antibodies. (E) E346K or caAck mediated AKT Tyr-

phosphorylation leads to AKT kinase activation. HEK293T cells

were co-transfected with E346K or myc-tagged caAck and AKT

or Y176F mutant. Lysates were subjected to IP using anti-myc (top

panel) and anti-Ack1 (second panel) antibodies followed by IB with

pTyr antibodies. The same lysates were processed for kinase assay

shown in S6F. (F) Ack1 autoactivation leads to AKT kinase

activation. As described in S6E, lysates were IP with HA-

antibodies, followed by AKT kinase assay. Low levels of Ack1

kinase activity in vector transfected cells was treated as zero and

increased kinase activity (in percentage) over the vector expressing

cells is shown.

Found at: doi:10.1371/journal.pone.0009646.s005 (0.05 MB

PDF)

Figure S6 Generation and validation of pTyr176-AKT phos-

pho-antibodies. (A) EGF and heregulin treatment results in AKT

Tyr176-phosphorylation. RWPE, normal prostate epithelial cells

were treated with EGF (10 ng/ml,10 mins) and heregulin (10 ng/

ml, 35 mins) ligand, equal amounts of protein lysates were

subjected to immunoblotting as indicated. pTyr176-antibodies

specifically recognizes endogenous Tyr-phosphorylated AKT

following treatment with ligands. (B) Ack1 activation lead to

AKT Tyr176-phosphorylation. 293T cells were co-transfected

with myc-tagged caAck or kdAck and AKT or Y176F mutant.

Equal amounts of protein lysates were subjected to immunoblot-

ting with pTyr176-AKT antibodies. The pTyr176-antibodies

recognize only the pTyrAKT (lane 2), but not the Y176F point

mutant (lane 4). (C-J) Tyr176-phosphorylated AKT localizes at

plasma membrane. NIH3T3 cells were co-transfected with EGFP-

E346K mutant of Ack1 and dsRed2-N1-AKT (D-F) or dsRed2-

N1-Y176F-AKT (G-J) DNAs overnight. Cells were serum starved,

fixed and visualized by fluorescence microscopy. AKT but not

Y176F mutant was localized to the plasma membrane in activated

Ack1(E346K) expressing cells.

Found at: doi:10.1371/journal.pone.0009646.s006 (0.07 MB

PDF)

Figure S7 Tyr176-phosphorylation of mutant AKT (R25C) that

inefficiently binds phosphatidyl-inositol 3,4, 5-triphosphate. (A)

MEF1&2KO cells were transfected with activated Ack and AKT

followed by LY294002 (10 mM) for 1 h. Cell lysates were

fractionated and subjected to immunoblotting with indicated

antibodies. AKT Ser473 phosphorylation in membrane fraction

was unaffected by LY294002 treatment suggesting Ack1 mediated

AKT activation is not dependent upon PI3K activity. (B)

Schematic representation of wild type AKT and R25C point

mutant constructs. Site-directed mutagenesis of AKT was

performed to generate the R25C point mutant. PH, Pleckstrin

homology domain; Kinase, Kinase domain and CT, Carboxy

Terminal regulatory region. (C) MEF1&2 KO cells were

transfected with empty vector or caAck and HA-tagged AKT or

R25C mutant DNAs. Serum starved (18 h) cells were treated with

EGF (10 ng/ml, 15 mins). The lysates were subjected to

immunoprecipitation with anti-HA (top panel) or anti-Ack1

(second panel) antibodies followed by immunoblotting with pTyr

antibodies. (D) MEF1&2 KO cells were transfected with empty

vector or caAck and HA-tagged AKT or R25C mutant DNAs.

Serum starved (18 h) cells were treated with EGF (10 ng/ml,

15 min). Cell lysates were fractionated and subjected to

immunoblotting.

Found at: doi:10.1371/journal.pone.0009646.s007 (0.05 MB

PDF)

Figure S8 Tyr-phosphorylated AKT binds to phosphatidic acid.

Protein-phospholipid overlay assay was performed using nitrocel-

lulose membranes spotted with 100 pmol of different phospholip-

ids. (A-C, F,G) Cells transfected with vector or activated Ack1 and

AKT or Y176F were lysed and immunoprecipitated with pTyr-

beads followed by elution with phenylphosphate. The eluted Tyr-

phosphorylated proteins were incubated with phospholipid blots

overnight at 4uC. Blots were extensively washed and bound

proteins were detected with (A, B and F) pTyr176-AKT and (C

and G) AKT antibodies. (D and E) Cells expressing HA-tagged

AKT (D) and Y176F mutant (E) were lysed and immunoprecip-

itated with HA-beads followed by elution with HA peptide. The

eluate was incubated with phospholipid blot and bound protein

was detected with AKT antibodies. The pTyr176-AKT bound to

phosphatidic acid, in contrast, AKT protein primarily binds to

phosphatidyl-inositol 3,4,5-triphosphate (PIP3). (H) HA-peptide

Ack1 Activates AKT
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and phenylphosphate eluates were immunoblotted with antibodies

shown to confirm presence of desired proteins.

Found at: doi:10.1371/journal.pone.0009646.s008 (0.03 MB

PDF)

Figure S9 Tyr176 phosphorylated AKT is enriched in the

nucleus. (A) MCF-7 cells were serum starved (24 h) and treated

with heregulin (30 ng/ml) for indicated times. Cell lysates were

fractionated into nuclear and cytoplasmic fractions. Equal

amounts of protein from these two fractions were subjected to

immunoblotting with indicated Abs. Activated Ack1 mediated

Tyr176 phosphorylated AKT is enriched in the nucleus 45 mins

after heregulin treatment. The mobility of pTyr176-AKT is

affected due to difference in the salt concentrations of nuclear

(300 mM NaCl) and cytoplasmic fractions (10 mM KCl) (top

panel). (B) MEF1&2KO cells were transfected with HA-tagged

myr-AKT or myr-Y176F, equal amounts of protein lysates

were subjected to immunoblotting as indicated. The myristoy-

lated-AKT exhibits high levels of AKT activation, as seen by

Thr308-phosphorylation.

Found at: doi:10.1371/journal.pone.0009646.s009 (0.03 MB

PDF)

Figure S10 Staining of tumor samples with Tyr284-phosphor-

ylated-Ack1 and Tyr176-phosphorylated-AKT antibodies. Repre-

sentations of Tyr284-phosphorylated-Ack1 (A) and Tyr176-

phosphorylated-AKT (B) staining of IDC, which show intense

staining in nuclei and membrane. (C) Expression levels between

Tyr284-phosphorylated-Ack1 and Tyr176-phosphorylated-AKT

expression were significantly correlated in breast tumors (Spear-

man rank correlation coefficient rho = 0.43, p,0.0001). (D–G)

Breast samples stained with Ack1 and pAck1(Tyr284) antibodies.

Basal levels of Ack1 expression were seen in both normal and

tumor samples (D, E), however, significant increase in pAck1(-

Tyr284) staining was seen in tumor samples as contrast to normal

breast sample (compare F and G).

Found at: doi:10.1371/journal.pone.0009646.s010 (0.10 MB

PDF)
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